
Context-Aware Orchestration of Energy-Efficient
Gossip Learning Schemes

Mina Aghaei Dinani,
Adrian Holzer

University of Neuchatel,
Switzerland

name.surname@unine.ch

Hung Nguyen
The University of Adelaide,

Australia
hung.nguyen@adelaide.edu.au

Marco Ajmone Marsan
Institute IMDEA Networks,

Spain
ajmone@polito.it

Gianluca Rizzo
HES-SO Valais, Switzerland, and

University of Foggia, Italy
gianluca.rizzo@hevs.ch

Abstract—Fully distributed learning schemes such as Gossip
Learning (GL) are gaining momentum due to their scalability and
effectiveness even in dynamic settings. However, they often imply
a high utilization of communication and computing resources,
whose energy footprint may jeopardize the learning process, par-
ticularly on battery-operated IoT devices. To address this issue,
we present Optimized Gossip Learning (OGL), a distributed
training approach based on the combination of GL with adaptive
optimization of the learning process, which allows for achieving
a target accuracy while minimizing the energy consumption of
the learning process. We propose a data-driven approach to
OGL management that relies on optimizing in real-time for each
node the number of training epochs and the choice of which
model to exchange with neighbors based on patterns of node
contacts, models’ quality, and available resources at each node.
Our approach employs a DNN model for dynamic tuning of the
aforementioned parameters, trained by an infrastructure-based
orchestrator function. We performed our assessments on two
different datasets, leveraging time-varying random graphs and
a measurement-based dynamic urban scenario. Results suggest
that our approach is highly efficient and effective in a broad
spectrum of network scenarios.

keywords — Distributed Learning, Energy Efficiency,
Gossip Learning, Opportunistic Communication

I. INTRODUCTION

Distributed learning schemes are poised to become one
of the key enablers of future 6G networks, as they allow
fast and efficient training of complex and large-scale models
while delivering better reliability and fault-tolerance than tradi-
tional, centralized approaches. Among these, Gossip Learning
(GL) schemes are of special interest, as they do not require
uploading models to a parameter server, thus offering better
robustness and scalability.

Originally introduced in [1], GL schemes train ML models
over decentralized data via direct model gossiping among
nodes. Several versions of GL have been proposed for dynamic
settings [2], [3]. In these works, the changing topology is a
result of varying patterns of network connectivity, changes
in node availability (e.g. due to node duty cycling or battery
depletion), and churn, among others, as it is often the case in
realistic mobile edge and vehicular scenarios and use cases.
GL is based on a combination of iterative local training and
model exchange over wireless channels. Both tasks on battery-
operated, resource-constrained IoT and edge devices might
imply rapid energy budget depletion, potentially slowing down
and jeopardizing the whole learning process.

Recently, several works have focused on decreasing the

energy footprint of distributed learning, albeit in server-based
architectures such as Federated Learning (FL). [4] reduces the
amount of exchanged models in FL by decreasing the number
of communication rounds. Other approaches focus instead on
reducing the number of exchanged models at each round.
These methods consider factors such as the size and quality
of a node’s local dataset [5], [6], [7], [8], the rate of network
evolution [4], [9], and the node’s trustworthiness [10]. All these
works, however, consider a static network. [11] proposes a
Gossip Learning scheme, evaluating the effect of the number
of models merged at each round in a vehicular network. It
shows that the resource-optimal value for these parameters is
highly context-specific. However, it considers measurement-
based mobility patterns, making it hard to untangle depen-
dencies between mobility features and the performance of the
training scheme. All these works leave unanswered the critical
question of when and which nodes should exchange models
in a fully distributed learning scheme to achieve a target
performance (in terms of accuracy and convergence speed) in
a dynamic network in an energy-optimal manner.

In this paper, we consider a scenario of reference in
which cellular connectivity is pervasive, and it allows tak-
ing advantage of an orchestration function that monitors the
gossip-based learning process without requiring infrastructure-
based exchanges of training data or ML models. The primary
contributions of this paper are:
• We propose OGL, a gossip-based training strategy for

dynamic networks capable of adapting to a wide range of
network topologies and dynamic settings.

• We present a data-driven approach for the dynamic man-
agement of OGL, which achieves a target performance in a
resource-efficient manner by proactively adapting the mod-
els’ distribution and training parameters to local conditions.
The approach employs a Deep Neural Network (DNN)
model, which is trained offline and distributed to all nodes
at the start of the learning process, enabling each node to
tune the main parameters of the OGL scheme adaptively.

• We assess the effectiveness and efficiency of our ap-
proach by leveraging time-varying random graphs and a
measurement-based mobility trace. These results suggest
that it substantially outperforms a set of baseline approaches
while achieving the target minimum accuracy in all of the
considered scenarios.

II. SYSTEM MODEL

We consider a set V of nodes, with cardinality |V | (mod-
elling, e.g., mobile devices, UAVs, or connected vehicles) mov-
ing within a specific region according to an arbitrary mobility
model and during a predefined time interval T (the observation
interval). Let v ∈ N denote the unique identifier of a node.
We assume nodes can communicate directly with each other
through wireless peer-to-peer (P2P) communications (e.g.,
using DSRC or Bluetooth Low Energy [12]). Furthermore,
each node is equipped with a cellular network interface. Two
nodes can exchange information whenever they are in contact,
that is, within each other’s transmission range. We assume
these exchanges are always unicast (one-to-one). However, the
proposed scheme can be easily extended to incorporate the
effects of multicasting and broadcasting. We assume there is
a coordination function (possibly implemented by a Software
Defined Network Controller(SDNC) [13]) in the region, and
it resides within the cellular access network. The coordination
function comprises an auxiliary ML model Mtune. Through its
cellular network interface, the coordination function transmits
Mtune to the nodes entering the region. Hence, the architecture
of this model is equal for all nodes. Note that all commu-
nications are P2P, except for the initial dissemination of the
Mtune model from the coordination function to nodes. Every
node independently employs Mtune to fine-tune and adjust its
learning parameters. Moreover, we assume each node entering
the region possesses a local model wv and a local dataset,
partitioned in the training set Dv , and validation set Sv , which
generally differ in size and composition for each node. The
choice of the validation and training set size is context-specific.
We also assume that the observation interval is segmented into
I slots of equal size, short enough that node mobility patterns
can be considered not to vary substantially within each slot.
Let t ∈ 1, .., I be the label of slots.

III. THE OGL APPROACH TO ENERGY-EFFICIENT GOSSIP
LEARNING

A. A Gossip-Based Collaborative Training Algorithm
We assume all nodes in the region train their local model

through a gossip-based cooperative learning algorithm, de-
noted as OGL, and based on P2P model exchanges among
nodes. Such an approach is orchestrated by a cellular-based
coordination function, without requiring the exchange of the
trained models or training data (which would potentially
expose it to privacy breaches) between each node and the
coordinator. At the beginning of the scheme, all nodes present
in the region randomly generate an initial local model w0. We
assume the generation procedure to produce the same random
initial model for all nodes. Similarly, after the beginning of the
scheme, whenever a node enters the region, it generates w0

following the same procedure. Starting from w0, every node
elaborates an ML model (which we assume will be used by
the node itself. e.g. to carry out the same inference task, e.g.
trajectory prediction or image recognition) by alternating local
training on each node’s local training set, with model aggrega-
tion with models received from neighbours. Moreover, to all
nodes joining the scheme, the coordination function delivers
an auxiliary ML model Mtune. Each node employs Mtune for
the adaptive tuning of some key parameters of the learning
process. Such dynamic management of the learning process at
each node is based on each node’s available hardware resources

and power budget. In addition, it also accounts for each node’s
context in terms of the number of neighbours, the speed at
which they vary over time, and the quality and quantity of
their local model (i.e., in terms of mean accuracy or loss),
among others. Each node then uses the Mtune to modulate
the number of local training epochs and to choose, among its
neighbours, those whose local model should be requested and
used for improving the node’s local model, as we will explain
later.

Then, at every time slot, the OGL algorithm proceeds
through three phases. The duration of each phase can be tuned
and adapted to the specific training task and setup, and it does
not need to be synchronized across nodes.

In the training phase, each node in the region applies
Mtune to get the number of epochs Zv,t that it has to train
its local model over its local dataset and train its model
accordingly. Subsequently, it assesses its local model over its
validation set Sv to derive the loss value lv used in the next
phase. The choice of the loss function is context-specific.

In the communication phase, nodes exchange the loss value
of their local model with their neighbours. Each node then
employs Mtune to identify the neighbouring nodes from which
it should request the transfer of their local models. The node
then initiates a request directed towards the selected nodes,
soliciting their respective models. In response, these requested
nodes transmit their models if they are still within range of
each other. During this phase, a node may not request any
model, e.g. because it has no neighbours or when the Mtune

indicates that no model is worth requesting among the available
neighbours’ models. We assume that the connectivity between
nodes is relatively stable while exchanging models.

Finally, in the merging phase, each node combines the
models received from the chosen neighbours and its local
model to produce a new version of its local model. The
merging procedure consists of a weighted averaging method.
The weights associated with each merged model are computed
via the DFed Pow strategy [3]. In DFed Pow, the weight of
each model to be merged is a function of the inverse of loss
calculated on the node’s validation set. Note, however, that
our approach is more general and does not rely on a specific
algorithm for calculating the weights for merging.

The three phases are repeated at each time slot until a
stopping condition is met (e.g., after a maximum number of
iterations, when the average local models’ accuracy surpasses
a certain threshold or when there is no significant improvement
in the model’s accuracy over several rounds). Regardless of the
reason, the final round at which the algorithm stops is called
the cut-off round.

B. Formulation of the energy optimization problem
The main goal of our OGL approach is to enable the

energy-efficient training of an ML model in a distributed man-
ner. As mentioned, this is enabled by an orchestrator function
that elaborates and distributes the Mtune model among all the
nodes entering the region. Given the node context, as well as
some key parameters of the system and the training task, such
a model enables each node to tune the number of training
epochs and the set of ML models to merge, which allows
for achieving a given target accuracy while minimizing a cost
function which models the overall energy cost of the training
process.

In what follows, we formalize the energy optimization
problem that the orchestration function tries to solve. The cost
function we consider is the sum of two components. The first
one accounts for the computing costs. Generally, the energy
consumption associated with a computation task is determined
by CPU(or GPU) usage and memory resources [14]. Those, in
turn, depend upon the architecture implemented, the quantity
of data it processes, and the node’s characteristics. In this work,
we assume all nodes have the same computing power. Then,
the energy required to run the (local) training process is:

S(Z) =
∑
t∈T

∑
v∈V

Zv,tdv(eg + es) (1)

• Zv,t depicts the number of epochs required by node v to
train its local model using the local dataset at time slot t;

• eg is the energy consumed by the CPU or GPU to perform
one training epoch on one sample;

• es is the energy required to provide storage and memory
resources for the training of one epoch on a sample;

• dv denotes the number of samples of the local training set
of node v;

• T is the label of the slot at which convergence happens.

The energy consumed for computing the loss of the local
model on the validation set is modelled as follows:

Γ =
∑
t∈T

∑
v∈V

sv(ee + ees) (2)

ee and ees are the energy consumed by the CPU (or GPU) and
energy required to provide storage and memory to evaluate the
local model on one dataset sample. sv indicates the size of the
validation set at node v.

The second component of the cost function accounts for
the communication costs. The communication costs consider
the exchanges between nodes:

C(k) = Cd2d
∑
t∈T

∑
v∈V

hv,tL+ kv,t(M +R) (3)

• Cd2d is the cost per byte of a d2d (peer to peer) transfer
• Hv,t is the set of neighbors of node v at time slot t, of

cardinality hv,t;
• Kv,t ⊆ Hv,t is the set of chosen neighbours of node v at

time slot t from which models to be merged are retrieved,
of cardinality kv,t.

• L, R and M are the message size containing loss value,
request and a local model, respectively.

Note that such a cost function neglects the cost of model
merging, as it is usually negligible [3], [11]. Let Z = {Zv,t},
and K = {Kv,t}. Thus, an optimal OGL orchestration scheme
is a solution to the following optimization problem:

Problem 1:

minimize
Z,K

C(k) + β(S(Z) + Γ) (4)

Subject to:

r ≥ r0 (5)

Where r denotes the mean accuracy of the trained model across
all nodes achieved at convergence, and r0 is its target minimum
value. By varying β, it is possible to adapt the cost function
to settings with different resource availability on user devices

and at the cellular network and to different incentive schemes
for resource sharing and cooperation.

C. OGL architecture, components and functions
The OGL approach aims at solving Problem 1 by training a

DNN-based auxiliary ML model, which enables nodes to adapt
in real-time the learning process to available contributions by
neighbours and, more generally, to each node’s context. The
auxiliary model is trained by the orchestrator on a training
dataset whose data points are labelled by simulating the
system.

We assume the orchestrator regularly collects data from
every node, which is used as the feature set of the auxiliary
model that it has to train. The data collected are those that
are well known from the state of the art to be relevant to the
training process and its efficiency. These include computing
and communication costs, the number of neighbours for each
node at each time slot, the size of the local dataset, the
available computing power, and the initial power budget of
each node. Such a choice of features as input parameters
for the auxiliary model is, however, one of many possible,
and our approach is independent of it. From each set of
input parameters, the orchestrator derives a set of full system
configurations by associating to the input parameters a random
value for each of the parameters in Z and a random subset K
of each node’s neighbours. These inputs are fed to a simulator,
which labels them with the outputs and performance metrics
of the distributed training scheme. Specifically, for every node
and every time slot in a given time interval during which the
orchestrator has collected data, the simulation derives the local
model accuracy, the loss value, and the energy budget of each
node. In such a way, a training set is produced, which is then
used to train a DNN model.

This model is trained and evaluated using a k-fold cross-
validation approach [15], with 10 folds. The architecture of the
model is a multi-layer perceptron composed of four layers. The
multiple layers allow models to be more efficient at learning
complex features [16]. The initial layer is a dense layer
with 64 neurons and a rectified linear unit (ReLU) activation
function. The second layer is a flattening layer, which reshapes
the input to a one-dimensional array. The third and fourth
layers are dense layers with 32 and 16 neurons, respectively,
and ReLU activation functions. The final layer is a dense layer
with two neurons. The model is compiled with a mean squared
error loss function and the Adam optimizer. Early stopping and
model checkpoint callbacks are used to prevent overfitting and
save the best model. This approach ensures a robust evaluation
of the model performance, as it assesses the model’s ability to
generalize to unseen data. Note that the selection of parameters
in the model is either empirical or based on extensive usage in
the state-of-the-art models. After the training and evaluation
process, the best-performing model, referred to as Mtune, is
saved for future use. This model encapsulates the optimal
parameters learned during the training process. At runtime,
the orchestrator function disseminates the Mtune model to all
nodes entering the region. Then, at each time slot, each node
feeds the Mtune model with its own data to determine the
optimal number of local training iterations (number of epochs)
and the optimal set of models to merge to achieve the given
target accuracy while minimizing the energy cost of the whole
process.

CNN parametrs MNIST CIFAR-10
Input shape (28,28,1) (32,32,3)
Batch size 32 64
Learning rate 0.0001 0.001
Number of neurons 100 100
Momentum 0.9 0.60
Kernel dimension 3 3
Number of filters 32 32
Number of outputs 10 10

TABLE I: Parameter values used to train the CNN model on the
CIFAR-10 and MNIST datasets.

Fig. 1: Comparative analysis of cost function on the MNIST dataset
with |V | = 6 and various values for p. Results are presented with a
confidence interval of 95% and an error margin of 2%.

Algorithm Acc F1 Loss Precision Recall Cut-off
round

Centralized ML 0.87 0.87 0.45 0.88 0.87 300
Fed Avg 0.85 0.84 0.57 0.87 0.85 500
Local only 0.36 0.42 3.2 0.42 0.56 200
DP 0.58 0.60 1.42 0.68 0.67 500
OGL 0.88 0.88 0.44 0.88 0.89 320
Random GL 0.51 0.56 1.73 0.7 0.6 500

TABLE II: Performance metrics of OGL at the cut-off round, com-
pared to baselines on the MNIST dataset, with |V | = 6 and p = 1.
Results are presented with a 98% confidence interval and a maximum
error margin of 1%.

IV. NUMERICAL ASSESSMENT

To assess the effectiveness of our OGL approach in dy-
namic settings, we consider a set of V nodes which need
to perform a handwritten digit recognition task (MNIST
dataset [17]) or object recognition (CIFAR-10 dataset [18]).
We assume that each node in the system is endowed with a
local dataset of different sizes and randomly selected without
replacement from the original MNIST and CIFAR-10 datasets.
The resulting dataset size, denoted by dv , falls within the range
of 50-350 samples for each node. This implied a training set
size ranging from 600 kB to 3.2 MB when utilizing the CIFAR-
10 dataset and between 224 KB and 645 KB when employing

Fig. 2: Comparative analysis of cost function and mean accuracy at
convergence on the CIFAR-10 dataset, with |V | = 6 and p = 1.
Results are presented with a confidence interval of 95% and an error
margin of 2%.

Fig. 3: Mean accuracy versus round of our OGL algorithm compared
to baselines using the CIFAR-10 dataset, with |V | = 6 and p = 1.
Each curve is enveloped by a highlighted band, which signifies the
95% confidence interval.

the MNIST dataset. Let us denote the aggregate local dataset
across all nodes in the system as the global dataset. The size of
the global dataset is 700 samples in all scenarios unless stated
differently. We aim to ensure that the results remain consistent
and are not subject to significant variation due to differences
in global information in different scenarios.

In Problem 1, the coefficient β has been set to 1, to
ensure both computing and communication costs are equally
weighted. The target accuracies have been set to 0.8 and 0.4 for
the MNIST and CIFAR-10 datasets, respectively. These targets
were set based on the convergence accuracy of a centralized
ML model trained on the global dataset. Furthermore, we
assume the cost per byte of d2d transfer to be four times
less costly than device-to-server transfers. This is because
d2d transfers bypass the need for data routing or server
maintenance, making them a more cost-effective solution. We
associate a global test set obtained by random sampling 20%
of the source datasets and ensuring that the local datasets and
test set are disjoint. We assume that nodes use a CNN model
to perform both inference tasks.

The first layer of the CNN model is a Conv2D layer,

(a) |V | = 3, p = 0.1 (b) |V | = 3, p = 0.7 (c) |V | = 12, p = 0.1 (d) |V | = 12, p = 0.7

Fig. 4: Mean accuracy versus round for OGL, random GL, and DP algorithm using the MNIST dataset, for different values of number of
nodes in the system and edge probability. Each curve is enveloped by a highlighted band, which signifies the 95% confidence interval.

(a) |V | = 3, p = 0.1 (b) |V | = 3, p = 0.7 (c) |V | = 12, p = 0.1 (d) |V | = 12, p = 0.7

Fig. 5: Mean accuracy versus round for the OGL, Random GL, and DP algorithms, for the CIFAR-10 dataset, for different values of number
of nodes in the system and edge probability. Each curve is enveloped by a highlighted band, which signifies the 95% confidence interval.

Fig. 6: Comparison of mean accuracy at convergence time versus
cost for the OGL and random GL algorithms over different network
configurations using the CIFAR-10 dataset. Results are presented with
a 98% confidence interval and a maximum error margin of 2%.

which applies a number of convolutional operations to the
input image and uses the activation function ReLU. This
layer is followed by a MaxPooling2D layer with a 2x2 pool
size, which reduces the spatial dimensions of the input. The
Flatten layer then transforms the 2D matrix data into a 1D
vector. Subsequently, a Dense layer using ReLU activation
and He-uniform weight initialization is added. The final layer
is another Dense layer, with the number of neurons equal
to the number of output classes, and the softmax activation
function is used for multi-class classification. The model is
compiled with the Stochastic Gradient Descent (SGD) opti-
mizer and categorical cross-entropy loss function. The values
of the parameters of each layer are mentioned in Table I. We
choose this architecture and parameter values based on two key

Fig. 7: Histogram representing the percentage of vehicle arrivals and
departures across different time slots in the Luxembourg City off-
peak scenario (12:00-12:40 PM). Time on the x-axis shows the time
from the beginning of the scheme.

considerations. Firstly, some choices are widely recognized
as effective in extracting shape features from images for
the considered datasets [19]. Secondly, we tune some other
parameters empirically by conducting a series of experiments.

With the specified parameters, the resulting model size is
approximately 320 KB when trained on the MNIST dataset
and 1.2 MB when trained on the CIFAR-10 dataset. Note that
better energy performance might be achieved by tuning all
of the CNN hyperparameters, as they impact the size of the
model to be exchanged. However, this is out of the scope of
the present work and is left for future developments. We end
our simulations after 600 rounds or when the average accuracy
across all nodes does not improve by more than 0.5% for 20

Fig. 8: Distribution of mean accuracy at every five-minute interval
for the OGL algorithms in the Luxembourg City off-peak scenario
(12:00-12:40 PM) using the MNIST dataset. Each point is the mean
accuracy of a single vehicle, averaged in the time interval. The target
line shows the target accuracy (95%) obtained using the centralized
ML training on the union of the local dataset of all vehicles. Time on
the x-axis corresponds to the time from the beginning of the scheme.

consecutive rounds.
In addition to our scheme, we have considered the follow-

ing baseline approaches:

• Centralized ML. In this approach, a central server possesses
a dataset identical to the scenario’s global dataset, over
which it trains the CNN model.

• Federated Averaging (Fed AVG) [20]. In this training
scheme, a parameter server collects the CNN models trained
locally by each node at every round, merges them, and sends
the resulting CNN to each node for a new round of local
training. For fairness of comparison, we assumed random
client subsampling, with an average number of selected
clients coinciding with the average number of nodes each
node comes in contact with during a round.

• Decentralized Powerloss (DP) [11] is a decentralized learn-
ing approach. In this approach, all the nodes set the number
of local training epochs to 1 and merge the models from
all neighbours at a given time slot without exception. In
this approach, the weights associated with each model to be
merged are derived from a measure of the received models’
performance over the node’s validation set.

• Random GL is derived from OGL algorithm by setting
uniformly at random (and independently for each node
and time slot) parameters Kv,t and Zv,t, i.e. the number
of training epochs and the set of neighbour nodes whose
models have to be merged.

• Local only, in which each node trains the local model only
on its local dataset, with no data or models exchanged with
neighbouring nodes or a server.

The size of local datasets varies across nodes, leading to an
uneven distribution of classes. It requires using various perfor-
mance metrics to compare the effectiveness of our algorithm
with baseline methods.

In the first set of experiments, we considered scenarios
with different numbers of nodes in the network, specifically
|V | = [3, 6, 12]. In addition, we model the connectivity graph
resulting from node mobility via an Erdős-Rényi dynamic
random graph [21]. It is thus a sequence of graphs, each

associated with a time slot. In this type of graph, an edge is
established between two nodes with probability p, independent
from other edges. Then, at each time slot, the connectivity
graph stays constant, but possibly the set of edges in the graph
(connection among nodes) varies. The degree of connectivity
in the network is determined by the parameter p. A mesh
network is formed when p = 1, while p = 0.1 leads to a
sparse network. This type of graph enables a controlled and
systematic modification of node numbers, connection patterns,
and node interaction frequency and duration [21].

Figure 1 shows the mean total computing and commu-
nication costs at convergence for OGL and the baselines in
different network configurations utilizing the MNIST dataset.
Figure 2 illustrates the mean total amount of computing and
communication costs at convergence for OGL as well as
for the baselines using the CIFAR-10 dataset. These results
suggest that our OGL scheme is by far the most energy-
efficient among the gossip learning schemes, particularly con-
cerning communication costs, achieving a level of efficiency
comparable to that of Federated Learning. This confirms that
context-aware tuning of the local training and merging phases
of GL schemes may have a high impact on the efficiency
and effectiveness of the training process. Another key aspect
resulting from our experiments is the relative mean training
performance of our OGL scheme in terms of model accuracy
at convergence. As Table II shows, using MNIST dataset
OGL outperforms all baseline distributed approaches in all
performance metrics, achieving performance comparable to
centralized training. Critically, though being significantly more
energy efficient, at convergence, OGL improves by more than
40% both mean accuracy and mean loss with respect to DP, i.e.
to the best performing gossip-learning approach in the state-
of-the-art. Indeed, the two other distributed learning models,
DP and random GL, as well as the local-only approach, fail to
achieve the target mean accuracy. Figure 3 depicts the mean
accuracy versus round (learning process) of the OGL and
other baseline algorithms using the CIFAR-10 dataset. The
outcomes derived from the CIFAR-10 dataset largely mirror
those obtained from the MNIST dataset. It reinforces the
effectiveness and consistency of the OGL algorithm across
different datasets.

Figure 4, and 5 show the impact of network connectivity
and the number of nodes in the system on the evolution
of mean accuracy over the learning round for MNIST and
CIFAR-10 datasets. In a system with very few nodes, the
impact of optimally choosing the neighbours’ contributions is
relatively modest, with the mean accuracy of Random GL and
DP eventually matching that of OGL. In larger systems, our
OGL tuning approach is key to achieving faster convergence
and higher accuracy in sparse and dense networks. Figure
6 illustrates that OGL maintains superior energy efficiency,
notwithstanding an accuracy comparable to Random GL. Note
that all schemes perform sensibly worse in the CIFAR-10
dataset, as for the same average local dataset size, its samples
are more complex (i.e. larger pictures with more pixels).

To evaluate the effectiveness of our OGL approach in a
realistic scenario, we consider a scenario where moving nodes
are vehicles traversing a region of interest. We focused on
a specific area in the city centre of Luxembourg City. This
area, a square with sides measuring 1 km, was observed
during a low-traffic period (off-peak) from 12:00 PM to 12:40

PM. During this time interval, there are 492 vehicles in the
region, with an average sojourn time of 2.9 minutes. On
average, there are about 27.3 vehicles in the region at any
given time. In this scenario, vehicles are in contact if they
are within each other transmission radius. The transmission
radius has been set to 150 m (e.g. typical of DSRC in urban
environments [22]). In this case, on average, each vehicle
is in contact with 6.7 vehicles at any time. Note that, unlike
previous scenarios, the set of nodes in the region may change
at different time intervals. Figure 7 depicts the percentage of
arrivals and departures at every 5-minute interval. To ensure
a dynamic neighbourhood pool and give each vehicle enough
time to train its local model, vehicles interchange both the loss
values and the trained models at regular intervals of twenty
seconds. Figure 8 shows the mean accuracy of the vehicles
approach the target accuracy, obtained by training a centralized
ML model on the union of all vehicles’ datasets, after ten
minutes despite having churn in the network. In addition, we
observe the adaptive learning capability of new arrivals. New
arrivals are characterized by their initial impact on reducing
the mean accuracy, as they are identified as outliers within the
given time shown in Figure 8. Despite the initial disruption,
these outliers demonstrate a capacity to learn from the existing
vehicles, thereby gradually aligning with the overall trend.
This is evidenced by the subsequent decrease in the number
of outliers from time interval 15-20 to 20-25 minutes. This
adaptive learning capability of new arrivals contributes to the
robustness and resilience of the system, enabling it to maintain
overall accuracy over time. It indicates our OGL model is
able to maintain high accuracy even in the face of network
instability.

V. CONCLUSIONS

This work presents a novel approach to an energy-efficient
gossip learning scheme for dynamic settings. We employ an
auxiliary DNN model trained by an orchestrator to adaptively
tune some of the key parameters of the learning process in
a decentralized manner. Results indicate that our approach
efficiently achieves accuracy comparable with a centralized
ML method across various network conditions, utilizing time-
varying random graphs and a measurement-based dynamic
urban scenario across two distinct datasets.

For future work, we plan to enhance the scalability and
adaptability of our optimization system by developing a fully
distributed optimization system, eliminating the need for an or-
chestrator, where nodes can self-optimize in response to drastic
environmental changes. Furthermore, we plan to investigate the
impact of different types of DNN models on the optimization
and learning process, as DNN models vary in their computa-
tional requirements. This could be particularly important in a
distributed learning context where computational resources are
limited.

REFERENCES
[1] R. Ormándi et al., “Gossip learning with linear models on fully

distributed data,” vol. 25, no. 4, pp. 556–571, 2013.
[2] M. A. Dinani, A. Holzer, H. Nguyen, M. A. Marsan, and G. Rizzo, “A

gossip learning approach to urban trajectory nowcasting for anticipatory
ran management,” IEEE TMC, pp. 1–17, 2023.

[3] Dinani, Mina Aghaei and Holzer, Adrian and Nguyen, Hung and
Marsan, Marco Ajmone and Rizzo, Gianluca, “Gossip learning of
personalized models for vehicle trajectory prediction,” in 2021 IEEE
WCNC, 2021, pp. 1–7.

[4] Y. Zhou, Y. Qing, and J. Lv, “Communication-efficient federated
learning with compensated overlap-fedavg,” 2021.

[5] A. M. Abdelmoniem, A. N. Sahu, M. Canini, and S. A. Fahmy, “REFL:
Resource-efficient federated learning,” in Proceedings of the Eighteenth
European Conference on Computer Systems. ACM, may 2023.

[6] O. Marfoq, G. Neglia, L. Kameni, and R. Vidal, “Personalized federated
learning through local memorization,” 2022.

[7] F. Malandrino and C. F. Chiasserini, “Federated learning at the network
edge: When not all nodes are created equal,” 2021.

[8] H. Wu and P. Wang, “Fast-convergent federated learning with adaptive
weighting,” 2021.

[9] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge
computing systems,” 2019.

[10] A. Imteaj and M. H. Amini, “Fedar: Activity and resource-aware
federated learning model for distributed mobile robots,” 2021.

[11] M. A. Dinani, A. Holzer, H. Nguyen, M. A. Marsan, and G. Rizzo,
“Vehicle position nowcasting with gossip learning,” in 2022 IEEE
WCNC, 2022, pp. 728–733.

[12] C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation of
bluetooth low energy: An emerging low-power wireless technology,”
sensors, vol. 12, no. 9, pp. 11 734–11 753, 2012.

[13] B. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, and T. Turletti,
“A survey of software-defined networking: Past, present, and future of
programmable networks,” Communications Surveys & Tutorials, IEEE,
vol. PP, no. 99, pp. 1–18, 2014.

[14] X. Tang, J. Li, K. Li, and A. Y. Zomaya, “Cpu–gpu utilization aware
energy-efficient scheduling algorithm on heterogeneous computing sys-
tems,” IEEE Access, vol. 8, pp. 58 948–58 958, 2020.

[15] P. Refaeilzadeh, L. Tang, and H. Liu, Cross-Validation. Boston,
MA: Springer US, 2009, pp. 532–538. [Online]. Available: https:
//doi.org/10.1007/978-0-387-39940-9 565

[16] R. Kruse, C. Borgelt, F. Klawonn, C. Moewes, M. Stein-
brecher, and P. Held, Multi-Layer Perceptrons. London:
Springer London, 2013, pp. 47–81. [Online]. Available:
https://doi.org/10.1007/978-1-4471-5013-8 5

[17] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov. 1998, conference Name: Proceedings of
the IEEE.

[18] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian institute
for advanced research).” [Online]. Available: http://www.cs.toronto.
edu/∼kriz/cifar.html

[19] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-
Shamma, J. Santamarı́a, M. A. Fadhel, M. Al-Amidie, and L. Farhan,
“Review of deep learning: Concepts, cnn architectures, challenges,
applications, future directions,” Journal of big Data, vol. 8, pp. 1–74,
2021.

[20] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Agüera y
Arcas, “Communication-efficient learning of deep networks from decen-
tralized data,” in Artificial Intelligence and Statistics. PMLR, 2017,
pp. 1273–1282.

[21] A. Di Maio, M. A. Dinani, and G. Rizzo, “The upsides of turbulence:
Baselining gossip learning in dynamic settings,” in Proceedings of
the Twenty-Fourth International Symposium on Theory, Algorithmic
Foundations, and Protocol Design for Mobile Networks and Mobile
Computing, ser. MobiHoc ’23. New York, NY, USA: ACM, 2023, p.
376–381.

[22] K. Abboud, H. A. Omar, and W. Zhuang, “Interworking of dsrc and
cellular network technologies for v2x communications: A survey,” IEEE
Transactions on Vehicular Technology, vol. 65, no. 12, pp. 9457–9470,
2016.

https://doi.org/10.1007/978-0-387-39940-9_565
https://doi.org/10.1007/978-0-387-39940-9_565
https://doi.org/10.1007/978-1-4471-5013-8_5
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

	Introduction
	System model
	The OGL Approach to Energy-Efficient Gossip Learning
	A Gossip-Based Collaborative Training Algorithm
	Formulation of the energy optimization problem
	OGL architecture, components and functions

	Numerical assessment
	Conclusions
	References

