Chapter 9

Distributed Directories of Web
Services

Michael Schumacher, Alexandre de Oliveira e Sousa,
Ion Constantinescu, Tim van Pelt and Boi Faltings

9.1 Introduction

This chapter presents WSDir, the federated directory system used in CASCOM.
Its main functionality is to let heterogeneous Semantic Web Service descriptions
be registered and searched by certain clients. As such, it realizes a lookup function
with basic retrieval schemes.

There are several main requirements for a distributed directory system. First,
it should be easy to invoke by any client. This led us to define a Web Service
interface to WSDir: it is a universally accepted standard, it provides a well-defined
method to use the directory, and it allows for interacting with a heterogeneous set
of clients. The sole requirement on the part of the client is that it should be able to
communicate over a Web Service interface. Second, the nature of the applications
to be realized requires the directory system to be distributed, for instance applying
a geographical specialization of the directories. Third, the construction of the
network should induce minimal overhead and should be scalable; also, the network
should be robust to changes in topology and the number of interactions with
the system. Fourth, the directory should allow a great number of services to be
registered, and this in a very dynamic way, including lease times.

Our system is modeled as a federation: directory services form its atomic
units, and the federation emerges from the registration of directory services in
other directory services. Directories are virtual clusters of service entries stored in
one or more directory services. To create the topology, policies are defined on all
possible operations to be called on directories. For instance, they allow for routed
registration and selective access to directories.

The chapter is organized as follows. In Section 9.2, we explain the service



208 Chapter 9. Distributed Directories of Web Services

entries of Semantic Web Services that can be stored in WSDir. Sections 9.3 to 9.6
explain the architecture of WSDir by presenting directories, directory services,
directory operations, and policies. In Section 9.7, we give the concrete network
architecture used in CASCOM. Sections 9.8 and 9.9 discuss respectively usability
and vulnerability issues of WSDir. After referring related work in Section 9.10, we
conclude the chapter in Section 9.11.

9.2 Service Entries

Services are described using the Web Ontology Language for Web Services, OWL-
S [4]. Internally, the directory system stores then service entries in the FIPA SLO
description language. SLO has been chose because the whole CASCOM infrastruc-
ture is using this language for interpretability between agents. Furthermore, as we
achieve with SLO an independent way to store any kind of services and not only
OWL-S descriptions.

The internal service representation contains a subset of the information pro-
vided in the original service description. This information can be used to find
matching services in the directory. In addition, the original service description
in OWL-S is stored in a separate slot. This field is used to retrieve the original
description, e.g., to retrieve the grounding(s) of a service at service execution.

In the following, we present the information that a service entry in WSDir
contains:

ServiceCategories Refers to an entry in some ontology or taxonomy of services.
The value of the property is a set containing elements of the class Service Cat-
egory, which is defined in the OWL-S ontology. The information is ultimately
derived from the service categories defined in the service profile.

ServiceProfileURIs This slot contains a set of profile URIs that is referred to in
the service description. If the profiles are included in the service description
as full-text, no URIs are stored. The URIs point to an externally stored, but
(web-)retrievable service profile.

ServiceProcessURI A process URI that is defined in the service description. If
none is included for the service description, the slot will be empty. If the
process is included in the service description as full-text, no URI is stored.
The process URI points to an externally stored, retrievable service process.

ServiceGroundings The slot that contains a set of full-text service groundings for
the service. Empty set if no grounding is associated with the service (abstract
service). Makes it possible to retrieve only service groundings.

OWLSServiceDescription The slot that contains the original OWL-S service de-
scription as a full-text entry. Service profile(s) and process may be referred
to as URIs, though service groundings must be included as full-text.



9.3. Directories 209

9.3 Directories

A directory comprises a set of service entries which are managed by a collection
of one or more directory services. All service entries, including directory service
entries, are registered at a directory service as belonging to a specific directory.
Such, directory services can form an arbitrary organisational structure (peer-to-
peer, hierarchy etc.). Specifically:

e A directory can contain other directories.
e A directory supported by one or more directory services.

The above is used to characterize directories by two different types of inter-
actions:

1. Client-Directory interactions: in which clients registering, deregistering, and
querying the directory interact with directory services supporting the direc-
tory. They may or may not have any idea about the internals of the directory.

2. Director-Directory interactions: in which directory services supporting the
directories interact with one another to perform the internal management of
the directory (data propagation, federated queries, managing the membership
of the directory service group managing the directory).

The first interaction style (Client-Directory) is part of the base for the cre-
ation and maintenance of a domain directory. The second interaction style (Directory-
Directory) is the base for the creation and maintenance of a network directory. As
directories can be used to support other directories they are seen as organizational
structures. These concepts will be elaborated and exemplified in Section 9.7.1 on
network topology.

9.4 Directory Services

Directory services provide a Web Service interface to a repository that holds ser-
vice entries. The service entries in this store are all registered as belonging to a
certain directory. The directory service forms the atomic unit of the directory fed-
eration. It allows clients to register, deregister, modify and search registrations in
its repository. These registrations include service descriptions of services offered
by clients as well as profiles of other directory service. By registering directory
services in other directory service stores, the system becomes federated.

Figure 9.1 visually summarizes the relationship between service entries, di-
rectories and directory services. In the illustration, the directory service holds
regular service entries and a directory service entry belonging to a Hospitals di-
rectory as well as entries belonging to an Insurers directory. Both directories are
contained in the Body directory, which in turn is contained in the all-encompassing
“” directory.



210 Chapter 9. Distributed Directories of Web Services

@ Directory service

{:} Regular service entry

{:} Directory service entry

S~ Directory
>N~

Directory Service

. (dot)\
Body\

\ Hospitals Insurers

\ 50 %

Figure 9.1: Visual recapitulation of directory system concepts

9.5 Directory Operations

The directory is able to handle five types of operations, corresponding to data
manipulation primitives (register, deregister, modify, search) and the retrieval of
meta-data information (get-profile). The methods are accessible remotely through
a Web Service interface.

We present the operations the directory service interface offers. Before that,
some of the objects that are passed as parameters are defined:

Identity-info The identity-info element is to be used for providing identification
information regarding the invoker of a given operation in the form of an
actor-identifier. This object can contain also a structured object providing
credentials information that can be relevant to some form of authentication
(e.g., a password, a X.509 certificate or a more sophisticated session key).

Directory-id The directory-id is a string that uniquely identifies a directory in
the frame of a given directory service. It can include the names of other
directories if the directory service uses a path like scheme for identifying
nested directories.

Directory-token A directory-token refers to an entry registered within the direc-
tory and can be used to identify the registration entry. A directory-token
contains a key (string) that uniquely identifies a particular entry in a given



9.5. Directory Operations 211

directory. The directory service usually generates these keys but some di-
rectories may support the registration of entries under keys specified by the
client of the directory service.

Structured-object structured-object(s) are the data elements stored in the direc-
tory which are subsequently available for search. The only assumption about
structured objects is that they have a frame-like structure similar to RDF,
the SOAP XML encoding or FIPA SLO. In principle, there are no restrictions
on the content of the data of the structured objects. For our experiments,
the structured-objects are encoded in FIPA SLO.

Hereafter, we describe all operations on WSDir (except get-profile):
Registration

register (identity-info, directory-id, directory-token, structured-objects, lease-
time)

The register operation enables a client to register a service description
entry (as specified in the structured-objects) into a directory for a time period
given by the lease-time parameter. If a directory-token is specified when the
operation is requested then the directory should try to register the new entry
using the key specified in the directory-token. Upon successful registration
the directory service returns an ok message containing either a new directory-
token or the original directory-token if it was specified by the user together
with a new lease-time.

The directory-service can also return a redirect message pointing to an-
other directory where the client could try to register its object. The detailed
semantics of the redirect message are dependent on the policies governing the
directory for which the redirect was issued. For example, this may happen for
load-balancing reasons in top-level directories. To uphold the transparency
of the federated nature of the system to the client, the redirection will be
opaque. Note that a register policy of the directory may also forward the
registration request to another directory, e.g., to balance the load of the di-
rectory.

Deregistration
deregister (identity-info, directory-id, directory-token)

The deregister operation de-registers a service that previously has been
registered identified. The entry to be de-registered is included in the directory-
token that has been obtained at registration.

Modification

modify (identity-info, directory-id, directory-token, structured-objects, lease-
time)



212 Chapter 9. Distributed Directories of Web Services

The modify operation allows modifying a registered service. The struc-
tured object itself can be modified or the parameters of the entry, such as
the lease-time.

Search
search (identity-info, directory-id, structured-objects, search-constraints)

The search operation looks in the directory for services that match
a template (structured-objects). The request can possibly be forwarded to
supporting directories, depending on the implemented search policy at the
directory. As the internal service descriptions are expressed as SLO expres-
sions, the structured element used in the operation is also an SLO expression.
Search-constraints can be specified in order to restrain the search:

e The max-time specifies a deadline by which the constrained search
should return the results.

e The maz-depth specifies the maximum depth of propagation of the
search to federated directories.

e The max-results element specifies the maximum number of results to be
returned.

In Section 9.7.4, we show an example of how a search procedure is
internally handled.

9.6 Policies

Directory services employ directory policies to regulate the operation of directo-
ries. Policies are defined per directory service in the directory service profile and
determine the behaviour of a specific directory. Two types of policies can be dis-
tinguished:

Pro-active policies Policies of this type are typically used for internal management
of the directories. A policy may be attached to a directory to establish the
number of times per hour data is propagated within the directory, how often
old entries are removed etc.

Reactive policies These policies assign a behaviour to combinations of directories
and operations. The policies are executed whenever a bound operation is
called. They are defined as a triple: (directory name, operation, policy).

Policies can also be applied to the default directory named “*” which matches
all directories that don’t have a policy explicitly assigned.

From the consequent application of policies, the network topology emerges.
Policies can for example define how much entries can be registered per directory,
which directories can be searched by which clients, and which types of services



9.7. CASCOM Service Directory Architecture 213

p
Directory Service policies
(directory, operation, policy)

Hospitals  : search : secauth
Body : register: child
Body : search : policy-3

* (default) : register: policy-4

register \_/‘\\\
> ~
7 ~
modify S~
> ~~o
search Soo
> A . a0\
deregister . Directory Service 5o
7
get-pr Of ile Hospitals Insurers
AN
7 {:‘5 {t} {\}
S~ Il R

Figure 9.2: Example use of policies

will be accepted. Each directory service can define its own policies or use one of
the pre-defined policies. The only requirement on the part of a policy is that it
can be executed.

A straightforward example of a pre-defined policy is the child/sibling policy:
this policy forwards all operations to both the known children (directory services
registered in the service store) as well as its known siblings. The list of siblings is
obtained by querying the parent directory service at which it has registered itself.

Figure 9.2 shows an example of the reactive policies that are assigned to the
various directories this directory service supports. In the illustration, when a client
calls the search operation on the “Hospitals” directory, a policy called “secauth”
will be applied. Such a policy could for example require the client to authenticate
itself before it is allowed to query the directory.

9.7 CASCOM Service Directory Architecture

WSDir allows to setup flexible distributed directory systems, especially thanks
to the mechanism of policies. We present here a specific application of WSDir to
build a network of directory services which are modelled as a virtual tree with



214 Chapter 9. Distributed Directories of Web Services

multiple roots. This topology is the network architecture that has been used in
the CASCOM infrastructure.

9.7.1 Network Topology

The nodes of the tree are made up by the individual directory services. This
hierarchical structure with multiple entry points effectuates:

e No replication or data caching within the directory: each directory service is
responsible for registrations made in its local store;

e Forwarding search only: since there is no replication, directory services will
forward queries to other directory services;

e Query message duplicate checking: a given directory service will handle only
the first of several identical query messages from several sources and discard
the others while returning the appropriate failure message;

e No results duplicate checking: identical results may be returned by one or
more directory services for a single query. This enhances the robustness of
the federation at the cost of shifting the burden of filtering the results to the
client.

In the network, we distinguish two types of directories: network directories
and domain directories. Network directories are a reserved set of directories that
are used for the construction of the network. In a directory federation, we can
distinguish three different network directories:

e Hidden network directory: the directory service that forms the root of the
federation by registering the top-level nodes of the network. Neither the di-
rectory service nor its registered services will be visible to the other nodes in
the federation.

e Top network directory: visible to the network as being one of the roots of
the federation multi-rooted tree. A directory service with this role could
typically serve as a bootstrap service to leaf directory services. These services
constitute the Top network directory.

e Body network directory: regular directory services that form the body of
the multi-rooted tree. These directory services provide the interface to the
directories that will contain most of the service registrations in the network.

Domain directories emerge from the registrations of service descriptions at
the directory services that make up the directory system. By definition, domain
directories are contained in the “Body Members” directory.

Hereafter, we explain the network directories in more detail. The above-
mentioned roles and their place in a WSDir federation topology are depicted in
Figure 9.3.



9.7. CASCOM Service Directory Architecture 215

8 Directory service
I3 Service entry

> Network directory

— i

Figure 9.3: Network topology

Hidden Network Directory

The Hidden directory service node responds only to requests coming from Top
directory services and exclusively regarding the “Top Members” directory. For that
it holds authentication information regarding a pre-configured list of possible top-
level nodes and uses this information together with information in the identity-info
field of the requests. Search queries are not propagated to other directory services.
The location of the hidden directory service node is pre-defined.

The existence of this domain ensures that directory services belonging to the
“Top Members” directory know of their respective existence and such makes sure
that every node in the network can be reached if needed. The hidden directory
service is only used for bootstrapping of the top member directory services. After
the system has been initialized, the hidden directory service will only be used by
the top member directory services to poll to see whether new directory services
have been added to the “Top” network directory. Thus, queries, registrations and
other requests do not go through the hidden directory service, but will be directed
at a top or body member directory service.



216 Chapter 9. Distributed Directories of Web Services

Top Network Directory

Upon start-up the Top directory services join the network by registering their
directory-service-profiles inside the “Top Members” directory of the Hidden direc-
tory service. Also they keep track of other Top directory services currently mem-
bers of the “Top Members” directory by continuously polling the “Top Members”
directory of the Hidden directory service for directory-service-profiles entries. In
the case that the Hidden directory service fails the Top directory services should
continue to use the last retrieved membership information until the Hidden di-
rectory service will be back online. In terms of response to registration requests
from clients, a Top directory service allows only for the registration of directory-
service-profile entries inside the “Body Members” directory. Once the number of
registrations that are hold locally goes over a given threshold the Top directory
service returns redirect messages pointing requestors. Normal directory services
directly registered with the current directory service. For any other kind of regis-
tration requests the Top directory services will issue redirect responses pointing at
Normal directory services registered with the current directory services or other
Top directory services that might be more appropriate for use. Top directory ser-
vices will respond to all search requests by first trying to fulfil them locally and in
the case that more results can be returned (the value of the max-results parame-
ter in the search-constraints object has not been reached yet) it will forward the
query to all other Top directory services members of the “Top Members” network
directory. For determining the other Top directory services members of the “Top
Members” directory the information from the last successful polling of the Hidden
directory service will be used. Top directory services will respond with a failure to
all other kinds of requests.

Body Network Directory

At start-up, a Body directory service will try to register its directory-service-profile
in the “Body Members” directory of a Top directory service randomly picked from
a pre-configured list of Top directory services. If the Top directory service cannot
be reached another one is randomly picked until either the joining procedure (see
next) succeeds or the list is exhausted. In the latter case the directory service will
report a join failure. The directory service will follow redirect responses until the
entry is successfully registered with a directory service (either Top or Body). Upon
failure of the directory service used for registration the current directory service
will sleep for a random time period and after than will re-initiate the initial join
procedure.

For other Body directory services that try to register directory-service-profile
entries inside the “Body Members” directory a Body directory service will act as a
Top directory service: once the number of registrations that are hold locally goes
over a given threshold the Body directory service will return redirect messages
pointing requestors to child Body directory services directly registered with the



9.7. CASCOM Service Directory Architecture 217

current directory service.

A Body directory service will respond positively to all other requests. In
particular it will forward search queries for which it could return more results than
locally available to directory services locally registered in the “Body Members”
directory.

9.7.2 Network Construction

At boot time, the directory makes use of a pre-defined network configuration
to create a network topology. The configuration specifies management and data
relations between members of the network.

Some of the network nodes might have fixed well-known addresses in order
to serve as bootstrap hosts for other directory services. Depending on their role,
different parts of the network are visible to bootstrapping directory services.

As mentioned before, in a typical setting, the node at the highest level will
be hidden to all nodes not belonging to the “Top Members” directory.

The process of directory service registration is equivalent to the process of
registering regular service entries. Directory services are registered invoking the
same register method as is used for registering regular services. Instead of an
OWL-S Profile, the passed structured object contains a directory-service-profile
object.

9.7.3 Used Directory Policies

WSDir employs a set of pre-defined pro-active policies, mainly for routing pur-
poses. Figure 9.4 gives an overview of the pre-defined policies and their hierarchy.
We do note present here the details of each policy. However, we show in Fig-
ure 9.5 how these policies are applied to construct the basic network topology .
Per network directory, the set of policies in place is listed.

For example, a registration request directed at a directory belonging to the
“Hidden” network directory triggers the application of the ChildRegisterPolicy.
The service registration request is forwarded to its known children, which them-
selves apply (by default) the ChildSiblingRegisterPolicy. This in turn selects the
least loaded directory service among its children and among its siblings to put the
service entry in its store.

The procedure for a search operation is similar. Requests directed at a direc-
tory service either belonging to the “Hidden” network directory or to the “Top”
network directory will forward the search request to its registered children and its
known siblings. The directory service instances belonging to the “Body” network
directory apply the DefaultSearchPolicy, only searching their local store.

For the modify, deregister and get-profile operation, the policies that are
assigned to the operations also depend on the network directory the directory
service instance belongs to.



218

GenericPolicy

Chapter 9. Distributed Directories of Web Services

DefaultRegister
Policy

ChildRegister
Policy

RegisterPolicy

iblingChildRegister
Policy

ChildModify
Policy

ModifyPolicy

DeregisterPolicy

SearchPolicy
GetProfilePolicy

DefaultModify
Policy

ChildDeregister
Policy

DefaultDeregister
Policy

DefaultSearch
Policy

AbstractSearch
Policy

DefaultGetProfile
Policy

ChildSiblingSearch
Policy

Figure 9.4: Predefined policy tree

9.7.4 Examples of Network Interactions

The following section describes two examples of the policy-governed query opera-
tion of the network of directories as presented previously. The visible network is
formed from a number of “well-known” top nodes (Top-1, Top-2, Top-3) with a
fixed name and transport address (but which can possibly fail) and an arbitrary
number of leaf nodes which are organized in a tree topology with one of the top

nodes as root.

We illustrate the process of query resolution in Figure 9.6 and 9.7: a client
issues a search request for service profiles matching a template in the Hospital
domain directory. The template is provided in the form of a structured-object.

1. First, the client issuing the query randomly selects one of the top level nodes
(Top-1, Top-2, Top-3). In this example, Top-2 is picked.

2. The Top-2 directory service forwards the query to its siblings.

3. Directory services that have an entry for the Hospital domain directory in
their service profile propagate the query down.



9.7. CASCOM Service Directory Architecture 219

Figure 9.5: Policies in the network topology

4. To guarantee full query resolution, the query is forwarded to all directory
services that are known to store entries for the Hospital domain directory.

5. Finally, upon finding results, the nodes holding the results will send a mes-
sage back (depicted by “R=x” in the figure, where x denotes the number of
matched services) to the directory service it was queried by, until it reaches
the original requester. In this case, the matching service profiles in the direc-
tory services supporting the Hospital domain directory will be returned.

The next sections will now discuss the usability, vulnerability and perfor-
mance of WSDir.



220 Chapter 9. Distributed Directories of Web Services

8 Directory service
I3 Service entry

> Network directory

Figure 9.6: Query resolution (1)

9.8 Usability

For every instance of a WSDir’s Directory Service, the user must write its own
configuration file. This configuration file is accessed and read by the Directory
Service during its starting procedure. The name of this file must be explicitly
written in a file web.xml of the Directory Service.

The syntax of this file is based on FIPA SLO. It contains all the necessary
information for the Directory Service to create its directories, associate the policies
and start building a predefined network topology with other Directory Services.
The user must specify the following information: i) name and address of the Direc-
tory Service; ii) name(s), address(es) and credentials of the Directory Services it
should register in; iii) name of the directories it manages; iv) name of the policies
that applies to directories for each operation.

Another issue regarding the WSDir’s usability is monitoring its’s run time
activity. There are currently two ways to do this. The first one is to use a Java
client which enables a human user to browse through the Directory Services and
their directories. Directories and services entries are displayed in a visual tree. The
user can fold/unfold directories and check which services are currently registered
in a Directory Service. The second way to monitor WSDir’s activity is to deploy



9.8. Usability 221

8 Directory service
I3 Service entry

> Network directory

{P Domain directory

Pl -
)
Search(,,Hospital“
,[template])

Insurance,

Figure 9.7: Query resolution (2)

a servlet on the same server where an instance of a Directory Service is running.
Depending on this Directory Service’s configuration, a user will be able to access a
web page that displays a set of logs of registration requests made on it. Thus, the
user can check whether his requests (registration, modification or remove) were
successfully executed.

In either way, no performance information nor disfunction messages are be-
ing displayed to the user monitoring WSDir’s activity. The user is then leaded
to check the logs files if something wrong happened. Monitoring Directory Ser-
vices performance at run time as well as errors would be a major contribution to
WSDIR’s usability.

On the other hand, once a topology has been decided and the configuration
files have been written correctly, it is very easy to launch a federation. There
exists a Java class (Startservices) that takes an ordered list of Directory Service
addresses and automatically launch all of them. The user can also take advantage
of another graphical tool that enables him to directly send a request to a specific
Directory Service.



222 Chapter 9. Distributed Directories of Web Services

9.9 Vulnerability

In this section, we discuss two major issues in WSDir’s vulnerability. The first
one concerns server failures and breakdowns. The second one concerns more the
security restrictions and users rights. In both cases, WSDir copes with those issues
by using specific mechanisms. WSDir uses its loosely coupled directories and a data
backup system to efficiently handle breakdowns. It implements an authentication
mechanisms to identify the clients sending incoming requests.

9.9.1 Breakdowns

In the CASCOM project, we have used the network topology presented in 9.7.1,
where the federation is structured in three Network layers: the Hidden layer, the
Top layer and the Body layer. Although all Directory Services, regardless from
which Network they belong to, can operate all requests, only those situated in
the Top layer are accessed by the CASCOM’s Discovery Agents. As each Network
layer plays a specific role in WSDir’s Federation, three breakdown scenario are
discussed. Figure 9.8 illustrates the accessible Service Descriptions stored in a
WSDir’s Federation when all the Directory Services are running correctly. All
descriptions can be accessed by a Client (the group of accessible Directory Services
is defined by the quadratic border).

In a first failure scenario, a Directory Service located in the Body Network
layer fails (see Figure 9.9). This failing Directory Service does not affect the rest
of the Federation. However, the local set of stored Service Descriptions becomes
unaccessible for any clients. The rest of the Descriptions stored in the other Direc-
tory Services are still available for the Clients, enabling them to continue working
with a restricted number of Service Descriptions. The Federation still processes
all five operations (search, register, deregister, modify and get Meta Data). There
exists a mechanism allowing Directory Services to recover after a breakdown. This
is explained in the recovery section below.

In a second failure scenario, it is a Directory Service located in the Top Net-
work layer that fails (see Figure 9.10). The Federation is ’amputated’ by the failing
Directory Service’s branch. In this case also, the rest of the Federation remains
operational but all the Service Descriptions stored under the failing Directory Ser-
vice become unavailable. Thus, several actions can be triggered while the Directory
Service is down:

1. The clients (Discovery Agents) have a pre-configured list of addresses of Di-
rectory Services that are operating on the Top Layer Network. Thanks to
this list, the clients can still access the Federation by picking up a new ad-
dress from the list and simply contacting another Directory Service in the
Top layer Network.

2. Directory Services in the Body layer Network that are operating under the
failing Directory Services can also have a list of addresses of Directory Ser-



9.9. Vulnerability 223

8 Directory service

L3 Service entry
D Network directory

Figure 9.8: A WSDir Federation with all the Directory Services from each Network
layer is working correctly. The quadratic border defines the group of currently
accessible Service Descriptions stored in the Federation.

vices in the Top layer Network. Being notified that the current Directory
Service in which they registered fails, they can register themselves in another
Directory Service operating in the Top layer Network. Most of the Service
Descriptions stored in the Federation would then be accessible again.

These two mechanisms enable the clients to continue working with the Federa-
tion as well as providing the maximum number of Service Descriptions available
to those Clients. The failing Directory Service can recover using the recovering
mechanism described in the following section.

In a third failure scenario, it is the Directory Service in the Hidden layer
that breaks down (see Figure 9.11). In this case, the Directory Services in the Top
layer cannot communicate with each other anymore. This has the effect of creating
groups of available Service Descriptions. A Client requesting a Directory Service
from the top layer will only receive a restricted number of Service Description.
Although the Federation is still operational, it would be better for Clients to access
all Service Descriptions. Thus, to cope with that, Top Network layer’s Directory
Services use the same mechanism as those in the Body Network layer. They can be
set with a list of addresses of Directory Services operating in the Hidden Network
layer and registered in them when the regular one fails. In this case, several backup



224 Chapter 9. Distributed Directories of Web Services

Hidden

8 Directory service

L3 Service entry
> Network directory

Figure 9.9: A WSDir Federation with one Directory Service from the Body Net-
work layer is failing. The quadratic border defines the group of currently accessible
Service Descriptions stored in the Federation.

Directory Services must be ready. The failing Directory Service can recover using
the recovering mechanism described in the following section.

9.9.2 Recovery

WSDir has been designed to cope with breakdowns by always keeping some parts
of the Federation operational. When a Directory Service is down, the Service De-
scriptions stored in its memory are not accessible. Once the server works fine again,
the Directory Service can be restarted!. When it restarts, it searches for a specific
internal database that has been specified in the Directory Service’s configuration
file. Directory Services use this database to log all insert and modification requests
coming from outside clients. Delete requests erase a specific entry in the database.
It contains the following columns: i) the directory token of the Service Description;
ii) the lease time during which the Service Description is supposed to stay stored
in the Directory Service; iii) the full registration/modification request as sent by
the Client.

The directory token is the primary key of the table. It is a unique identifier

IThe starting procedure is done by invoking a start method on the particular Directory Service



9.9. Vulnerability 225

8 Directory service

I3 Service entry iiideey

Q s w

Figure 9.10: A WSDir Federation with one Directory Service from the Top Network
layer is failing. The quadratic border defines the group of currently accessible
Service Descriptions stored in the Federation.

for each Service Description. The lease time is also stored to ensure that when a
Directory Service restarts, the elapsed time of the failure is taken into consider-
ation. Finally, the registration/modification request is stored in the database for
the following reason: rather than creating a fixed and structured schema in the
database to support a specific semantic language (such as OWLS), the full request
is stored as a block and then decoded by the Directory Service during recovery.
By doing so, WSDir can be easily adapted to store other types of Web Service
semantic languages.

9.9.3 Security

Regarding WSDir’s vulnerability, there is an important issue about client authen-
tication. For several applications, it is crucial to restrict access and interaction to
trustful clients, avoiding requests from malicious entities. WSDir copes with this
issue at two levels. First, clients have to provide in their requests both a sender
and a receiver identification?. Furthermore, they may be asked to provide an en-
crypted password and/or a K.509 certificate. The Directory Service serving the

2This is part of the mandatory fields in the SLO messages the Clients creates for each request



226 Chapter 9. Distributed Directories of Web Services

8 Directory service
I3 Service entry

D Network directory

<P

Body-3 Body-4

Body-7

Q,O

Figure 9.11: A WSDir Federation with the Directory Services from the hidden
Network layer is failing. The quadratic borders define several groups of currently
accessible Service Descriptions stored in the Federation.

request can then decide if the client trustful or not. On the second level, WSDir
uses policies, binding operations to directories. Depending on the policies, some
of the authentication information will be used to grant or deny access to a spe-
cific clients. On the other hand, as WSDir runs as a Web Service itself and uses
the HTTP protocol, it may also take advantage of the HTTPS protocol. This
mechanism ensures a client that it is contacting a trustful Directory Service.

9.10 Related Work

In this section, we discuss related research in Semantic Web Services discovery.
We are considering only systems that have been fully implemented, as it is the
case for WSDir.

The METEOR-S discovery framework [6] copes with the problem of discov-
ering services in a scenario where service providers and requesters may use terms
from different ontologies. Based on user’s ontology, METEOR-S’s Web Service
Discovery Infrastructure organizes multiple registries®, enabling semantic classifi-

3Web Service registries for publishing Web Services



9.10. Related Work 227

cation of all Web Services based on domains. Their approach relies on annotating
semantically service registries (for a particular domain) and exploiting such anno-
tations during discovery. This system can be deployed in a Peer-to-Peer network,
relying on the JXTA* project, making it scalable. Two algorithms have been im-
plemented. One for semantic publication of Web Services and the second one for
discovery of those Web Services.

This project differs from WSDir by allowing multiple ontologies to be used at
the same time. This approach solves an interoperability issue that WSDir doesn’t
treat, although WSDir has an open architecture for any types of ontologies. In
contrast to METEOR-S which implements a dedicated algorithm for discovery,
WSDir can use many matchmaking modules for discovery. This thus allows WSDir
to be more flexible for specific use cases.

GLUE [3] is a WSMO? compliant discovery engine that aims at developing
an efficient system for the management of semantically described Web Services
and their discovery. GLUE is built around an open source f-logic inference engine
called Flora-2° that runs over XSB”. The basis of the GLUE infrastructure is
a set of facilities for registering and looking up WSMO components (ontologies,
goals, Web Service descriptions and mediators). With the use of these components,
GLUE implements a matching mechanism that relies on wgMediators. Requester
entities register a class of goals. Discovery is then performed by submitting goals.
Similarly, providers register first a class of Web Service descriptions and then
publish Web Service descriptions. The link between a class of Web Services and a
class of goals is embedded in a dedicated wgMediator, that uses a set of f-logic rules
to assert similarities. In contrast to the GLUE approach where a central storage
unit is used with a single inference engine, WSDir avoids bottle neck problems
by distributing its Directory Services; therefore, all requests are splitted between
several Directory Services.

The WSPDS system [1] is also a peer-to-peer discovery system that is enabled
with semantic matchmaking. In WSPDS, WSDL files need to be semantically
annotated in order to be available for discovery. This is done by using the WSDL-
S framework®. By doing so, the WSDL-S file doesn’t have to know anything about
the ontology being used by a Web Service description file such as OWL-S or
WSMO. The system is built around a peer-to-peer architecture, where peers act
as servants (acting both as clients and servers). Discovery queries can be sent to
any servant, that will forward the query to its neighbors. All the communication is
done via SOAP messages. WSDir aligns itself very closely to the WSPDS service.
They use both a Web Service interface and they rely on a peer-to-peer architecture.
The main difference is in the work to be done for new ontologies. In WSPDS, each

4See https://jxta.dev.java.net/

5WSMO - Web Service Modeling Ontology, see http://www.wsmo.org/

6See http://flora.sourceforge.net/

7XSB is an open source implementation of tabled-prolog and deductive database system. See
http://xsb.sourceforge.net/

8see http://www.w3.org/Submission/WSDL-S/



228 Chapter 9. Distributed Directories of Web Services

WSDL file needs to be re-written using the WSDL-S framework. In contrast,
WSDir simply needs to add the appropriate matchmaking module.

[5] describes a framework for Semantic Web Service discovery. This frame-
work is based on context specific mappings from a user ontology to a specific
domain ontology. Using these mappings, the user queries are then transformed
into a specific form of query. These queries can be processed by a match mak-
ing engine that takes in consideration the domain ontologies and the stored Web
Services. In the prototype implementation, the match making engine is based on
JESS and JENA, that uses a JESS knowledge base. When service providers store
their services, the Service Registery API parses and converts the OWL ontology
into a collection of JESS facts, and stores them in a knowledge base. This project
unifies multiple ontologies and copes with interoperability issues, making them
transparent for the user. But like the GLUE project, it has a bottle neck archi-
tecture because of its central storing unit. In contrast, WSDir uses a distributed
architecture.

9.11 Summary

WSDir has been tested thoroughly in a real distributed setting spread over dif-
ferent countries. The system has proven to be scalable and very stable. We have
integrated the system in the CASCOM use case scenario. Among others, future
work could enhance the following aspects.

From the security and privacy-awareness point of view, we currently employ
standard security mechanisms for accessing the directory services. In particular, if
a directory service requires protecting messaging from overhearing or if it would
require privacy sensible data as parameters, the access to this Web Service will be
based on HTTPS. In cases where no HT'TPS is available, we could couple WSDir
with Guarantor agents [2] spread in the architecture in order to provide a secure
tunneling between agent messages and HTTPS.

Another improvement could define security measures directly within the di-
rectory system by defining specific policies. A policy can be employed to restrict
the right to perform a certain operation on a directory to only those clients that
can provide the right credentials. Using this method, registration of services to a
directory and search operations on directories can be restricted. For example, a
directory service that does not forward any queries pertaining to a Hospital do-
main directory will simply return its entries for the domain and nothing more.
This would be completely transparent to the requestor, as its view of the network
topology is determined by the application of policies of the directory services un-
derneath it.

As mentioned in the usability Section 9.8, administrating and monitoring
WSDir was not a major priority during its development. Although several tools
have been developed to cope with testing issues, the system lacks consistency.
Some of these tools should be enhanced and packaged into a single administra-



References 229

tion package. Beyond that, a complete WSDir editor should be developed to help
administrators setting up easily networks of Directory Services.

References

1]

2]

F. Banaei-Kashani, C.-C. Chen, and C. Shahabi. Wspds: Web Services peer-
to-peer discovery service. In Proceedings of the International Symposium on
Web Services and Applications(ISWS’04), Nevada, June 2004.

R. Bianchi, A. Fontana, and F. Bergenti. A real-world approach to secure
and trusted negotiation in mass. In AAMAS ’05: Proceedings of the fourth
international joint conference on Autonomous agents and multiagent systems,
pages 1163-1164, New York, NY, USA, 2005. ACM Press.

E. Della Valle, D. Cerizza, and 1. Celino. The mediators centric approach to
automatic Web Service discovery of glue. In Proceedings of the First Inter-
national Workshop on Mediation in Semantic Web Services: MEDIATE 2005,
Amsterdam, Netherlands, December 2005.

D. Martin, M. Paolucci, S. Mcllraith, M. Burstein, D. McDermott, D. McGuin-
ness, B. Parsia, T. Payne, M. Sabou, M. Solanki, N. Srinivasan, and K. Sycara.
Bringing semantics to Web Services: The owl-s approach. In Proceedings of

the First International Workshop on Semantic Web Services and Web Process
Composition (SWSWPC 2004), 2004.

J. Pathak, N. Koul, D. Caragea, and Honavar V. A framework for Semantic
Web Services discovery. In ACM, editor, Proceedings of the ACM 7th Intl.
workshop on Web Information and Data Management (WIDM-2005), 2005.

K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and J. Miller.
METEOR-S WSDI: A Scalable Infrastructure of Registries for Semantic Pub-
lication and Discovery of Web Services. Journal of Information Technology
and Management, 2004.



230 References



