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Abstract—Fully distributed learning schemes based on oppor-
tunistic exchanges among nodes, such as Gossip Learning (GL),
have recently attracted attention due to their superior scalability,
robustness, and enhanced privacy protection. However, their
performance has only been characterized in static or application-
specific trace-driven mobility scenarios, overlooking the issue of
understanding how the structure of the interactions among nodes
over time affects the learning process. To address this gap, we
propose a new assessment approach for GL in dynamic settings,
based on two novel classes of time-varying random graphs, which
extend Erdős-Rényi (ER) and Barabási-Albert (BA) random
graphs to characterize generic real-world dynamic networks (e.g.,
social or wireless networks), while accounting for node churn and
the rate at which the graph evolves. Evaluating GL on such time-
varying graphs allows us to abstract the relationship between
the key parameters of GL algorithms, the communication and
topology patterns, and the learning performance from factors
specific to the experimental contexts, generalizing our findings to
a large class of real-world networks. Simulation results show
that the sparser the graph, the higher the positive impact
edge dynamicity has on GL mean accuracy and convergence
time. Surprisingly, we observe that in networks with the same
average connectivity degree, regardless of their nodes’ attachment
style, a higher edge persistence reduces GL mean accuracy and
convergence time, highlighting the value of a varied interaction
among nodes. Finally, results show that real-world networks
that exhibit preferential attachment can preserve a better GL
performance in terms of mean accuracy and convergence time
than random networks (i.e., ER-like), even under high node churn
and edge dynamicity.

I. INTRODUCTION

Distributed Machine Learning (ML) [1] has proven its
potential to significantly enhance the performance and ef-
ficiency of real-world dynamic systems, such as bioinfor-
matics networks [2], transportation networks [3], and social
networks [4]. By distributing the computational load across
multiple nodes in a dynamic network, we can process large
volumes of data more quickly and accurately. This is partic-
ularly beneficial in Artificial Intelligence of Things (AIoT)
environments, where each agent generates vast amounts of
data and needs to be processed in real-time [5]. However,
many distributed schemes face scalability issues relying on
infrastructure-based information exchanges or a centralized
coordination server. This has increased interest in fully decen-
tralized approaches, exemplified by GL [6], [7]. GL adopts
a server-less, fully decentralized model training approach,
emphasizing knowledge transfer among agents through direct,
peer-to-peer exchanges of models. They scale effectively with
the number of agents, as each agent contributes to service

capacity with its data computing, and communication capacity.
Several GL schemes have been proposed for a large variety of
learning architectures [7], [8], scenarios, and applications [9],
[10], [11]. However, the majority of these schemes assume
static network topologies (e.g., ring [12] or mesh [13], [8],
[14]). Some studies [7] show that, in such static networks,
GL converges and delivers comparable accuracy to that of
distributed schemes with centralized aggregation, such as
Federated Learning (FL). However, these results do not apply
to dynamic settings, where the network topology changes over
time, such as in Vehicle-to-Vehicle (V2V) networks or robot
swarms. Several studies assess GL in dynamic scenarios (e.g.,
from fully-connected [15] to volatile vehicular networks [16],
[17]) showing that convergence to high-accuracy models, even
in trace-driven mobility scenarios, is possible. However, these
assessments are limited to networks whose topology is induced
by trace-based mobility patterns, making it hard to extrapolate
findings to general settings and do not offer insights into
the relationship between the main system parameters and
GL’s key performance indicators. Early work [18] studied
the performance of GL on random Time-Varying Graphs
(TVG)s, characterizing the relationships between connectivity
and scale on the global model’s convergence and accuracy.
However, such works focus on a specific type of random graph
where the number of agents remains constant over time and
only the connections between agents change, not considering
situations where agents join or leave the network (node churn).
Furthermore, such works do not consider edge persistence over
time, assuming that the connectivity lifetime between agents
is independent of the network’s historical state. The current
literature does not yet provide evidence on how changes in
the network, such as agents joining or leaving the network
and their connectivity lifetime, impact the performance of GL
algorithms. This work’s main contributions are:
• We introduce Time-Varying Erdős-Rényi (TVER), and

Time-Varying Barabási-Albert (TVBA) random graphs,
which extend random ER and BA graphs, respectively, to
generate time-varying scenarios by modeling node churn
and edge persistence.

• We study GL performance on TVER, and TVBA random
graphs by simulating GL over general synthetic scenarios
that capture real-world topological dynamicity without re-
lying on trace-driven connectivity patterns.

• Through simulations, we study the relationship between
GL’s accuracy and convergence performance in time-
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varying graphs under variable network density, node churn,
and edge persistence. Results show that the mean accuracy
and convergence time performance of GL in a wide range
of diverse TVBA graphs is robust to topological dynam-
icity regarding node scale, churn, and edge-connectivity
persistence and magnitude. Conversely, results show that
GL over TVER graphs are sensitive to changes in network
parameters, such as in small and sparse networks that most
substantially benefit from low edge retention.

II. SYSTEM MODEL

We consider a set of mobile nodes modeling, e.g., smart-
phones, UAVs, or connected vehicles, moving in a region
of space. Each node is endowed with an ML model that is
identical in architecture across all nodes, needs to be trained,
and is used by each node to perform a specific inference
task. In addition, each node possesses a set of data points,
denoted as local dataset, which we assume remains constant
over time. Nodes can exchange information through direct
wireless Device-to-Device (D2D) communications. Commu-
nication between two nodes may occur whenever they are
in contact, i.e., within the transmission range of each other
(which we assume to be the same for all nodes). We assume
these exchanges to be instantaneous and without losses or
errors, though our approach can be easily generalized to
account for more realistic communication patterns. We assume
time to be discrete and divided into equal-sized intervals
called slots, indexed with t ∈ N. In this work, we model
the evolution over time of the connectivity graph of nodes
as Time-Varying Graphs (TVG). At each time slot t, the set
of vertices Vt models the set of nodes present in the area
at time slot t. Each edge ei,j ∈ Et models the existence of a
bidirectional wireless channel between vi, vj ∈ Vt. We assume
the connectivity graph is constant within each time slot, but
not necessarily between consecutive slots. The resulting TVG
G = {Gt = (Vt, Et) : t ∈ N} is thus a sequence of graphs,
each associated with a time slot. As for the evolution of Vt

over time, we consider two cases. In closed systems, Vt does
not change over time, whereas in open systems it changes due
to nodes joining and leaving the graph. In what follows, we
assume that the mean arrival and departure rates of nodes from
the given region are the same (and equal to λ nodes per slot) so
that the mean number of nodes in the given region is constant
over time.

III. BASICS OF GOSSIP LEARNING OPERATION

In this work, we assume nodes employ the Gossip Learning
(GL) scheme to train their models collaboratively. In what
follows we take as a reference implementation of the GL
protocol the one in [16], though our methodology of analysis is
very general and extends to other variants and implementations
of distributed learning schemes.
We assume that, at the start of the scheme, all nodes present
in the region are endowed with an initial local model instance,
identical for all nodes, and with random coefficients. Starting
from slot t = 0, at every slot the algorithm proceeds through
three phases, synchronized across all nodes. In the training

phase, each node trains its local model instance over its local
dataset. In the second phase, each node exchanges its local
model instance with its neighbors. In the third phase (merging),
each node merges the models received from neighbor nodes
with its local model instance by computing a weighted average
of them to generate a meta-model (e.g. similarly to what done
in FedAvg [19]). In this work, we assume the Decentralized
Powerloss (Dfed Pow) strategy [16], where the weight as-
signed to each model in the merging task is determined by its
loss, computed over the context-specific validation set. Such a
choice for model weights has proven among the most effective
in several GL training scenarios [10], [16]. These three phases
are repeated until a termination criterion is met. This can be
in terms of minimum model accuracy or minimum increment
in model accuracy over a given number of slots. Among the
key performance indicators are the mean and the distribution
of the model accuracy at convergence and the mean time to
converge [10], [16].

IV. TIME-VARYING RANDOM GRAPH MODELS

As already noted, GL schemes are known to depend strongly
on the spatio-temporal patterns of exchanges among nodes.
To enable a scenario-independent, systematic, and controlled
assessment of the impact of network structure and its evolution
in space and time on the distributed training process. To
this end, we elaborate two models of time-varying random
graphs by extending the well-known ER [20] and BA [21]
models to dynamic scenarios. BA graphs exhibit the scale-
free property, with nodes of high degree playing the role of
hubs. they emerge naturally in a variety of settings, including
heterogeneous wireless sensor mesh networks, where few
nodes have better coverage and high transmit power than other
nodes. The ER model instead produces a random network with
a more uniform degree distribution, and it is suitable for mod-
elling, e.g. wireless sensor networks with high homogeneity
in the spatial distribution of devices and their transmission
range. Studying the properties of learning over these graphs
is relevant because such generic time-varying graphs simplify
the assumptions about the structure, evolution, and properties
of realistic networks, offering the flexibility to adjust and
control independently and accurately such parameters as the
number of nodes, the arrival and departure rate, the connection
patterns, and the frequency and duration of node interactions.
A. Time-Varying Erdős-Rényi (TVER) Graph

In a static ER random graph, known as a binomial graph,
each pair of nodes has a fixed probability p of being connected
by an edge [20]. We propose an extension to the ER model,
called TVER, by combining a sequence of ER graphs with a
memory feature to model different rates of temporal evolution
accurately. It provides a more realistic representation of many
real-world systems, where the future state depends on the past
states. Specifically, in a closed system, the parameters that
characterize a TVER graph are:

• Edge creation probability p1. It is the probability that
an edge is present between two vertices at time t > 0,
conditioned to the fact that it was not present at time t− 1,
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i.e., ∀t ∈ N,∀e ∈ Et : P[e ∈ Et|e /∈ Et−1] = p1.
• Edge persistence probability p2. It represents the probability

that an edge is present between two vertices at time t > 0,
conditioned to the fact that it was already present at time
t− 1, i.e., ∀t ∈ N,∀e ∈ Et : P[e ∈ Et|e ∈ Et−1] = p2.

The choice of p1 and p2 thus determines the mean node degree,
the equivalent edge probability, and the mean duration in time
of an edge between any two nodes. Parameters p1 and p2
thus tune the speed at which the graph evolves. The graph
is memoryless (i.e., it consists of a sequence of independent
ER graphs) when p1 = p2. If p1 > p2, having an edge at
t−1 between two nodes makes it less likely to have it at time
t. This models scenarios in which the end of an exchange
between two mobile nodes is due to the two nodes moving in
opposite directions (e.g., on opposite lanes of a road), making
it unlikely for the two nodes to come in contact again soon. On
the other hand, when p2 > p1 the graph evolves by keeping
some memory of its past states. The algorithm which describes
the evolution of an TVER graph in a closed system is thus as
follows. At slot t = 0, an ER graph is created, with connection
probability p0 ≥ 0. Then, at each t > 0, independently for
each couple of vertices, if an edge already existed at t − 1,
it will persist with probability p2 and disappear otherwise.
Conversely, if there was no edge between these two nodes at
t− 1, there will be an edge at t with probability p1. In open
systems, in general, the graph at t has new nodes that were
not there at t−1, and it does not contain some nodes that were
in the graph at t− 1. The algorithm for building the graph at
t given the churn and the graph at t−1 is thus the same as in
the closed system case. The only difference is in the fact that
nodes that arrived at t have no links and that whenever a node
present at t − 1 exits the graph, all its edges are not present
anymore in the graph at t. The algorithm that defines a TVER
graph evolution over time implies the presence of a transient,
which depends on p0 but also p1 and p2. The following result
derives a property for these graphs in both open and closed
systems once the transient is exhausted:

Theorem 1. It is given a TVER random graph Gt = (Vt, Et),
t ≥ 0, where v is the mean number of vertices in the graph.
Then, at the mean-field limit, for any p0 ≥ 0, p2 < 1, and λ ≥
0, the mean node degree k(t) converges towards its stationary
value k, as in Equation 1.

k =
(v − 1)p1

1 + (p2 − p1)
(
λ
v − 1

) (1)

Proof. Let vt = |Vt| denote the number of nodes at time slot
t, and ϵt = |Et| the number of edges in the graph at that
slot. We assume churn occurs with intensity λ nodes per time
slot. Let Nt denote the maximum number of edges at time
slot t (i.e., Nt = vt(vt − 1)/2). We have that, ∀t ∈ N,

ϵt = p2

(
ϵt−1 − λ ϵt−1

vt−1

)
+ p1

(
Nt − ϵt−1 + λ ϵt−1

vt−1

)
=

(p2 − p1)

(
ϵt−1 − λ ϵt−1

vt−1

)
+ p1Nt. Starting from this, one

can write the differential equation which governs the evolution
over time of ϵt. We assumed that the system is stationary

for what concerns the process of node arrival and departure.
When the mean number of nodes v is large, the mean
field approximation holds, and an equation for the stationary
state of the system can be thus derived. Let N denote the
mean number of possible edges in the graph, and ϵ ∈ R
the mean number of edges in the graph at the mean-field

limit. Therefore, ϵ =

(
p2 − p1 − p2

λ
v + p1

λ
v

)
ϵ + p1N .

As the mean probability of attachment p is ϵ/N , we can
express p2 as a function of the other variables, obtaining

p2 = 1−p1(N/e−1+λ/v)
1−λ/v =

p1(1− 1
p−

λ
v )+1

1−λ
v

. Finally, k = (v−1)p

gives (1).

Note that the network converges towards a full mesh for
p2 = 1 and p1 > 0, i.e., limt→+∞ ϵt → v(v − 1)/2. Another
issue is determining whether each graph in a TVER is an
ER graph at each time slot t. Trivially, this holds ∀t when
p1 = p2, i.e., when there is no edge retention. In the more
general case, for closed systems where p1 ̸= p2, the following
result (Theorem 2) holds.

Theorem 2. It is given a TVER random graph Gt = (Vt, Et),
t ≥ 0, and p2 < 1. Then, in the closed system case, for any
p0 > 0 at the stationary state, the node degree has a mean-
field limit distribution equal to that of an ER graph.

Proof. (sketch) The result follows from Theorem 1 and from
the fact that if (1−p1+p1e

t)v−k(1−p2+p2e
t)k is the Moment

Generating Function (MGF) of the node degree at the mean-
field limit, the equation (1−p1+p1e

t)v−k(1−p2+p2e
t)k =

(1− p+ pet)v admits a single positive solution in p, which is
thus the connection probability of the ER graph at the mean-
field limit.

Thus, for p1 ̸= p2, a TVER without churn is a sequence of
graphs which are ER at the mean field limit.
B. Time-Varying Barabási-Albert (TVBA) Graph

The second family of time-varying graphs is an extension of
BA random graphs, characterized by the scale-free properties
and based on the preferential attachment mechanism [22].
This generates the ”rich get richer” phenomenon, by which
the graph exhibits a power-law degree distribution. In what
follows, we first introduce a generalized algorithm for building
a BA random graph, which accepts as input m (the mean node
degree of the graph), and the parameter h which tunes the
degree to which the node attachment is preferential. Initially,
the set of nodes V0 in the system is partitioned into two
subsets. The first set A comprises m + 1 fully connected
random nodes, while B is composed of all the remaining
nodes, and they are all isolated. Then in turn, for each node
x ∈ B, the node is removed from it and added to A. Then,
for every couple (x, u) with u ∈ A, u ̸= x, an edge is added
between the two nodes with a probability

P[(x, u) ∈ E] = h
1

|A|
+ (1− h)

deg(u)∑
w∈A deg(w)

(2)
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Where deg(x) denotes the degree of node x, |A| is the
cardinality of A. Note that when h = 1 the graph is ER.
The algorithm that describes the evolution of TVBA is thus
as follows. At step t = 0, a BA graph is generated. At every
step t > 0, a new graph is generated as follows. Let Ct−1

be the set of all possible edges at t − 1. From it we derive
a new set C ′

t−1 obtained by removing from Ct−1 all those
possible edges for which at least one of the two vertices left
the system due to churn. Then for each possible edge C ′

t−1,
with probability p2 it keeps in t the same status as in t − 1
(i.e. if it was not present in the graph at t − 1, it will not
be present at t, and conversely). Otherwise, that edge will be
added to the graph at t following the BA algorithm, i.e. with
a probability given by (2). For all the other possible edges
at t, due to the arrival of new nodes, they are too added to
the graph at t with the probability given in 2. Note that this
algorithm defines a TVG with the same statistical properties
as its static counterpart, including node degree distribution.

V. NUMERICAL ASSESSMENT
A. Simulation Setup

We assess the performance of the GL schemes on the
proposed TVGs by considering a set of V nodes which
need to perform an inference task. We adopted the MNIST
datasets [23] for the handwritten digit recognition task, char-
acterized by 10 classes and an image size of 28 × 28 pixels.
Given the reference dataset, we have defined a global dataset
as a fixed-size subset of the reference dataset in each setup.
The global dataset is the set of all data points available for the
training process in a given scenario. Thus, it directly impacts
the maximum accuracy achievable in a given scenario. In
our experiments, to consider scenarios in which collaborative
model training brings benefits over simple local model training
on behalf of each node, we have tuned the global dataset size
to have a locally trained model whose accuracy is, on average,
substantially lower than that achievable by centralized training
over the union of the training sets of all nodes. Thus, unless
otherwise stated, for MNIST the size of such a global dataset
has been set to 600 data points. In each setup, the global
dataset is partitioned among all nodes in the scenario. Thus,
each node is endowed with a local dataset, whose size is
equal for all nodes. Thus, the choice of keeping the global
dataset size constant has been made to assess the impact of
information fragmentation on GL performance.

The data points of local datasets are i.i.d. and randomly
selected from the global dataset. We employed a random
uniform sampling from the global dataset to create local
datasets without replacement. To each global dataset, we
associated a global test set obtained from the original dataset
by random sampling, ensuring no data point of the global
dataset is included and whose size is 20% of the global dataset
size. Thus, the global dataset and test set are disjoint.

We assumed every node in the system executes a Con-
volutional Neural Network (CNN) model, whose architecture
and hyperparameters (identical for all nodes) are designed for
effective shape feature extraction. We assume that nodes use
supervised models training with categorical cross-entropy loss,

batch size of 32, the momentum of 0.9, and a 10−4 learning
rate to perform the inference task. Unless otherwise stated,
in GL, each node trains its local model over one epoch at
every slot before exchanging it with neighbors. In a dynamic
network, connections may be lost and change, so training one
epoch at a time makes the learning process more robust to
these changes, as it is less time-consuming than training a
large number of epochs.

To better appreciate the performance of GL algorithms in
dynamic network settings, in our experiments we also consider
the following ML training schemes:

• Centralized Learning (CL). This approach involves a central
server endowed with a training set coinciding with the
scenario’s global dataset.

• Individual Local Training (ILT), in which each node trains
its local model instance using only its local dataset without
exchanging data or models with other nodes or with a
centralized server.

• Federated Learning [19], a client-server approach in which
clients train their model locally. In it, at each iteration, a
parameter server collects the models from all participants,
aggregates them, and redistributes the resulting aggregated
model to all participants. Aggregation is done via model
averaging, as in the FedAvg approach [19].

• GL over Static random graphs (GLS). This learning scheme
is the GL scheme described in Section III, applied on static
random graphs.

Whenever node churn is present, we assume the number of
nodes that arrive and leave at each time slot to be distributed
according to two independent Poisson point processes, with
the same intensity (churn rate) of λ nodes per slot. We also
assume every node has the same probability of leaving the
system at every time slot. Nodes that join the network possess
a local dataset and a local model instance. We follow the same
set of criteria, similar to the closed system, to initialize the
local model instance and create the local dataset. The size of
the local dataset remains constant across all nodes within the
network. In the open system, new arrivals add information to
the network. However, when nodes leave the network, they do
so with their data. This guarantees that the number of data
points in each slot is equal to the size of the global dataset.

In our experiments, we continue simulations until either the
system converges or we reach the maximum iteration limit. We
define the gossip convergence time as the number of time slots
needed for the system to converge. We assumed our schemes
to have converged when the mean accuracy of local models
across all nodes does not increase by more than 0.5% over an
interval of 30 slots.
B. Closed system

In the first set of experiments, we considered scenarios
without node churn, and we evaluated the effect of dynamicity
on the performance of GL algorithms on TVER and TVBA
graphs in terms of mean accuracy, for different values of edge
persistence probability p2, number of nodes, and average node
degree.
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(a) 20 nodes (b) 80 nodes (c) 100 nodes

Fig. 1: Mean accuracy at convergence as a function of the speed of evolution of the graph (measured by the edge persistence probability p2) for TVER in
the closed system case. The dots at the beginning of each curve indicate those configurations in which edge persistence and creation probability are equal,
i.e. the memoryless TVER case. The bands around each curve denote the 95% confidence intervals.

TABLE I: Performance at convergence of the considered algorithms on
TVER graphs with 40 nodes and average node degree equal to one. Closed
system case.

Algorithm Convergence Acc Loss F1
time

Centralized Learning 60 0.87 0.45 0.87
FedAvg 160 0.85 0.57 0.84
Individual Local Training 52 0.38 2.8 0.46
GL on Static ER 81 0.67 1.1 0.69
GL, p2 = 0.02 215 0.845 0.62 0.82
GL, p2 = 0.1 224 0.86 0.55 0.84
GL, p2 = 0.9 209 0.85 0.59 0.82

TABLE II: Spearman’s correlation coefficient matrix of system parameters
and performance metrics for GL schemes on TVBA and TVER random
dynamic graphs for the closed system case. The 95% confidence interval
is at most 2%.

Performance Number of nodes Node degree Edge persistence
metric TVBA TVER TVBA TVER TVBA TVER

Accuracy -0.13 -0.19 0.09 0.45 -0.17 -0.42
Convergence time 0.08 0.14 -0.14 -0.17 -0.1 -0.3

Figure 1 shows the impact of edge persistence probability
on mean accuracy at convergence for different network sizes
and average node degrees. As expected, for the same network
size, with increasing average node degree, the mean accuracy
increases, too, reaching values very close to those achieved
via federated learning and centralized learning schemes. This
suggests that in dense, connected networks, the spreading
of knowledge among nodes is effective in greatly reducing
the performance gap with respect to server-based, centralized
training schemes. In addition, in denser networks, the per-
formance is less sensitive to the speed at which the network
evolves. Instead, it is evident that in less dense networks,
where knowledge delivery takes place mainly through store-
carry-and-forward of ML models, instead of store-merge-and-
forward, mean accuracy at convergence is not only inferior (as
a lower node degree brings to a lower rate of knowledge trans-
fer) but also highly sensitive to the speed at which the graph
evolves, as knowledge transfer is now directly implemented
through node mobility. Interestingly, in these cases, the per-
formance of GL benefits from a higher dynamicity (lower edge
persistence probability). However, for small network sizes,
there seems to be an optimum rate of network change, beyond
which mean accuracy starts decreasing, albeit slightly. This

feature, which disappears for larger network sizes and thus for
smaller local datasets at each node, suggests the existence of
a tradeoff between exploration (which involves the creation of
new edges and exchange of new information through network
dynamics) and exploitation (the stable exchange of models
among neighbours through the persistence of existing edges).
It assumes significant importance in networks characterized
by lower average node degree and larger network size, where
information availability is limited. In these scenarios, nodes
derive greater benefits from establishing new connections and
acquiring new information in each iteration, as opposed to
maintaining existing edges. This underscores the critical role
of dynamic connections and the adaptability of nodes in sparse
networks.

Table I reports the mean convergence time, as well as
the mean accuracy, mean loss, and F1 score, for each of
the considered algorithms. Together with Figure 2, these
results show the value of collaborative learning. Indeed, GL
schemes whether on static or dynamic graphs, consistently
outperform individual local training. Accuracy of GL schemes
on TVER graphs matches individual local training accuracy
at the beginning of the training process, but eventually aligns
with the accuracy levels of centralized learning and FedAvg.
In addition, all GL schemes on TVER graphs outperform the
GL scheme on static graphs, thus further illustrating the value
of dynamicity. The box charts in Figure 2 depict the uniform
performance distribution across all nodes when dynamicity is
high and information spreads freely. On the other hand, the
variance in performance is higher when dynamicity is low,
p2 = 0.9.

Table I illustrates that the impact of evolution in speed is
negligible, as the difference between the performance metrics
of the GL scheme on TVER graphs with three different p2
values is comparable at convergence time, and they only
slightly differ in convergence speed. Another key element
that affects the performance of distributed learning schemes is
the structure of the network and, thus, of interaction among
nodes. To this end, for both TVER and TVBA graphs we
conducted a series of experiments on scenarios characterized
by various combinations of the following parameters: the

5



Fig. 2: Mean accuracy over training time (in the number of slots) in a closed-
system TVER random graphs with 40 nodes, and average node degree one
for GL schemes against the baselines, for different values of edge persistence
probability p2. The zoom-in highlights the distribution of mean accuracy
across nodes at convergence. The 95% confidence intervals report an error of
at most 2%.

Fig. 3: Evaluation of the effect of edge persistence probability p2 and network
structure on the mean accuracy versus slots for GL schemes in a closed system.
Each scenario contains 1000 nodes, each having 4 samples, and an average
degree of 1. All curves are associated with a 95% confidence interval.

number of nodes |V | ∈ {5, 10, 20, 40, 80, 100, 1000}, the
average node degree ∈ {0.2, 0.5, 0.9, 1, 2, 4}; and the edge
persistence probability p2 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Table II
shows a weak correlation between the number of nodes
and GL performance metrics on both graphs. It aligns with
the observation in Figure 1. This is demonstrated by the
consistent performance levels when the average node degree
is 2, regardless of the number of vertices in the network.
It shows that data fragmentation has a minimal impact on
performance in a connected network. This phenomenon can
be attributed to the fact that information can flow freely and
efficiently between nodes in a connected network, mitigating
the effects of data fragmentation. Across all the scenarios im-
plying TVER graphs, there is a moderate positive correlation
between node degree and accuracy. This evidence supports
what Figure 1 suggested. A higher average node degree is
associated with higher accuracy. On the other hand, edge
persistence probability has a moderate negative correlation
with accuracy and convergence time. Increasing edge persis-
tence probability decreases dynamicity. When edges remain
stable over time, information spreads more slowly. As an
iteration of local learning is performed at each slot, slower

evolution tends to train a lot over local data, exposing it to the
risk of overfitting. Consequently, networks with higher edge
persistence values may reach convergence faster but at the cost
of accuracy. These findings align with Figure 1 observations.
We discerned only weak correlations between the performance
metrics and network parameters in TVBA graphs. This implies
that GL algorithms utilizing TVBA graphs exhibit robustness
to variations in network parameters. This is likely because
information dissemination across multiple high-degree nodes
can be accomplished more rapidly, enhancing the system’s
resilience to changes in network parameters.

We also examined how dynamicity affects the network
diameter and influences overall performance. Figure 3 shows
GL schemes on TVBA graph with p2 = 0.1, and diameter
equal to 3 outperform others. GL schemes performance on
TVBA graphs with p2 = 0.9 matches those using TVER
graphs with p2 = 0.1, as in both cases, the length of the
longest shortest path between any two vertices in the graphs is
almost equal, 9, and 11 respectively. Using TVER graphs with
p2 = 0.9, the diameter is 70, and it leads to a 15% performance
deficiency. In TVER graphs, node connections are formed
randomly, and the node degree is consistent. In the majority
of these scenarios, dynamism is advantageous as it decreases
the diameter. However, in TVBA graphs, diameter does not
change much by changing the value of p2. A shorter diameter
implies more efficient information dissemination, reducing the
steps required for information to traverse across the network.
This can lead to less information loss and distortion during
transmission.
C. Open system

Most real-world networks experience some degree of churn.
In an open system, the dynamicity is influenced by two pa-
rameters: the probability of edge persistence p2 and churn rate
λ. Similar to the closed system, Figures 4a and 4c show the
performance of GL schemes on TVER graphs diminishes with
an increase in the value of edge persistence probability. More-
over, the introduction of churn and having new information in
the system enhance the performance marginally by up to 3%
more than centralized learning when the churn rate is equal
to 0.04, but it is mainly detrimental to the learning process.
On the other hand, GL schemes on TVBA graphs leverage
the introduction of new information by churn, enhancing the
model’s accuracy by up to 6% more than centralized learning.
Furthermore, these models demonstrate increased reliability,
with a maximum reduction in loss value of 38%, as shown in
Figure 4 b, and d. Similar to closed systems, the performance
remains robust across changes in network configuration.

In general, GL schemes on TVBA graphs demonstrate supe-
rior stability compared to those on TVER graphs. This could
be attributed to the preferential attachment-based connection
of new arrivals to nodes with higher degrees. As observed in
previous experiments conducted in closed systems, a higher
node degree contributes to improved performance, thereby
enabling new nodes to acquire a high-performance model. In
contrast, in TVER graphs, new arrivals randomly join existing
nodes in the scenario, regardless of their performance. In the
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(a) % variation in accuracy, TVER (b) % variation in accuracy, TVBA (c) % variation in loss, TVER (d) % variation in loss, TVBA

Fig. 4: Percentage variation in accuracy relative to the mean accuracy achieved by centralized learning (Figure 4a and 4b), and percentage variation in loss
value in comparison to the average loss achieved by centralized learning (Figures 4c and 4d) over TVER and TVBA graphs, as a function of edge persistence
probability p2 and churn rate λ, in the open system case. 20 nodes, mean node degree equal to one. 98% confidence interval of at most 2%.

event of a departure in TVER graphs, all edges connected
to the departing nodes are simply removed, and the system
does not adapt to the loss of information. However, in TVBA
graphs, nodes connected to the departing node establish new
links to existing nodes based on preferential attachment.
This mechanism maintains network stability through changes,
ensuring the network’s resilience to information loss.

VI. CONCLUSION

This work introduces a novel approach to assess the perfor-
mance of gossip-based learning schemes in dynamic network
environments, based on an extended version of the well-known
ER and BA graphs to account for network churn and evolu-
tion rate. Through extensive simulations, we provide insights
into the impact of network dynamics on GL efficiency and
effectiveness. Results demonstrate that GL schemes employing
TVBA graphs exhibit resilience to changes in network topol-
ogy, preserving performance across various configurations.
Conversely, the efficacy of GL schemes on TVER graphs is
influenced by changes in the network’s parameters and dynam-
ics, particularly in low-density networks. It underscores the
importance of considering network dynamicity in distributed
machine learning and provides insights into the trade-offs
between network density, node churn, and edge persistence.
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