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Abstract— This piece of research aims to obtain mobility
profiles of the Swiss population. To that end, a survey of the
Swiss Statistical Office (FSO) called Mobility and Transport
Micro-census (MTMC) is utilized. Along with a qualitative
method clustering, the respondents in the survey are clustered
based on their mobility characteristics to obtain their profiles.
The clustering, in particular acquiring medoids (centrotypes or
exemplars), helps us then to generate a synthetic population
of Switzerland. To gain medoids of each cluster, the k-Medoids
clustering algorithm is utilized which partitions instances based
on their positions in a latent space (symmetric distance matrix).
Distances that shape this space can be generated by various
metrics e.g. Euclidean, Gower, Manhattan. Since in this study
features are mixed-type (e.g. numeric, categorical, etc.), the
Gower distance metric is preferred. In this study, the default
weights of the Gower distance are optimized to obtain a higher
Average Silhouette Width (ASW) value of the clustering results.
ASW can be used to measure the quality of clustering results
in which high value leads to higher intra-cluster homogeneity
and inter-cluster dissimilarity. So, maximizing the ASW value
improves the quality of the clusters which is the goal of the
optimization. At the end, this process helps us to obtain more
accurate mobility profiles of the Swiss population.

I. INTRODUCTION

Knowing mobility dynamics of a society is always advan-

tageous for policy makers in terms of different aspects such

as future investments. As an environmental aspect, nowadays

there is a huge effort on decarbonizing mobility sector that

constitutes around one-fifth of the global carbon-dioxide

emissions [1], [2]. Several hard-measures, such as diesel bans

or increasing taxes on fossil fuels, are under consideration to

reduce total emissions from the mobility sector. In addition,

there are also people-centric ways to handle the problem.

One of them is changing mobility behaviors of individuals

e.g. encouraging them to use more soft-mobility modes.

For this purpose, it is helpful to learn mobility profiles (or

mobility patterns) of individuals. Knowing which people use

private car, bike, train, etc. frequently and their characteristics

are important to create strategies to deal with decarbonization

targets. To this end, in this piece of research, we aim obtain

mobility profiles of the Swiss population based on their

mobility characteristics. Clustering, as a qualitative approach,

is employed to obtain the mobility patterns. Individuals who
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have similar characteristics are grouped in the same clusters.

Afterwards, clusters, their members and a representative

(medoid) of each cluster are obtained. Apart from exploring

mobility patterns of the society, the clustering results can be

then used to generate a synthetic population of Switzerland.

Synthetic population generation is not the specific goal of

this paper but the obtained results can be utilized as a

milestone for future work. Since the medoids and the intra-

cluster feature distributions are known, crafting a synthetic

population stays one step ahead.

The Swiss Statistical Office (FSO) conducts quinquen-

nial surveys to observe characteristics of the Swiss popu-

lation including their mobility practices. The surveys are

released with the name ‘Mobility and Transport Micro-

census (MTMC)’ [3]. The last release refers to 2015, is

employed as the main data set in this research. The data

contain a large number of features, separated in several

sub-tables, related to activities (e.g. trips), properties (e.g.

car, accommodation) and characteristic of the respondents

(e.g. age, education level). This research aims to cluster

the individuals (respondents), not the activities. Hence, the

features, which describe individuals’ mobility characteristics

such as their modal choices, are selected in a final data

set that is employed to place the respondents in a latent

space. The features qualify the activities e.g. origins and

destinations of trips, are excluded. In the same vein, the

features depict properties of the respondents, e.g. engine size

of respondents’ cars are not considered for the final data

set. Basically, an ex-ante feature selection takes place before

running the clustering algorithm. The selected features are

illustrated in Section III.

The final data set consists of mixed-type features. It

contains both numerical (continuous) and categorical fea-

tures. Type of features are important when a selection of

a distance metric takes place because some distance met-

rics (e.g. Euclidean) are able to handle only continuous

features [4], [5] while a distance matrix is being created.

For categorical features, a data transformation is required

beforehand. The Gower distance [6] is capable of handling

mixed-type data sets, which might contain all types of data,

without any external transformation [7], [8]. There are some

other approaches to handle mixed-type features such as

cluster ensemble approach. But empirical research shows

that the Gower distance provides a more effective way of

tackling the issue of mixed-type features [9]. To that end,

it is preferred in this study to create a distance matrix

which contains pairwise distances (dissimilarities) among

instances (respondents). These distances determine positions
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of instances in a multi-dimensional latent space. Therefore,

the distance matrix can be utilized as a latent space which

is then employed by the clustering algorithm for separation

based on positions. A brief description of the Gower distance

is given in Section II.
One of the potential extensions of this research (future

work) is generating a synthetic population of Switzerland.

A synthetic population can be generated for each cluster

separately with narrowed down intra-cluster attribute space.

Then generated cluster level synthetic data can be merged to

obtain a full synthetic population. The idea is, first, obtaining

medoids (together with their clusters), cluster sizes and intra-

cluster feature distributions (e.g. marginal frequencies, con-

ditional probabilities). Then, adding some noises to features

of medoids according to intra-cluster feature distributions.

At the end, a realistic synthetic population is gained. Having

regard to this potential extension, in this research, one of the

partitioning algorithms the k-Medoids (partitioning around

medoids, PAM) is chosen to cluster instances. As the name

suggest, it clusters instances around medoids [10], [11].

At the end of the clustering, it presents medoids of each

cluster (together with other cluster members). In addition

to generating a synthetic population, obtaining medoids can

help to figure out the characteristics of clusters. They have

the lowest cumulative distance towards other instances in

the same cluster. The k-Medoids requires a latent space

(distance matrix). It is compatible with the matrices that are

created by the Gower distance metric [9]. Therefore, in this

piece of research, the Gower distance and the k-Medoids are

employed together to perform the clustering.
The k-Medoids algorithm gets the number of clusters

information (k) as an input parameter. It is an unsupervised

approach. Hence, the optimal number of clusters should be

pre-specified. This ex-ante situation is one of the handicaps

of it [12]. But there are some cluster validation methods

which can help to get an idea about the optimal number

of clusters (e.g. average Silhouette Width (ASW), Calninski

and Harabasz Index (CH) and Pearson version of Hubert‘s

Γ (PH) [13], [14]). ASW is one of the most widely used

approaches that measures how well an instance is matched

with its own cluster [14]. It is basically a fitness measure

that reflects how maximized intra-cluster homogeneity and

inter-cluster dissimilarity [15]. The idea for pre-specifying

the optimal number of clusters is, trying different k-values

in an interval for partitioning and appointing one of them

that has the highest ASW value as the optimal number of

clusters. Detailed information about how ASW values are

used to pre-specify the optimal number of clusters is given

in Section II.
In this study, while the profiles are being created, an

optimization process takes place to improve the clustering

results. The optimization targets obtaining clusters with

higher quality. In other words, it takes aim at appointing

the instances in the right clusters as much as possible. In

general, the quality of clusters is measured by;

• Compactness: It reflects the intra-cluster cohesion (how

homogeneous are the instances within the same cluster).

A lower intra-cluster variation is an indicator of a good

clustering.

• Separation: It measures how well-separated a cluster is

from other clusters. A higher inter-cluster dissimilarity

is an indicator of a good clustering.

ASW reflects both compactness and separation of clusters

(see Eq. 4). So it can be used as a qualitative measurement. In

this study, the ASW value of clusters is utilized as a metric

that should be maximized. Firstly, the optimal number of

clusters that has the highest ASW value is found. Then, its

ASW value is improved. To this end, the default weights (all

equal to 1 [6]) of the Gower distance metric are optimized

while a distance matrix is being created. This optimization

brings a higher ASW value of the clusters that leads to

obtaining higher-quality. In Section IV, the AWS values

with the default weights and with the optimized weights

are compared. In Section II, detailed information about how

optimization take place in the overall clustering concept is

illustrated.

II. OVERALL ARCHITECTURE

The main goal of this research is obtaining mobility

profiles of the Swiss population through clustering. While

they are being obtained, an optimization process takes place

to improve the quality of the clusters. The idea hinges on

splitting the instances into the clusters more precisely. To this

end, an overall architecture (concept) is created that draws all

the procedure. It is split into two steps. The steps (illustrated

in the Fig. 1) are briefly explained as following;

• 1st step: In this step the optimal number of clusters is

obtained.

• 2nd step: The ASW value of the optimal number of

clusters (obtained in the first step) is improved through

optimizing the default Gower weights.

Blue flow-lines in the Fig. 1 contribute just to the first

step. The red ones are for only the second step. The black

flow-lines are step-neutral. They contribute to both.

A. The first step

In this step, first, the instances are placed in a latent

space that is represented by a symmetric Gower distance

matrix. All pairwise distances are created feature by feature.

Distances on categorical features are calculated according to

Eq. 1 while it is according to Eq. 2 for numeric ones.

Di,j,k =

{
1, Xi,k �= Xj,k

0, Xi,k = Xj,k

}
(1)

In the equation above, Xi and Xj indicate instances i and

j whilst k represents a categorical feature. This dichotomous

output of the equation can be adjusted also for ordinal fea-

tures. The scale (between 0 and 1) is divided the number of

ordinal values. For instance, if an ordinal feature contains 4

levels (e.g. 1, 2, 3, 4), the distance between 4 and 3 becomes

0.25 [16]. For numeric features, in the equation Eq. 2, rc
indicates the scale (range). It is simply maxXc − minXc.

The equation brings a normalization for values.
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Fig. 1. The Overall Concept/Architecture (contribution of the colors to the
steps; blue: the first, red: the second, black: contributes to both)

Di,j,k =
|Xi,c −Xj,c|

rc
(2)

Based on each feature, pairwise distances are generated

and scaled between 0 and 1. After that, calculated n dis-

tances (n=number of features) are combined to obtain a final

distance [6] (see Eq. 3). Each feature might have a different

weight in aggregation. In the equation, w indicates the weight

of a feature. By default, each weight equals to 1 [6]. They can

be tuned (that is what this study focus on). After all pairwise

distances are calculated, they are represented in a symmetric

distance matrix. The matrix acts as an latent space whereby

the k-Medoids partitions the instances into a pre-specified

number of clusters.

Di,j =

N∑
k=1

wkDi,j,k

N∑
k=1

wk

(3)

When clusters are obtained, in the post-clustering phase,

the ASW value of the k-clusters are calculated according to

Eq. 4 which depicts the Silhouette value of instance i. The

feature ai indicates average dissimilarity of i to all other

objects in the cluster a (the smaller the value, the better

the assignment). Another feature bi reflects the minimum

dissimilarity of the instance i to all objects in any other

cluster (the closest cluster to i except its own cluster). The

Eq. 4 returns values between -1 and 1. Values close to 1

indicates that instance i is assigned to the proper cluster. For

-1, it is vice-versa. Average Sil values of all instances (ASW)

gives an idea about the quality of the clustering [15].

Sil =
bi − ai

max{ai, bi} (4)

As it has been mentioned in the introduction section, the

k-Medoids requires pre-specifying the optimal number of

clusters k (see the pseudo-code in the Algorithm 1). To that

end, as we see in the overall concept (see Fig. 1), there is a

loop indicated with dashed blue lines. In the loop, different

k-values in an interval are tested. Basically, the k-Medoids

employs the same latent space (matrix) with different k-

values. ASW values of each k-value are recorded. Then,

when the loop ends, the k-value that has the highest ASW

value is assigned as the optimal number of clusters. At the

end of the first step, the optimal number of clusters -k- and

their ASW value are obtained.

Algorithm 1 Pseudo-code of the k-Medoids (PAM) Cluster-

ing Algorithm

Input: m (a dissimilarity matrix), k (the number of clusters)

Output: k clusters

Initialization: select arbitrary k of the n cases as the

medoids

1: while As long as the Mean Square Error (MSE) de-

creases do
2: Distribute n cases to k medoids

3: Update medoids from the cases added to the cluster

4: Calculate MSE for each update

5: if If MSE does not decrease anymore then
6: break
7: end if
8: end while
9: return k clusters

B. The second step

In the second step, the ASW value of the k-clusters,

that is gained in the first step, is improved. To that end,

the default Gower weights are optimized in a loop that is

indicated with the dashed red line in Fig. 1. An optimization

function optim [17] in R language is utilized which is

detailedly explained in section III. According to each weight

configuration, the instances are placed in a new latent space.

In other words, the pairwise distances change for each weight

configuration. Then, the k-Medoids partitions the instances

into k clusters based on the new matrix. At the end, the

ASW values of k clusters according to different weight

configurations, are compared. The weight configuration that

brings the highest ASW value for the k-clusters is chosen

as the optimized weights. Thus, at the end of the second

step, the optimized weights and the clusters that are created

through them are obtained.

III. DETAILING CONFIGURATION

In this section, the configuration settings of the overall

concept are explained. The flow in the Fig. 1 begins with

an ex-ante feature selection. Some mobility related features

of the respondents in the Micro-census survey are chosen

heuristically in a final data set. They are used when the

instances are placed in a latent space as the active features.

The final data set consists of 6 features which of five

are categorical (including ordinals) and only one feature is

numeric. They are listed below.
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1) Number of cars in the household

2) Number of daily trips

3) Modal-choice

4) Has-HT

5) Multimodality

6) Daily Distance

The first feature is the number of cars in the household. It

is an ordinal variable. Individuals of a household which has

no car available, choose probably either public transportation

facilities or soft mobility modes with respect to the distance

of trips. Or if a household has more than 2 cars, its members

might not behave reluctantly to use them. Therefore the

number of cars in households can influence daily mobility

practices. The majority of the Swiss households have one car

(around 50%). It is followed by 2 and 3 cars per household.

Around 8% of the Swiss households has no car.

The second variable is the number of trips per day. It is an

ordinal variable. A trip might be long like going to another

city or might be just visiting a bakery/grocery. The majority

of the population perform 2 trips per day. They consist one-

fourth of the population. It can be interpreted in this way that

these people are mostly commuters. They go from home to

work in mornings and turn back at night (2 trips). Around

4% of the population perform just one trip. It means that

they do not turn back to their domiciles. There are some

outliers who perform up to 21 trips. But overall, the bulk of

the population perform between 2 and 6 trips.

One of the important features is modal-choice. It is a

categorical variable. In the survey (Micro-census) people are

asked how they perform their mobility activities (trips) on a

particular day. A respondent may use more than one mode

to perform his trips (multimodality). In this case, his most

frequently used mode is assigned as the main modal choice.

It is called as primary means of transport.

The fourth feature is Has-HT. It is a dichotomous variable

(yes or no). Half-fare (HT) travel-cards allow 50% reduction

for the public transportation modes in Switzerland. So,

ownership of it can be used to identify the mobility patterns.

Owners of that travel-card use probably more public trans-

portation than non-owners. Around 40% of the population

has a HT travel-card.

Multimodality is another dichotomous feature. It is also

a binary categorical variable (yes or no). According to the

survey, if a respondent uses more than one mode e.g. bike

and train, he is appointed as a multi-modal otherwise mono-

modal. 70% of the population prefer monomodalilty. Just

around 30% prefers multimodality. In general, mono-modals

use their own properties e.g. private-car, bike, walking whilst

multi-modals use at least one public transportation mode.

The last feature is the only numeric feature, daily kilo-

meters. It is used to identify long-distance and short-

distance performers. In average, the Swiss population per-

forms around 37 kilometers per day. These kilometers are

higher for train users whilst they are very low for walkers

or bike users.

After the final data set is obtained with the features, in

the first step of the overall concept, the goal is obtaining the

optimal number of clusters. To this end, as it is indicated

by the dashed blue line in the Fig. 1, the clustering process

is repeated with different k-values in an interval (loop). The

latent space (distance matrix) which is created through the

default Gower weights, stays steady. But k-values change in

the loop. Based on the same matrix, individuals are split into

different k-clusters. The lower and upper bounds of the k-

values are chosen 2 and 15 respectively (k ∈ [2, 3, 4..15]).
Due to the computational complexity (high computational

time), the upper bound of the interval is set to 15. Thus,

instances in the matrix are split into 2 to 15 clusters. For

each k-value, a corresponding ASW value of the clustering

results is calculated and compared as it is explained in the

previous section. The k-value that has the highest ASW value

is appointed as the optimal number of clusters. The results

of this step is illustrated in section IV.

The second step aims to optimize the default Gower

distance weights to obtain a higher ASW value of the k-

Medoids clustering which is employed to gain mobility

profiles of the Swiss population. The optimization targets

to improve the ASW value of k-clusters (k is obtained in the

first step). Improving the ASW value leads to a higher intra-

cluster cohesion and inter-cluster separation. This improves

the quality of the clusters. To this end, optim function

in R language is employed (see Algorithm 3). Basically,

the optim function takes the initial parameters (the default

weights in this case), and it tunes them to minimize the return

of a target function (function A in this case). The function B

in below optimizes the default weights to minimize the return

of function A. The function A places the instances into a

latent space that is shaped by the input weights which come

from the function B. Then, it partitions the instances into

k-clusters (k is the optimal number of clusters found in the

first step). It returns the negative ASW value of the clustering

results. Since optim function aims to minimize the return

of a target function, the function A returns negative of the

ASW values to maximize it. Upper and lower bounds of the

weights (see Algorithm 3) are set as 1 and 3 respectively

(w ∈ [1, 3]). Due to comparability with the default weights,

the lower bound is set to 1. The upper bound is set to 3 to

prevent dominance of one variable to the clustering results.

All selected features qualitatively important and aimed to

contribute to the clustering process.

Algorithm 2 Function A to find the ASW value of the

clustering with the input weights

Input: weights

Output: ASW value

1: Calculate a Gower distance matrix with the weights

Gower dist← daisy(data, weights = weights)
2: Partition the cases into k clusters

clusters← pam(Gower dist, k)
3: Calculate the ASW value of the cases in the k clusters

ASW value← clusters$silinfo$avg.width
4: return −ASW value
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Algorithm 3 Function B to optimize the default weights

Input: default weights,upper bound(u), lower bound(l)

Output: optimized weights

1: Calculate the optimized weights through the optim func-

tion

optimized weights ← optim(par = weights, fn =
function A, lower = 1, upper = u,method =′ L −
BFGS −B′)

2: return optimized weights

IV. FINDINGS

In the first step, the optimal number of clusters is obtained.

Different k-values in an interval [2-15] are tested and the one

that has the highest ASW value is appointed as the optimal

number of clusters. The k-values and the corresponding ASW

values are illustrated in the Fig. 2 below.

Fig. 2. Number of clusters and the corresponding ASW values

As can be seen in the figure, 13 clusters are the opti-

mal (ASW value=0.7465). The corresponding ASW values

have an upward-trend until 13. They peak at 13 and then

decrease. For some k-values such as 4, the corresponding

ASW value is lower than the previous and the next (3

and 5). The reason can be weak separation. The instances

are not well-equilibrated into the clusters. Similar instances

appear in different clusters. Therefore, adding a new cluster

or removing one cluster can improve the ASW values in these

cases. According to the Fig. 2, if the instances are split into

13 clusters, a better intra-cluster cohesion and inter-cluster

separation is obtained. Thus, at the end of the first step,

the optimal number of clusters is pre-specified as 13. In the

second step, the goal is improving the ASW value (0.7465)

of the 13 clusters. To this end, the function B is run. It

employs the function A as a target function and aims to tune

the initial parameters (the default weights) to minimize the

return of the target function. After its run, the function B

returns the optimal weights that are illustrated in the Table

I.

According to the optimization results, some features (e.g.

modal-choice and multimodality) have higher weights than

others. Weights of there features (n-of-cars, trips and daily

TABLE I

RETURN OF THE FUNCTION B THAT FINDS THE OPTIMIZED WEIGHTS

Features Optimized Weights

N-of-cars 1.000000

Has-HT 2.469693

Trips 1.000000

Daily Distance 1.000000

Modal-Choice 3.000000

Multimodality 2.640402

TABLE II

ABSOLUTE SIZE OF THE CLUSTERS

Cluster Number Absolute size of the clusters

1 3890
2 1645
3 706
4 7973
5 941
6 503
7 1053
8 3138
9 461

10 2519
11 3952
12 493
13 1217

Total 28491

distance) do not change with the optimization. They are

not as important as others to split the instances. Increasing

their weights does not change the quality of the clustering.

But they still play a role for distributing instances in the

latent space. In other words, not only high-weighted features

but also low-weighted ones contribute to the separation

collectively. Based on the optimized weights, the instances

are placed in a new latent space. Since the latent space

is represented by distance matrices, a new Gower distance

matrix is generated along with the optimized weights. Then,

the instances are split into 13 clusters based on the distances.

The ASW value of the clusters that are created through the

optimized weights is observed as 0.8458. It was 0.7465 with

the default weights. There is a significant improvement. As a

control, the second highest ASW value is also checked. The

second most optimal number of clusters is obtained when

the k-value equals to 12 (see Fig. 2). After the optimization,

its ASW value is improved to 0.8349 which was around 0.73

before. The optimization improves the ASW value but it

is still less than 13 clusters’. In brief, the same instances

are split into 13 clusters with the default and the optimized

weights. It is observed that, with the optimized weights, the

ASW value is improved, which leads to obtaining the clusters

with higher quality.

The absolute sizes of the obtained clusters are illustrated

in the Table II. As we can see sizes are quite heterogeneous.

When we look at the medoids of the clusters, it is observed

that, 4 of 13 medoids are private-car users. Their cluster

sizes are significantly higher than others e.g. cluster 4. In

total, they constitute around 60% of the population. These

55

Authorized licensed use limited to: SO Suisse Occidentale. Downloaded on June 17,2024 at 11:42:47 UTC from IEEE Xplore.  Restrictions apply. 



four clusters differ from each other through the features like

e.g. multimodality, daily kilometers. Walker medoids and

their clusters come second place in terms of cluster size.

There are two medoids who prefer on foot as their primary

mode of transport (cluster 1 and 10). As might be expected,

their daily kilometers are significantly lower than others’ and

than the average, since people generally do not walk for

long distances. Members of the one walker cluster have a

HT travel-card whilst the member of the other one don’t.

These clusters differ from each other through HT travel-card

ownership. There are two train user medoids. Both of them

make significantly more kilometers than other medoids. One

of them has a HT travel-card whilst other one does not.

Both prefer multimodality. There are also two bike/e-bike

user medoids. They make slightly higher kilometers than

walkers. One of them prefers multimodality who has also

a HT travel-card. The second one has no HT travel-card and

he prefers monomodalilty. There is only one cluster whose

medoid prefers tram as a primary mode of transport. Its

cluster size is one of the lowest. The medoid lives in a city

center where tram exists. He makes more or less the same

kilometers as the bike/e-bike users that is significantly less

than the average. There are two bus user medoids whose

cluster sizes are the lowest. One of them is multi-modal.

They make more or less the same kilometers with the tram

user medoid. One of them has a HT-travel-card whilst other

one does not. In summary, mobility profiles hierarchically

organized the active features so that the primary mode of

transport of the medoids can be shared by different clusters

which are mainly distinguished by has-HT and multimodality

features.

V. LIMITATIONS

In the first step of the experiment, different k-values in an

interval are tested (in a loop) and the k-value that brings the

highest ASW value is appointed as the optimal number of

clusters. In the loop, k-values vary between 2 and 15. This

is the first limitation. The peak is found as 13; after which,

the ASW values decrease. But there might be potential k-

values out of the interval that improve the ASW value more

than 13. Due to computational complexity, the first peak is

chosen as the optimal. We wanted to look the trend out of

the boundaries (2-15) with 10 step size (e.g. k = 20, 30, 40

... 100). But the computation took days. Therefore we could

not reflect that result in this paper.

The second limitation is the upper bound of the weights.

Due to preventing the dominance of a feature, it is set to

3. High computational time because of very small step size

(seven digits), is another reason for that. But as we see in the

Table I, the weight of model-choice is found at the border.

It might increase if the upper bound is set more than 3.

With a broader range of weights, a higher ASW value can

be obtained.

VI. CONCLUSION

In methodological terms, this research gives a structured

concept to improve the quality of clusters through the opti-

mization. As a distance metric, the Gower distance is utilized

to create a latent space, whereby the k-Medoids partitions

instances into the pre-specified number of clusters. Its default

weights are optimized to improve Average Silhouette Width

(ASW) value of the clusters. This improvement leads to a

higher intra-cluster homogeneity and a higher inter-cluster

separation. At the end, by the help of the optimization, more

accurate clustering results are obtained. In an empirical point

of view, this research provides a structured inside of the

mobility dynamics of the Swiss population. As a next step,

the results can be used to generate a synthetic population

of Switzerland. To this end, the obtained medoids and the

intra-cluster feature distributions are going to be utilized.
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