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Abstract. Background segmentation is an important step in analysis
of histopathological images. It allows one to remove irrelevant regions
and focus on the tissue of interest. However, background segmentation
is challenging due to the variability of stain colors and intensity levels
across different images, modalities, and magnification levels. In this pa-
per, we present a learning-based model for histopathology background
segmentation based on convolutional neural networks. We compare two
multiresolution approaches to deal with the variability of magnification
in histopathology images: (i) model that uses upscaling of smaller patches
of the image, and (ii) model simultaneously trained on multiple resolution
levels. Our model is characterized by solid performance both in multireso-
lution and multistain dyes (H&E and IHC), achieving good performance
on publicly available dataset. The quantitative scores are, in terms of
the Dice score, close to 94.71. The qualitative analysis presents strong
performance on previously unseen cases from different distributions and
various dyes. We freely release the model, weights, and ground-truth
annotations to promote the open science and reproducible research.
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1 Introduction

Background segmentation is a basic step in most preprocessing tasks for whole
slide images (WSIs), which are digital scans of tissue slides used for cancer diag-
nosis and prognosis. Segmentation aims to separate the foreground tissue regions
from the background glass regions, which can reduce computational costs and im-
prove accuracy for subsequent analysis such as classification, detection, grading,
and registration [10]. However, background segmentation of WSIs is challenging
due to variations in tissue appearance, staining quality, illumination conditions,
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and scanning artifacts. Existing methods for background segmentation of WSIs
are either based on handcrafted features or deep learning models. Up to our
knowledge, the currently existing methods are limited to H&E (hematoxylin
and eosin) staining. Moreover, most existing methods for background segmen-
tation are either not publicly available or require manual tuning of parameters
for different datasets.

Many studies have explored histopathology segmentation, which is a tech-
nique to identify different regions in tissue images like [5,1,13] However, most
of these studies focus on segmenting nuclei, which are small and distinct struc-
tures in the tissue. Segmenting the whole tissue is also challenging because it
involves large areas that have low contrast and that are often similar to the back-
ground, especially when immunohistochemistry (IHC) staining is used. This type
of staining is much less normalized and quality controlled [7,17]. Even for H&E
staining, the differences in dyes are problematic [16]. Therefore, existing methods
for segmentation cannot be easily adapted to whole tissue segmentation.

Some previous studies [12] used a conventional method to segment tissue
regions of interest (ROI) from histopathological images. However, this method
works well only for images stained with H&E, and not for those stained with
immunohistochemistry (IHC). Moreover, our goal is different from theirs. We
want to segment the background from the tissue, not just the ROI within the
tissue. This is important for some preprocessing techniques that require selecting
the entire tissue area, including its folds and artifacts.

Recent studies have demonstrated that deep learning can achieve remarkable
results in histopathology, enabling more accurate and detailed predictions for
various diseases [6,11,15,13] However, most of the existing work focuses on spe-
cific types of tissue, such as epidermal tissue [14]. While there is some research
in background segmentation [2], the proposed models are not publicly available
or accessible, limiting their reproducibility and applicability.

In this paper, we propose a deep learning-based pipeline for background seg-
mentation of WSIs that can handle diverse types of tissues and stains without
requiring any prior information or user intervention. Our framework consists
of two main components: a patch-level segmentation network that predicts fore-
ground probability maps for small patches extracted from WSIs, and a slide-level
fusion during inference that combines the patch-level predictions into a final bi-
nary mask for the whole slide. We evaluate our framework on a public dataset
from ACROBAT challenge, covering mainly breast cancer patients. We show
that our framework achieves solid performance and high generalizability across
different tissues. Additionally, we show solid performance in multiple resolutions
of those images, as well as both H&E and IHC staining.

One of the applications of our background segmentation method is to improve
the quality and efficiency of other algorithms that process histopathology images.
Software tools like QuPath [3] and HistoQC [8] are widely used for various tasks
such as tissue detection, annotation, classification, and quantification and are
proven to benefit histopathology analysis [4]. However, these tools often rely
on manual or semi-automatic methods to remove the background regions from
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the images, which can be time-consuming and inconsistent. Our background
segmentation method can help streamline this process.

The source code, ground-truth segmentation masks, and model weights will
be made publicly available [9].

2 Materials and Methods

2.1 Dataset

Fig. 1. A schematic diagram of the proposed deep learning pipeline. The pipeline
consists of two stages: training and inference. Each block has marked inputs described
in the legend.

The ground-truth used for training is defined by manual segmentation of nine
different tissues from the ACROBAT dataset [18]. The dataset is a collection of
tissues in a pyramidal tiff format with varying resolutions at each level of the
pyramid. Starting at 10x, authors provide 7 to 9 lower resolutions per image, with
a downsampling factor of 2 in between. The second level which made up most of
the training data has an average resolution of 12146 ± 2189 pixels along the X
axis, and 24007 ± 4854 pixels along the Y axis. Each slide at this resolution can
potentially generate up to 4449 unique, non-overlapping patches of size 256 by
256 pixels. We utilize a random sampling strategy. In each iteration, we sample
256 patches in random locations. This means over the course of training, there
is some overlap of those patches. The final number of patches is not defined and
depends on how long we train the network.
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The dataset includes various artifacts such as markers, scratches, out-of-focus
regions and coverslips. It also consists of two types of staining: H&E and IHC. We
use three distinct IHC dyes during training and testing. We selected this dataset
because it represents the real-world challenges of image analysis. We used eight
images for training, one image for validation, and four images each in its two
staining variants for qualitative evaluation without prior manual segmentations.
We aimed to achieve high-quality segmentation by using a patch-based approach
for both training and inference. This allows us to exploit the heterogeneity of the
tissue structures across different slides and to generalize better with less data.

We used Nvidia Tesla V100 graphics card configured with 300W TDP and
32 GB of memory hosted on PLGrid HPC cluster Prometheus. We did not utilize
the tensor cores as of the time of writing, which means the inference times in
Table 2 could be further improved.

2.2 Model

We present an encoder-decoder Convolutional Neural Network (CNN) as our
model for image segmentation in Fig 2. The model architecture and the training
pipeline are illustrated in Fig 1. We trained our model using binary cross-entropy
(BCE) loss and Adam optimizer, and we measured its performance on both
training and validation datasets using soft Dice score.

Fig. 2. A schematic illustration of the UNet-like model used in this study. The model
consists of an encoder-decoder architecture with both short skip connections described
in ResidualBlock and long skip connections based on concatenating feature maps.
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Table 1. Models’ performance during training.

Dataset patches Model Dice

Training Multiresolution 96.14
Validation Multiresolution 92.27
Training Upscaled 96.31
Validation Upscaled 91.68

We adopted a UNet-like architecture that consists of an encoder-decoder
structure with both short and long skip connections. The short skip connec-
tions allow the network to preserve spatial information across different levels of
abstraction, while the long skip connections enable the network to recover fine
details from the encoder output. We present the architecture details of the model
in Table 3.

Table 2. Models’ performance on validation image on different resolution levels.

Multiresolution model Upscaled model
Pyramid level Dice Latency [mm:ss] Dice Latency [mm:ss]

2nd 93.66 1:08 94.43 1:06
3rd 95.09 0:16 93.21 0:49
4th 95.61 0:03 92.85 0:44
5th 94.62 0:01 81.00 0:47
6th 94.57 0:00 11.16 0:45

Mean Dice 94.71 74.53

Our training pipeline involves extracting image patches of size 256×256 from:
(i) different resolutions of the image pyramid, or (ii) only the second level of the
pyramid, and then inferring on other levels by extracting smaller patches propor-
tional to the downsampling level and upscaling them using bilinear interpolation
to 256×256 pixels.

Our random sampling strategy is dependent on previously generated proba-
bility maps. We apply gaussian blurring with a 3×3 kernel on segmentation maps
and then subtract that from the original mask. This gives us a blurred edge of
the segmentation mask. Then we transform this output so that the background
and foreground of the tissue has a 25% sampling probability and the edge 50%.

During the validation and inference steps, we employ an aggregator of indi-
vidual patches by merging them together with a 20% overlap. In this overlap
region, we average the value of pixels.
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Table 3. Model architecture with each convolution kernel size, the output shape of
the layer, and the layer’s number of parameters.

Layer type Kernel Shape Output Shape Param #

UNet – [1, 1, 256, 256] –
+ Sequential – [1, 1, 128, 128] –

+ Conv2d [4, 4] [1, 1, 128, 128] 17
+ GroupNorm – [1, 1, 128, 128] 2
+ LeakyReLU – [1, 1, 128, 128] –

+ Sequential – [1, 32, 64, 64] –
+ ResidualBlock [3, 3] [1, 32, 128, 128] 9,760
+ Conv2d [4, 4] [1, 32, 64, 64] 16,416
+ GroupNorm – [1, 32, 64, 64] 64
+ LeakyReLU – [1, 32, 64, 64] –

+ Sequential – [1, 64, 32, 32] –
+ ResidualBlock [3, 3] [1, 64, 64, 64] 57,792
+ ResidualBlock [3, 3] [1, 64, 64, 64] 78,272
+ Conv2d [4, 4] [1, 64, 32, 32] 65,600
+ GroupNorm – [1, 64, 32, 32] 128
+ LeakyReLU – [1, 64, 32, 32] –

+ Sequential – [1, 128, 16, 16] –
+ ResidualBlock [3, 3] [1, 128, 32, 32] 230,272
+ ResidualBlock [3, 3] [1, 128, 32, 32] 312,192
+ Conv2d [4, 4] [1, 128, 16, 16] 262,272
+ GroupNorm – [1, 128, 16, 16] 256
+ LeakyReLU – [1, 128, 16, 16] –

+ Sequential – [1, 128, 32, 32] –
+ ResidualBlock [3, 3] [1, 128, 16, 16] 312,192
+ ResidualBlock [3, 3] [1, 128, 16, 16] 312,192
+ ConvTranspose2d [4, 4] [1, 128, 32, 32] 262,272
+ GroupNorm – [1, 128, 32, 32] 256
+ LeakyReLU – [1, 128, 32, 32] –

+ Sequential – [1, 64, 64, 64] –
+ ResidualBlock [3, 3] [1, 64, 32, 32] 160,192
+ ConvTranspose2d [4, 4] [1, 64, 64, 64] 65,600
+ GroupNorm – [1, 64, 64, 64] 128
+ LeakyReLU – [1, 64, 64, 64] –

+ Sequential – [1, 32, 128, 128] –
+ ResidualBlock [3, 3] [1, 32, 64, 64] 40,160
+ ConvTranspose2d [4, 4] [1, 32, 128, 128] 16,416
+ GroupNorm – [1, 32, 128, 128] 64
+ LeakyReLU – [1, 32, 128, 128] –

+ Sequential – [1, 1, 256, 256] –
+ ResidualBlock [3, 3] [1, 1, 128, 128] 346
+ ConvTranspose2d [4, 4] [1, 1, 256, 256] 17
+ GroupNorm – [1, 1, 256, 256] 2
+ LeakyReLU – [1, 1, 256, 256] –

+ Sequential – [1, 1, 256, 256] –
+ Conv2d [1, 1] [1, 1, 256, 256] 2
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(a) Full image

(b) Example of segmentation details (c) Example of failure on out-of-focus regions

Fig. 3. Visualization of segmentation on the validation dataset. Segmentation output
is marked with green color. Ground-truth masks are marked with red color. Overlap
of the prediction with ground-truth is marked with orange color.
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3 Results

The Figures 3,4,5 illustrate some examples of our method’s output. We compared
the results of the upscaled and multiresolution model in Table 1 and Table 2.
The scores reported in those tables are the average scores of all patches in each
batch.

Results in Table 1 indicated that the multiresolution model had a similar
performance on the training dataset but a slightly higher performance on the
validation dataset than the single-resolution model. This indicates that the mul-
tiresolution model reduced overfitting and improved generalization. Fig 4 and
Fig 5 illustrate some examples of image reconstruction from both models on the
test set.

(a) Original image. (b) 2nd resolution level.

(c) 3rd resolution level. (d) 4th resolution level.

Fig. 4. Exemplary visualization from the test dataset (IHC staining). Segmentation
output is marked with green color.
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(a) Original image. (b) 2nd resolution level.

(c) 3rd resolution level. (d) 4th resolution level.

Fig. 5. Exemplary visualization from the test dataset (H&E staining). Segmentation
output is marked with green color.
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Table 4. Qualitative analysis of the model’s output in the test set. Each case’s num-
ber matches the number in the original dataset. The images will be published as the
supplementary material in the associated repository.

Case from Dataset Output Commentary

4 Small artifacts from aggregation in blurry regions
in H&E variant. They disappear while going down
the magnification levels. On the 3rd level, artifacts
from scratches appear. IHC variant has no arti-
facts, even though they are present in the image.

5 While correctly segmenting tissue, there is a larger
artifact area in the HE variant. It disappears on
lower resolution levels. IHC variant is segmented
similarly to H&E one.

8 Solid performance on both HE and IHC variants.
A little noise in the largest IHC sample where cov-
erslip is present in the original, though most of the
coverslip is properly not segmented by the model.
The artifact disappears at lower magnifications.

14 Solid HE segmentation. Similar performance in
IHC, although some noise is present on the high-
est resolution in less visible regions of the tissue.

29 Solid HE segmentation. The coverslip on the IHC
variant has been partly segmented.

30 Solid HE and IHC segmentation. The coverslip on
the IHC variant was properly not segmented.
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(a) Original image. (b) 2nd resolution level.

(c) 3rd resolution level. (d) 4th resolution level.

Fig. 6. Exemplary visualization from the test dataset (H&E staining) on the upscaling
model. Segmentation output is marked with green color.
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4 Discussion and Conclusions

We proposed two methods for patch-based segmentation of histopathology im-
ages: (i) training and testing on a single pyramid level with patch resampling at
inference time, and (ii) training and testing on multiple pyramid levels without
patch resampling. We found that the second method achieved better perfor-
mance across different resolutions and significantly reduced the inference time.
Our method is a general approach for histopathology slide analysis that does
not target any specific regions of tissues. Instead, it aims to segment the back-
ground of the slide by inverting the segmentation of other structures, such as
cells, nuclei, glands, vessels, etc.

According to Table 2 mutliresolution model achieved substantially better
performance on lower magnification levels, which is supported by comparing
visualizations in Fig 5 and Fig 6. The multiresolution model had also a faster
inference time than the single-resolution model, which is beneficial for practical
applications.

The second method required a larger model with a wider receptive field, but
it is still feasible to deploy on even IoT class hardware such as Nvidia Jetson.
This allows for deployment on modern WSIs digitization hardware or integration
into most computational histopathology software.

Additionally, the first method incurred additional computational costs due to
two interpolation steps. The first method suffered from information loss and ar-
tifact introduction when upscaling patches from lower resolutions. The difference
in performance between the two methods can be intuitively explained by con-
sidering that the second method used more information from the original image
and did not introduce any artificial structures due to patches interpolation.

A common problem in histopathology is the variability of staining tech-
niques and dyes used to visualize different tissue structures and biomarkers.
Different laboratories may use different protocols, reagents, and equipment to
perform immunohistochemistry staining, which can result in inconsistent and
non-reproducible results. This poses a challenge for developing computational
models that can analyze histopathological images and extract meaningful fea-
tures from them. Our model addresses this challenge by being stain-invariant,
meaning that it can work on images stained with a wide range of different dyes
without requiring any pre-processing or normalization steps. This makes our
model more robust and generalizable to different datasets and applications. Seg-
mentations of the same tissue dyed by IHC and HE staining is presented in Fig 4
and Fig 5.

One of the limitations of our method is the sensitivity of the model to the
resolution of the input images. Our model was trained on images with a fixed set
of magnifications, and it may not perform well on images with a very different
magnification level. Another limitation is the possibility of large or significantly
different artifacts than in our dataset influencing the segmentation results. Par-
ticularly with higher resolutions, such artifacts could be segmented as part of
the background, leading to inaccurate or incomplete segmentation.
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In this paper, we proposed a novel method for fast and generalizable back-
ground segmentation in histopathological images. We tackled the problem from
two perspectives: an upscaling of lower resolution images, and training the model
on all magnification levels. We demonstrated that our method can achieve high
accuracy and robustness on various tissues with different resolution levels and
staining dyes. Compared to other works like [12] our method does not require
adjusting any hyperparameters. We also showed that our deep learning model
can learn to segment tissues effectively even with a small amount of data,
thanks to the patch-based approach. Our method can be useful for preprocessing
histopathological images for further analysis and diagnosis.
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computing infrastructure PLGrid (HPC Centers: ACK Cyfronet AGH) for pro-
viding computer facilities and support within computational grant no. PLG/
2023/016239.

References

1. Al-Kofahi, Y., Lassoued, W., Lee, W., et al.: Improved Automatic Detection and
Segmentation of Cell Nuclei in Histopathology Images. IEEE Transactions on
Biomedical Engineering 57(4) (April 2010) 841–852

2. Bándi, P., Balkenhol, M., van Ginneken, B., et al.: Resolution-agnostic tissue
segmentation in whole-slide histopathology images with convolutional neural net-
works. PeerJ 7 (2019) e8242

3. Bankhead, P., Loughrey, M.B., Fernández, J.A., et al.: QuPath: Open source
software for digital pathology image analysis. Scientific Reports 7(1) (December
2017) 16878

4. Chen, Y., Zee, J., Smith, A., et al.: Assessment of a computerized quantitative
quality control tool for whole slide images of kidney biopsies. The Journal of
pathology 253(3) (March 2021) 268–278

5. Cui, Y., Zhang, G., Liu, Z., et al.: A deep learning algorithm for one-step con-
tour aware nuclei segmentation of histopathology images. Medical & Biological
Engineering & Computing 57(9) (September 2019) 2027–2043

6. Ehteshami Bejnordi, B., Veta, M., Johannes van Diest, P., et al.: Diagnostic As-
sessment of Deep Learning Algorithms for Detection of Lymph Node Metastases
in Women With Breast Cancer. JAMA 318(22) (December 2017) 2199–2210

7. Elias, J.M., Gown, A.M., Nakamura, R.M., et al.: Special Report: Quality Control
in Immunohistochemistry: Report of a Workshop Sponsored by the Biological Stain
Commission. American Journal of Clinical Pathology 92(6) (December 1989) 836–
843

8. Janowczyk, A., Zuo, R., Gilmore, H., et al.: HistoQC: An Open-Source Quality
Control Tool for Digital Pathology Slides. JCO clinical cancer informatics 3 (April
2019) 1–7

9. Jurgas, A.: Jarartur/pcbbe23-histseg: Multiresolution and Multistain Background
Segmentation in WSIs (May 2023)

10. Levy, J.J., Jackson, C.R., Haudenschild, C.C., et al.: PathFlow-MixMatch for
Whole Slide Image Registration: An Investigation of a Segment-Based Scalable
Image Registration Method (March 2020)

https://github.com/Jarartur/pcbbe23-histseg
https://github.com/Jarartur/pcbbe23-histseg


14 Artur Jurgas et al.

11. Litjens, G., Sánchez, C.I., Timofeeva, N., et al.: Deep learning as a tool for increased
accuracy and efficiency of histopathological diagnosis. Scientific Reports 6 (May
2016) 26286
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