
Computer Science Department

University of Fribourg, Switzerland

Designing and Implementing

Objective Coordination

in Multi-Agent Systems

THESIS

submitted to the Faculty of Science of the University of Fribourg, Switzerland,

in conformity with the requirements for the degree of

Doctor scientiarum informaticarum

submitted by

Michael I. SCHUMACHER

from

Littau (LU), Switzerland

Thesis # 1291

University of Fribourg

March, 2000

Accepted by the Faculty of Science of the University of Fribourg, Switzerland,

on the proposal of:

� Prof. B�eat Hirsbrunner, University of Fribourg, Switzerland;

� Prof. Rolf Ingold, University of Fribourg, Switzerland;

� Dr. Andrea Omicini, University of Bologna, Italy;

� Prof. George A. Papadopoulos, University of Cyprus, Cyprus;

Fribourg, March 2nd, 2000

Principal Advisor and Dean: Vice-Dean:

Prof. B�eat Hirsbrunner Prof. Alexander von Zelewsky

c
Michael Schumacher, 2000

Abstract

This thesis, situated at the intersection of behavior-based arti�cial intelligence

and concurrent and distributed computing, de�nes programming paradigms to

support the design and the concurrent and distributed implementation of Multi-

Agent Systems (MASs) that simulate collective robotics applications. We analyze

the research that has tried to �ll the gap between agent theory and applications,

observing that the proposed methodologies, languages, and tools are mostly con-

centrated on intra-agent aspects. In contrast to those approaches, we propose

that the modeling of MASs should be a bottom-up and interaction-oriented pro-

cess, grouping existing autonomous agents and describing how they interact,

thus managing the coordination of these agents. To that aim, we distinguish ob-

jective coordination, which handles inter-agent dependencies (the organization of

the environment and the agent interactions), and subjective coordination, which

handles intra-agent dependencies often involving mentalistic categories. We then

promote a methodology that focuses the modeling of MASs on objective coor-

dination, and we propose the use of coordination models and corresponding lan-

guages (from the �elds of concurrent and distributed computing, programming

languages, and software engineering) in order to respectively support the design

phase of a MAS and allow its implementation on a concurrent and distributed

architecture.

After reviewing coordination models and languages, we examine the prerequi-

sites that a coordination model and language should include in order to support

our target MASs. On this basis, a general coordination model named ECM

and a corresponding object-oriented coordination language named STL++ are

presented. ECM/STL++ uses an encapsulation mechanism as its primary

abstraction, o�ering structured separate name spaces which can be hierarchi-

cally organized. Agents communicate anonymously within and/or across name

spaces through connections, which are established by the matching of the com-

munication interfaces of the participating agents. Three basic communication

paradigms are supported, namely point-to-point stream, group and blackboard

communication. Furthermore, an event mechanism is introduced for supporting

dynamicity by reacting to state changes of the communication interfaces.

The use of ECM/STL++ is illustrated by the simulation of a particular

collective robotics application and of the automation of a trading system.

Keywords: Autonomous Agents, Concurrent and Distributed Computing,

Coordination, Coordination Models and Languages, Multi-Agent Systems

i

ii

R�esum�e

Cette th�ese, qui int�eresse �a la fois l'intelligence l'arti�cielle et le calcul concur-

rent et distribu�e, d�e�nit des paradigmes de programmation pour le design et

l'impl�ementation concurrente et distribu�ee de syst�emes multi-agents (SMA) qui

simulent des applications de robotique collective. L'analyse de la recherche qui a

tent�e de jeter un pont entre la th�eorie des agents et ses applications montre que

les m�ethodologies, les langages et les outils propos�es sont avant tout concentr�es

sur des aspects intra-agents. Contrairement �a ces approches, nous faisons de

la mod�elisation des SMA un processus bottom-up orient�e vers les interactions,

groupant des agents autonomes existants et d�ecrivant comment ils interagis-

sent, donc g�erant la coordination entre ces agents. A cette �n, nous proposons

de distinguer une coordination objective, qui g�ere les d�ependances inter-agents

(l'organisation de l'environnement et les interactions des agents), et une coordi-

nation subjective, qui g�ere les d�ependances intra-agents employant souvent des

cat�egories mentales. Nous d�eveloppons ensuite une m�ethodologie qui concen-

tre la mod�elisation de SMA sur la coordination objective, et nous proposons

l'utilisation de mod�eles de coordination et de leurs langages correspondants (des

domaines du calcul concurrent et distribu�e, des langages de programmation et

du g�enie logiciel) a�n de respectivement soutenir la phase de design d'un SMA

et permettre son impl�ementation sur une architecture concurrente et distribu�ee.

Apr�es avoir analys�e le domaine des mod�eles et des langages de coordina-

tion, nous examinons les prescriptions qu'un mod�ele et un langage doivent

inclure a�n de supporter nos SMA cibles. Sur cette base sont pr�esent�es un

mod�ele g�en�eral de coordination nomm�e ECM et un langage de coordination

orient�e-objet nomm�e STL++, instance d'ECM. Comme abstraction principale,

ECM/STL++ utilise un m�ecanisme d'encapsulation qui permet la r�ealisation

d'espaces de nommage s�epar�es pouvant être organis�es hi�erarchiquement. Les

agents communiquent de mani�ere anonyme dans et/ou entre ces espaces de

nommage �a l'aide de connections �etablies par la correspondance (matching) des

interfaces de communication des agents participants. La communication com-

prend trois paradigmes de base : communication point �a point, de groupe et par

tableau noir. De plus, un m�ecanisme d'�ev�enement est introduit pour permettre

des r�eactions dynamiques aux changements d'�etat des interfaces de communica-

tion.

L'utilisation de STL++ est illustr�ee par les simulations d'une application

iii

iv

de robotique collective et d'automation d'un syst�eme de commerce.

Mots-cl�es: Agents autonomes, calcul concurrent et distribu�e, coordination,

mod�eles et langages de coordination, syst�emes multi-agents.

Acknowledgements

This thesis compiles four years of research work that I have realized as a mem-

ber of the Parallelism and Arti�cial Intelligence group of the Computer Science

Department at the University of Fribourg, working on a project funded by the

Swiss National Science Foundation. I bene�ted enormously from the knowledge,

the expertise, and the support of many people.

My special thanks go to: B�eat Hirsbrunner who gave me the opportunity

to work in a highly quali�ed research group and guided my research activity

during the past years; Rolf Ingold, Andrea Omicini, and George Papadopou-

los, for accepting the invitation to act as jury members; Fabrice Chantemargue

and Oliver Krone for the numerous discussions, ideas, criticisms, and also for

their constant help and enthusiasm; Antony Robert, Valerio Scarani, Mich�ele

Schumacher, and Robert Van Kommer for reviewing previous versions of this

thesis; Christian Wettstein for implementing the �rst version of STL++; Ivan

Doitchinov for implementing Agent&Co; all colleagues in the PAI group for

creating a stimulating research environment; and last but not least, my family

and my friends for their constant support and encouragement.

v

vi

Contents

1 Introduction 1

I Positioning 7

2 Multi-Agent Systems 9

2.1 Introduction . 9

2.2 What is an Autonomous Agent? 10

2.2.1 De�nitions . 10

2.2.2 Autonomy and Embodiment 11

2.2.3 Generic Agent Architectures 12

2.3 Characteristics of MASs . 14

2.4 Modeling MASs . 16

2.4.1 Objective Coordination 18

2.4.2 Subjective Coordination 19

2.4.3 Emergence . 21

2.5 Our Target Class of MASs . 21

2.5.1 A Generic Model for an Autonomous Agents' System . . 22

2.5.2 A Typical Application: Gathering Agents 23

2.6 Implementing MAS Applications 24

2.6.1 Languages for MAS Applications 25

2.6.2 Methodologies for MAS Applications 28

2.6.3 Using Coordination Models and Languages for Designing

and Implementing MASs 29

3 Coordination Models and Languages 33

3.1 What is Coordination? . 33

3.2 What are Coordination Models and Languages? 34

3.2.1 Motivation . 34

3.2.2 Key Elements . 34

3.3 Data-driven Coordination Models 35

3.3.1 Linda . 36

3.3.2 Linda-based Models . 38

3.3.3 Models based on Multiset Rewriting 39

vii

viii CONTENTS

3.4 Process-oriented Coordination Models 41

3.4.1 IWIM . 41

3.4.2 Other Approaches . 43

3.5 Hybrid Coordination Models . 45

3.6 Prerequisites for a Coordination Model and Language 47

II ECM and its Instances 51

4 The ECM Coordination Model 53

4.1 Introduction . 53

4.2 Blop . 55

4.3 Process . 55

4.4 Ports and Connections . 55

4.4.1 Port Features . 56

4.4.2 Connections . 56

4.5 Port Matching . 57

4.6 Events . 58

4.7 ECM Instances . 58

5 The STL Coordination Language 61

5.1 Introduction . 61

5.2 Blops . 62

5.3 Processes . 63

5.4 Ports and Connections . 64

5.5 Port Matching . 66

5.6 Events . 66

6 The STL++ Coordination Language 69

6.1 Introduction . 69

6.1.1 Design Decisions . 69

6.1.2 An Overview . 71

6.2 Blops . 72

6.3 Processes . 74

6.4 Ports and Connections . 76

6.4.1 Port Features . 76

6.4.2 Creation and Destruction of Ports 78

6.4.3 Basic Port Types and their Connections 78

6.5 Port Matching . 80

6.6 Events . 81

6.7 A Tutorial Example . 82

6.7.1 The Restaurant of Dining Philosophers 83

6.7.2 General Description of the Implementation 83

6.7.3 The Restaurant Blop and the Waiter Agent 84

6.7.4 The Philosophers . 85

6.8 Implementation of a Prototype 88

CONTENTS ix

6.8.1 Introduction . 88

6.8.2 Pt-pvm . 88

6.8.3 Concurrency and Object-orientation Integration 89

6.8.4 Blops and Agents . 90

6.8.5 Ports and Port Managers 91

6.8.6 Matching . 91

6.8.7 Connection Setup . 92

6.8.8 Events . 93

6.9 Discussion . 93

6.9.1 STL++ as a Coordination Language 93

6.9.2 STL++ for MASs . 94

7 The Agent&Co Coordination Language 97

7.1 Introduction . 97

7.2 Blops . 97

7.3 Agents . 98

7.4 Ports and Connections . 99

7.5 Matching . 99

7.6 Events . 99

7.7 Implementation . 100

III Case Studies in STL++ 103

8 Collective Robotics Simulation 105

8.1 Introduction . 105

8.2 Global Structure . 105

8.3 init Agent . 107

8.4 Sub-environment Blops . 107

8.5 initSimRobotAgent, NewSimRobot Evt Event 109

8.6 SimRobot Agent . 110

8.7 subEnv Agent . 111

8.8 taxi Agent . 112

9 Trading System Simulation 115

9.1 Introduction . 115

9.2 The TradeWorld Blop . 116

9.3 The Brokers and the Broker Assistants 117

9.4 The Trade Manager . 118

9.5 Transactions . 119

10 Conclusion 121

x CONTENTS

A Core STL++ Interfaces 125

A.1 World Class . 125

A.2 Blop Class . 125

A.3 Agent Class . 126

A.4 Port Template Classes . 126

A.4.1 KK-Stream Ports . 127

A.4.2 S-Stream Ports . 128

A.4.3 Blackboard Ports . 129

A.4.4 Group Ports . 129

A.5 Event Class . 130

A.6 Condition Classes . 130

A.7 Macros and Miscellaneous Functions 131

B STL Code Example 133

C Linda, Gamma and Manifold Code Examples 135

List of Figures

2.1 An autonomous agent and its environment. 11

2.2 A basic agent taxonomy in relation to the notion of embodiment. 13

2.3 Coordination in a MAS. 17

2.4 Basic communication paradigms: a) peer-to-peer, b) broadcast,

c) multicast and d) generative communication. 19

2.5 Generic MAS Model. 22

2.6 Our target agent architecture. 23

2.7 Collective robotics application: stacking objects. 24

2.8 The Actor model. 27

2.9 Implementing MASs. 31

3.1 A Linda tuple space example. 37

3.2 A taxonomy of coordination models and languages. 46

4.1 The ECM coordination model. 55

4.2 Signature of a port. 56

4.3 ECM connections. 57

4.4 ECM port matching (signatures are indicated as a spiral). 58

4.5 The ECM instances with their implementation and target appli-

cations. 59

5.1 Programming environment of STL. 62

5.2 An STL code example. 63

5.3 Blop declaration and invocation in STL. 63

5.4 Process declaration and invocation in STL. 64

5.7 De�ning a port in STL. 65

5.8 An example of event handling in STL. 66

6.1 The sieve of Eratosthenes. 72

6.2 STL++ user classes. 73

6.3 Classes of the example of the sieve of Eratosthenes. 73

6.4 A blop class and the re-implementation of its start method for

the problem of the Sieve of Eratosthenes. 74

6.5 Declaration of the Source agent class and the implementation of

its start method for the problem of the Sieve of Eratosthenes. . 75

xi

xii LIST OF FIGURES

6.6 Declaration of the Sieve agent class and the implementation of

its start method for the problem of the Sieve of Eratosthenes. . 76

6.9 Ports with multiple connections: a) stream b) group. 81

6.11 Declaration of the NewSieveEvent event class and the implemen-

tation of its constructor and its launch method for the problem

of the Sieve of Eratosthenes. 83

6.12 Dining philosophers implemented with STL++. 84

6.13 Classes of the dining philosophers program. 85

6.14 The Rest B class declaration and the implementation of its start()

method for the problem of the Dining Philosophers. 85

6.15 The Waiter class declaration and the implementation of its start()

method for the problem of the Dining Philosophers. 86

6.16 The Phil class declaration and the implementation of its start,

dining, getMealticket, getForks, putForks, putMealticket,

and stopMe methods for the problem of the Dining Philosophers. 87

6.17 Overview of the implementation layers of STL++. 88

6.18 Pt-pvm programming abstractions. 89

6.19 Implementation of the matching mechanism of STL++. 92

7.2 The ORB integration of Agent&Co. 101

8.1 Environment split up among 4 blops. 106

8.2 The RoboticSimulationWorld world class declaration and the

implementation of its constructor. 106

8.3 Robotic Simulation class hierarchy. 107

8.4 The init class declaration. 107

8.5 The SubEnv class declaration and the implementation of its start

method. 108

8.6 The initSimRobot class declaration. 109

8.7 The NewSimRobot Evt class declaration, and the implementation

of its constructor and launch method. 110

8.8 The SimRobot class declaration. 111

8.9 The subEnv class declaration. 111

8.10 The taxi class declaration. 112

8.11 init agent and a single sub-environment blop: solid and dotted

lines are introduced just for a purpose of visualization. 113

8.12 Collective robotics simulation: from the model to the implemen-

tation. 114

9.1 Trading System class hierarchy. 116

9.2 The TradeWorld class declaration and the implementation of its

constructor. 116

9.3 The Broker class declaration and the implementation of its start

method. 117

9.4 The NewBrokerAss Evt class declaration and the implementation

of its constructor and its launch method. 118

LIST OF FIGURES xiii

9.5 The TradeManager class declaration. 118

9.6 The BrokerAssistant class declaration and the implementation

of its start method. 119

9.7 Trading System with STL++. 120

B.1 Sieve of Eratosthenes in STL: computation part. 133

B.2 Sieve of Eratosthenes in STL: coordination part. 134

C.1 The Restaurant of Dining Philosophers in Linda. 135

C.2 The Restaurant of Dining Philosophers in Gamma. 136

C.3 The Restaurant of Dining Philosophers in Manifold. 136

xiv LIST OF FIGURES

List of Tables

5.5 STL features. 64

5.6 STL's built-in ports and a user de�ned port MyPort with corre-

sponding port feature values. 65

6.7 Basic port types and values of their primary features. 78

6.8 Compatibility for features F for two ports P1 and P2 80

6.10 Port conditions . 82

7.1 Compatibility for features F for two ports P1 and P2 100

xv

xvi LIST OF TABLES

Chapter 1

Introduction

From its beginning, Arti�cial Intelligence (AI) has tried to synthesize intelligent

behavior by reducing it to artifacts. Two families of approaches have, however,

appeared [Zie97].

On one hand, Knowledge-Based AI (also named Classical AI or Top-Down

AI, closely related to the classical view of cognitive sciences) has developed

methodologies for manipulating internal representation models of the world, us-

ing notions like knowledge or information. This trend has focused on building

expert systems (see [FMN88] for an overview) that own and manage 'knowledge'

in a suÆciently narrow problem domain. Thus, research in this �eld has concen-

trated on knowledge representation and knowledge engineering. Several systems

have shown good performance in domains like medical diagnosis and theorem

proving.

On the other hand, Behavior-Based AI (also named Bottom-Up AI) considers

interaction with an environment as an essential feature for intelligent behavior.

Research in this area has studied systems that have `life'-like attributes, in partic-

ular autonomous agents that persist within an environment. Autonomous agents

are therefore de�ned as embodied systems that are designed to ful�ll internal

goals by their own actions in continuous long-term interaction with the envi-

ronment in which they are situated [Zie97] [Bee95]. Autonomous agents possess

two essential properties: autonomy and embodiment. Autonomy basically means

that an agent acts on its own, without being driven by another agent (possibly

a human): it has its own control over its actions and its internal state. Embod-

iment refers to the fact that an autonomous agent has a \body" that delineates

it from its environment in which the agent is situated. It is on this environ-

ment that an agent senses and acts through its own speci�c means (sensors and

e�ectors). The degrees of embodiment de�ne several autonomous agent types:

physical embodied agents have a physical body, sensors and e�ectors (they are

robots); simulated embodied agents roam in a simulated physical environment;

and software agents lack a body but persist and interact in a complex software

environment.

Interest has rapidly shifted from the single agent case towards the multi-

1

2 CHAPTER 1. INTRODUCTION

agent case, in which several agents share a common environment and interact

with one another. This means that an agent participates in a society of agents, a

so-called multi-agent system. These systems result therefore from the organiza-

tion of multiple agents within an environment, whereby the state of each agent

individually changes as a result of its sensing and its own behavior rules. As no

global control is applied to the participating agents, every agent has a subjective

view of the evolution of the world. Multi-agent systems are therefore interested

in an interaction-centered perspective. Dealing with interactions leads naturally

to the concept of emergence of behavior, which essentially means that a system's

behavior can only be speci�ed using descriptive categories which are not to be

used to describe the behavior of the constituent components (the agents) [For90].

This thesis is situated at the intersection of the target research areas of the

PAI group1, namely behavior-based arti�cial intelligence, and concurrent and

distributed computing. Actually, the goal of this thesis is to de�ne program-

ming paradigms to support the design and the implementation of a speci�c class

of multi-agent systems composed of simulated embodied agents: we are inter-

ested in the implementation of multi-agent simulations of collective robotics sys-

tems [BHD94] [MM95] [Mat95] [CH99], in which an emergent global behavior is

achieved by very simple agent local rules and interactions restricted to the result

of each one's work in the environment. Furthermore, the implementation of this

class of multi-agent systems is intended to be realized on a speci�c underlying

platform: a concurrent and distributed architecture.

This thesis is, therefore, concerned with a software engineering view of multi-

agent systems: how can practical multi-agent systems be modeled, designed and

implemented, and this on a concurrent and distributed architecture?

If one analyzes the research that has tried to �ll the gap, often encountered,

between agent theory and agent applications, he will observe several proposals

for agent languages and tools for facilitating the design and the implementation

of multi-agent systems, based upon generic agent architectures [WJ95]. Fur-

thermore, he will see that this necessity has been recently recognized by various

authors who advocate the study of methodological foundations of agent-based

systems [FMS+97] [WJK99]. However, as noted in [COZ99b], the proposed agent

languages, tools and methodologies are mostly concentrated on intra-agent as-

pects and neglect the interaction setup of the system: they generally de�ne

multi-agent systems in terms of the internal agent structures, usually based on

mentalistic notions as does the BDI model (belief, desire and intention) [GR95].

In this thesis, we maintain, as does other recent research such as [Bur96]

[Sin98b] [WJK99] [COZ99b], that the interaction setup should be clearly in-

tegrated in the analysis phase of a multi-agent system. The modeling of a

multi-agent system should be a bottom-up and interaction-oriented process: the

system should be constructed by grouping existing autonomous agents and by

describing how they interact, thus by managing the coordination of these agents.

1Parallelism and Arti�cial Intelligence Group of the Computer Science department at the

University of Fribourg

3

But, as coordination is de�ned as managing dependencies between activities

[MC94a], this kind of modeling is only possible if one identi�es which depen-

dencies exist within a multi-agent system. In this thesis, we therefore propose to

distinguish between: i) objective dependencies, which refer to inter-agent depen-

dencies, namely the con�guration of the system in terms of the basic interaction

means, agent generation/destruction and organization of the environment; and

ii) subjective dependencies, which refer to intra-agent dependencies often in-

volving mentalistic categories. Correspondingly, we maintain that two types of

coordination exist in a multi-agent system: objective and subjective coordination.

Not di�erentiating these two levels of coordination complicates a design and a

subsequent implementation, because this leads to multi-agent systems that ac-

tually describe objective coordination with subjective coordination means, i.e.

by using intra-agent aspects for describing system con�gurations.

Therefore, a multi-agent system modeling bene�ts by clearly identifying

which objective dependencies are present and how they are handled. In other

words this modeling is facilitated if one speci�es how the environment is orga-

nized and how agents interact. It is only on this basis that one can appropriately

design and implement a multi-agent system; and, like a few recent works such

as [COZ99a] and [COZ99b], we maintain that this design and implementation

can be done with an appropriate coordination model and language.

Indeed, research from concurrent and distributed computing, programming

languages, and software engineering has developed several coordination models

and languages [CG92a] [PA98c]. They are suitable precisely for supporting the

design and the implementation of objective coordination in multi-agent systems,

because they de�ne abstractions dealing with the management of the interactions

between activities and the organization of the activity space. Furthermore, the

use of a coordination model and language is even more important if a multi-

agent system runs on a distributed and concurrent architecture, which should

be the natural substrate for its execution. In fact, coordination models and

languages have a strong expertise in concurrent and distributed computing: they

o�er means to deal with the consequences of the concurrency and the spatial

distribution of the supporting processes. This need for coordination models and

languages is especially important for our target class of multi-agent systems, in

which the organization of the environment does not re
ect the organization of

the underlying execution platform.

The contribution of this thesis can be summarized as follows:

� We promote a focus upon objective coordination issues when modeling a

multi-agent system and present a general multi-agent system model for our

target applications.

� We advocate and motivate the use of coordination models for designing

objective coordination in multi-agent systems, and we present a concrete

coordination model named ECM for sustaining the design of our speci�c

class of systems.

4 CHAPTER 1. INTRODUCTION

� We advocate and motivate the use of coordination languages for imple-

menting designed multi-agent systems onto a concurrent and distributed

architecture, and we present a concrete coordination language named STL++

for implementing our target class of systems.

� We show an implementation in STL++ of a concrete application of our

target multi-agent systems.

This thesis is therefore concerned with the organizational structure or archi-

tecture of multi-agent systems and does not focus on intra-agent aspects such

as agent tasks and subjective coordination. As such, our proposed coordination

language STL++ is not a complete multi-agent system language.

The thesis is organized in three parts. Part I is dedicated to our positioning

in the �elds of multi-agent systems (chapter 2) and coordination models and

languages (chapter 3). Part II presents the ECM coordination model and its

instances (chapters 4 to 7). Finally, part III is devoted to two case studies

(chapters 8 and 9). Hereafter, we shortly describe the content of each chapter.

In chapter 2, we review the notions of multi-agent systems and autonomous

agents by showing their essential characteristics. We then tackle the problem-

atic of modeling a multi-agent system by distinguishing between subjective and

objective coordination. Next we present our target class of multi-agent sys-

tems, and introduce a generic model and a peculiar application of it as have

been de�ned in the PAI group. Finally we discuss the implementation of multi-

agent systems and advocate the use of coordination models and languages for

supporting the design and the implementation of these systems.

After having introduced coordination theory, chapter 3 reviews research in

coordination models and languages by analyzing their motivation and key el-

ements and by presenting an established taxonomy that distinguishes between

data-driven and process-oriented models. Each family of models is introduced

by its main representative and further illustrated by several other models. We

then discuss various hybrid coordination models and conclude by presenting the

prerequisites that the coordination model and language presented in this thesis

should include in order to support our target multi-agent systems.

In chapter 4, we present the ECM model of coordination that we have de�ned

together with colleagues from the PAI group. The model uses an encapsulation

mechanism as its primary abstraction (referred to as blops), o�ering structured

separate spaces which can be hierarchically organized. Within them, active enti-

ties communicate anonymously within and/or across blops through connections

established by the matching of the communication interfaces (the so-called ports)

of these entities. Three basic communication paradigms are supported, namely

point-to-point, group and blackboard communication. Furthermore, an event

mechanism is introduced for supporting dynamicity by reacting to port state

changes. Three instances of ECM are presented in the subsequent chapters:

STL, STL++ and Agent&Co.

In chapter 5, the STL coordination language, which has been the subject

of another thesis, is reviewed. STL is implemented as a separate language

5

(supported by a compiler) that must be used in conjunction with a computation

language that implements the coordinated processes. STL is applied to multi-

threaded applications in the context of network-based concurrent computing.

In chapter 6, we present STL++, our main coordination language. STL++

is an object-oriented instance of ECM that follows the prerequisites of chapter

3 for our target class of multi-agent systems. It has a single language approach,

i.e. the language is implemented as a library extended by few macros. The

object-oriented integration is a target design issue: every abstraction of ECM is

described by a class, and the primitives on these abstractions become member

functions except some creation macros. Furthermore, STL++ emphasizes dy-

namicity and uniformity in the realization of the ECM constructs. In this chap-

ter, STL++ is introduced step by step. The use of the coordination language

is illustrated with a classical tutorial example. Finally, after having presented

our implementation of STL++, we conclude with a discussion.

In chapter 7, we present Agent&Co, another instance of ECM. This new

language binding, which is still an ongoing research project, tries to enhance

STL++ in two ways. Firstly, Agent&Co slightly extends ECM in order to

support mobility of active entities over blops. Secondly, the language is imple-

mented in Java over an object request broker architecture in order to enhance

portability.

In chapter 8 and 9, the implementation of two case studies are respectively

discussed. The �rst is a realization of the peculiar application of our generic

multi-agent system model presented in chapter 2. The second example is the

implementation of the simulation of a trading system. Although this latter does

not belong to our target class of systems, it shows that STL++ can also be

applied to other multi-agent systems.

Finally, before giving a detailed description of the core STL++ interfaces in

appendix A, chapter 10 concludes the thesis and outlines future work.

6 CHAPTER 1. INTRODUCTION

Part I

Positioning

7

Chapter 2

Multi-Agent Systems

2.1 Introduction

The interest for multi-agent systems (MASs) has grown increasingly in the last

years. These systems are beginning to be used in a great variety of applications

such as air traÆc control, process control, manufacturing, electronic commerce,

patient monitoring, or games. This appeal is due to the fact that multi-agent sys-

tems present very attractive means of more naturally understanding, designing

and implementing several classes of complex distributed and concurrent soft-

ware. This growing attention to multi-agent technology has been even more

accentuated with the increase of internet computing, which integrates an under-

lying infrastructure presenting a space organization in which autonomous agents

roam and interact with one another.

Nevertheless, as a consequence of their popularity, the terms \autonomous

agents" and \multi-agent systems" are often misused. It is indeed not rare to

�nd software described in these terms, although it is not necessarily correlated

with multi-agent technology. Therefore, we have to clarify what autonomous

agents and multi-agent systems really are, how they can be modeled, designed

and implemented.

This chapter is organized as follows. In sections 2.2 and 2.3, we present what

are autonomous agents and multi-agent systems. On this basis, we discuss in

section 2.4 MAS modeling by proposing an explicit integration of the interac-

tion setup of a MAS and by sustaining a distinction between subjective and

objective coordination. Then, section 2.5 exposes our target class of systems.

Finally section 2.6 discusses how practical MASs can be built and concludes by

maintaining the use of coordination models and languages for the design and

the implementation of MASs.

9

10 CHAPTER 2. MULTI-AGENT SYSTEMS

2.2 What is an Autonomous Agent?

The debate on what constitutes an autonomous agent is still under way. As a

large range of agent types exist, it is obvious that a lot of descriptions have been

proposed, without, however, reaching a commonly accepted de�nition. This sec-

tion nevertheless sketches the fundamental characteristics of what most research

understands with an autonomous agent by presenting the de�nition we adhere

to and by discussing a wide-spread de�nition.

2.2.1 De�nitions

Wishing to avoid the formulation of a new de�nition and being conscious of the

diÆculty of the task due to the wide variety of existing agent paradigms (see

for instance [Mae95] [HR95] [BT96] [JSW98]), this section proposes to adopt a

proposal of Franklin and Graesser [FG96].

After having analyzed several agent proposals, Franklin and Graesser give a

de�nition, which is similar to that of Beer [Bee95]. They explain the essence of

an autonomous agent as follows:

An autonomous agent is a system situated within and a part of an

environment that senses that environment and acts on it, over time,

in pursuit of its own agenda and so as to e�ect what it senses in the

future.

This de�nition is further explained:

Each agent is situated in, and is part of some environment. Each

senses its environment and acts autonomously upon it. No other

entity is required to feed its input, or to interpret and use its output.

Each acts in pursuit of it's own agenda. (...) Each acts so that its

current actions may e�ect its later sensing, that is its actions e�ect

its environment. Finally, each acts continually over some period of

time.

This de�nition shows that the notion of situatedness within an environment is

an essential concept: the agent can sense its surrounding (receive sensory input)

and act upon it so as to change it. Furthermore, the response of the agent

to the environment is done in a timely fashion. Figure 2.1 gives a schematic

representation of those ideas.

In the literature, it is not rare to �nd descriptions of what an autonomous

agent is, as proposed by Wooldridge and Jennings in [WJ95]. They de�ne an

autonomous agent as:

a hardware or (more usually) software-based computer system that

enjoys the following properties:

� autonomy: agents operate without the direct intervention of hu-

mans or others, and have some kind of control over their actions

and internal state;

2.2. WHAT IS AN AUTONOMOUS AGENT? 11

Autonomous
Agent

Environment

perception action

Figure 2.1: An autonomous agent and its environment.

� social ability: agents interact with other agents (and possibly

humans) via some kind of agent-communication language;

� reactivity: agents perceive their environment (...) , and respond

in timely fashion to changes that occur in it;

� pro-activeness: agents do not simply act in response to their

environment, they are able to exhibit goal-directed behaviour by

taking the initiative.

This de�nition is not as general as the precedent, because it requires agents

to interact using an agent communication language (ACL) [LFP99]. But there

exist several types of autonomous agents that do not need such ACLs and only

interact through in
uences in the environment (see section 2.5). Nevertheless,

this de�nition is considered by Wooldridge and Jennings as a weak notion of

agency, in contrast with a strong notion of agency that uses mentalistic notions

applied to humans (see section 2.2.3) and that represents one of several exist-

ing generic agent architectures. Before presenting these architectures in section

2.2.3, we discuss more in detail two characteristics of autonomous agents, namely

autonomy and embodiment.

2.2.2 Autonomy and Embodiment

The de�nitions discussed in section 2.2.1 clearly refer to a basic notion of au-

tonomy: an agent is considered autonomous if it acts for its proper agenda by

choosing, by itself, its actions. But, intuitively, we see that there may exist dif-

ferent degrees of autonomy, including stronger ones. In fact Ziemke distinguishes

two families of autonomy [Zie97]: operational and behavioral autonomy. Opera-

tional autonomy is the capacity to operate without human intervention [Pfe96].

This is the simplest and basic meaning. The behavioral autonomy, however, has

a stronger de�nition: it can be considered as having its own capacity to form

12 CHAPTER 2. MULTI-AGENT SYSTEMS

and adapt its principles of behaviour [Ste95]. Note that this second autonomy is

not a necessary characteristics for the agent de�nition adopted.

But autonomy also means that each agent possesses its proper temporality in

the sense that it runs concurrently to other agents without being synchronized

to them. This requirement should especially be taken in consideration when

implementing agent-based systems.

Strongly coupled to the notion of autonomy is the fact that an autonomous

agent is an embodied system, i.e. the fact that an autonomous agent has a

\body" that delimits and isolates the agent from its environment. Di�erent

embodiments yield to di�erent kinds of agents [Zie97]:

� Physically embodied agents subsist in a physical environment: their inter-

action with the environment goes through sensory perception and motor

control. They are typically robots, or even living agents.

� Several agents use a simulated embodiment: simulated physical agents are

roaming and acting in a simulated world, thus physical embodied agents

and a realistic environment are only simulated.

It is indeed very useful to realize simulations of cost and time intensive

experiments before one completes a �nal real (physical) implementation.

One has, for instance, the possibility to experiment several di�erent con-

trol algorithms for evaluating them. Realizing statistical studies is also

much easier with simulated embodied autonomous agents, because imple-

mentations are more eÆcient and faster. In certain cases, a lack of physical

resources (physically embodied) also motivates the implementation of sim-

ulated embodied agents.

� Finally, software agents [Nwa96] [Sho99] directly interact with software en-

vironments. They lack of a body, sensors and motor, but are nevertheless

situated within an often complex software environment. Famous exam-

ples are the interface agents, which are personal assistants of a user, and

the information agents, which �nd on the WWW information speci�cally

interesting a user [Mae94].

The second and third class of agents are obviously computational agents.

The presented taxonomy is summarized in �gure 2.2. As we shall see in section

2.5, our target class of MASs comprises simulated embodied agents.

2.2.3 Generic Agent Architectures

Autonomous agents are systems in continuous long-term interaction with an

environment in which their are situated. This constitutes a common basis for

all autonomous agents. But based on so-called agent theories [WJ95], di�erent

generic agent architectures have appeared, di�ering from one another in their

view of the intra-agent aspects. They can be grouped in mental, reactive and

hybrid agents (for an overview, see for instance [WJ95] or [Oss99]).

2.2. WHAT IS AN AUTONOMOUS AGENT? 13

Autonomous
Agents

Physically Embodied
Agents

Computational
Agents

Simulated Embodied
Agents

Software
Agents

Figure 2.2: A basic agent taxonomy in relation to the notion of embodiment.

Mental Agents

Mental agents, also named rational or deliberative agents, are viewed as inten-

tional systems [Den87], using mentalistic notions applied to humans. The agent

has an explicit symbolic model of the world in which it lives. It uses sensor data

in order to update its model of the environment. A planner reasons on the world

model and decides which actions to realize.

In contrast to the weak notion (see section 2.2), Wooldridge and Jennings

consider mental agency as a strong notion of agency [WJ95]. Note that it is

obvious that mental agency actually inherits experience from the symbolic AI.

This constitutes thus a compromise between the main streams of AI (see section

2.1).

Of the best known mental agents are the BDI agents, based on the BDI

theory (belief, desire and intention) of Rao and George� [GR95].

Reactive Agents

Reactive agents are based on the idea that the World is the best model [Bro94].

Intended to handle basic behaviors, they base their architecture on simple rou-

tines schemes, excluding abstract reasoning. These simple actions seem indeed

easier to perform basic behaviors. The methodology is bottom-up: agents react

to changes in the environment in a stimulus-response fashion by executing the

simple routines corresponding to a speci�c sensor stimulation.

A famous reactive agent architecture is Brooks' subsumption architecture

[Bro86]. Brooks' robot possesses a layered architecture, where each layer repre-

sents a simple behavior reacting to speci�c stimuli. The high layers can control

the most primitive layers by �ltering their input data and preventing their output

data from in
uencing the e�ectors.

14 CHAPTER 2. MULTI-AGENT SYSTEMS

Hybrid Agents

Some work tries to unify mental and reactive agencies in order to surmount

their respective weaknesses. The idea is the following: basically, these agents

are steered by their simple routines reacting to basic stimuli. However, the

deliberative module controls the reactive one when it wants to perform stimulus-

free actions (like reasoning) or to change long-term goals.

Important examples are M�uller's InterRAP architecture [Mul96] and Fergu-

son's TouringMachines [Fer95].

2.3 Characteristics of MASs

As indicated by its name, a Multi-Agent System1 (MAS) is a macro-system

comprising multiple agents, each of which is considered as a micro-system. MASs

result therefore from the organization of multiple agents within an environment.

This organization is done with a speci�c hypothesis and goal. Actually MAS

research expects that an ensemble resulting from the interactions of individual

agents possesses a value-added towards each simple agent capability [NN99].

This is the basic motivation. But what are the characteristics of MASs? The

following can be cited [JSW98]:

� In a MAS, every agent has a subjective view; it can only have incomplete

information of the system, because its viewpoint is limited.

� As a consequence of the �rst characteristics, no global control is applied.

Each agent has its proper state that is not accessible by other participants

in the system. This state changes individually as a result of the behavior

rules of the agent. These rules are themselves in
uenced by data sensed

in the environment. On its turn, an agent in
uences the environment by

acting on it.

� The data is fully decentralized, distributed in the participating agents and

the environment.

At a modeling level, agents in a MAS are concurrent from one another: each

agent is conceived to execute independently from the other agents. In many

cases, however, this theoretical concurrency is not guaranteed by an underlying

implementation that realizes a serial simulation of a system (see for instance

[LBDL99] [Mic99]). Still at a modeling level, a MAS integrates a speci�c or-

ganization of its environment in which agents evolve. This organization can be

imposed by either the model or the underlying physical layer.

Although sometimes it is possible to conceive a system with a single agent,

this would simply reduce a problem to wrapping a program so that it can interact

with a user. This has been, for instance, realized by wrapping expert systems

1Several reviews on research in multi-agent systems are available; see for instance [Bra97],

[Zie97], [HS98], or [Wei98].

2.3. CHARACTERISTICS OF MASS 15

for assisting users in making decisions. Hence, MAS applications have several

advantages in comparison to single-agent systems:

� The implementation of problems that ask for distributed data and control

over them are more naturally realized using MASs.

� They tend to robustness, because the failure of an agent can be overcome

if another agent takes in charge the uncompleted work.

� Scalability: a MAS should easily be extended by adding new agents.

� Reusability: thanks to their modularity, agents should be easily re-integrated

in a new MAS.

If MASs present real bene�ts, their construction shows several inherent prob-

lems that challenge the research. Some of these problems are applicable to MASs

of every type; others are related to speci�c views. Among the basic questions

that should be solved are the following: Which communication schemes should

be chosen? What are the means of interaction within a MAS? How should com-

munication and computation be balanced? When agents tend to a common goal,

how should they coordinate with one another? How is con
ict between agents

handled?

The list of questions is by far incomplete. However the main problem remains

a software engineering one: how can practical MASs be modeled, designed and

implemented? This thesis contributes to an answer to this question.

We do this in the following way:

� We sustain, in the next section, that the modeling of a MAS should ex-

plicitly integrate the interaction setup of the MAS by clearly identifying

what we call objective and subjective dependencies, and we insist upon

the management of objective dependencies, leading to what we denomi-

nate objective coordination.

� We present, in section 2.5, a speci�c class of MASs as our target and show

how it can be modeled.

� We discuss, in section 2.6, actual proposals for helping the implementa-

tion of MASs, and, as we promote a focus on objective coordination, we

advocate in section 2.6.3 the use of coordination models and languages for

designing and implementing objective coordination in a MAS.

� We present in the subsequent chapters a concrete coordination model

named ECM and a corresponding coordination language named STL++

that we have tailored towards our target MAS.

� Finally, an implementation of an application of our target MASs is pre-

sented using STL++.

16 CHAPTER 2. MULTI-AGENT SYSTEMS

2.4 Modeling MASs

Interaction between agents is absolutely essential in a MAS, because it is the

\raison d'être" of the MAS. If agents are not able to interact with one another,

no global behaviour in the MAS is possible. One has therefore to model the

interaction setup of the multitude of agents participating in the MAS. If this is

not done, this typically leads to an agent-oriented view of a MAS [COZ99b]. This

agent-oriented view models a MAS by describing the intra-agent aspects, such

as the agent's representation of the world, its beliefs, desires, intentions, and by

neglecting the description of the agent interactions and of the space where these

interactions take place.

This necessity for a clear identi�cation of the interaction setup in a MAS

naturally calls for a separation between the design of the individual tasks of each

agent and the design of their interactions. Several researchers have recognized

this point, by proposing to explicitly integrate the interaction setup and the

handling of the resulting dependencies in the analysis phase of a MAS [Bur96]

[Sin98b] [WJK99] [COZ99b] [COZ99a]. We maintain that this can be done at

two di�erent levels, according to the types of dependencies.

Indeed the modeling of the setup of multiple agents into a MAS leads to the

detection of many dependencies of di�erent nature. On one side, these depen-

dencies rely on the result of the external composition of multiple agents into an

ensemble; on the other side, they result from the individual or peculiar point of

view of each agent interacting with other agents. We thus distinguish between

two types of dependencies [SCH99] and, as coordination is de�ned as manag-

ing dependencies between activities [MC94a] (see section 3.1), two corresponding

types or levels of coordination (see �gure 2.3):

� A MAS is built by objective dependencies which refer to inter-agent de-

pendencies, namely the con�guration of the system in terms of the basic

interaction means, agent generation/destruction and organization of the

environment. We refer to the management of these dependencies as objec-

tive coordination, because these dependencies are external to the agents.

Thus, objective coordination is essentially concerned with inter-agent as-

pects.

� Agents have subjective dependencies which refer to intra-agent dependen-

cies towards other agents. The management of these subjective depen-

dencies refers to what we call subjective coordination. Thus, subjective

coordination is essentially concerned with intra-agent aspects.

Subjective coordination is dependent from objective coordination, because

the �rst is based on and supposes the existence of the second. The mechanisms

that are engaged to ensure subjective coordination must indeed have access to

the mechanisms for objective coordination. If this is not the case, no subjective

coordination is possible at all. This does not mean that objective coordination

belongs to the intra-agent view, but only that the access mechanisms have a

2.4. MODELING MASS 17

Objective Coordination

- Organization of the environment

- Agents interactions

Subjective Coordination

- Explicit:

- Implicit

negotiation,
planning,
organization

Figure 2.3: Coordination in a MAS.

subjective expression in the agent. This is essentially the case for mechanisms

like sending or receiving information.

We thus maintain that, when modeling a MAS, the �rst step is to identify

which objective dependencies are present and how they can be handled. It is only

after this identi�cation that all subjective dependencies can in turn be identi�ed

and described. Not di�erentiating the two levels of coordination leads to MASs

that resolve objective coordination with subjective coordination means, i.e. by

using intra-agent aspects for describing system con�gurations. For instance, a

MAS intended at modeling the hierarchy in an organization would model this

hierarchy internally in each agent by means of knowledge representation of the

hierarchy, and would not describe it by establishing the communication
ows

that represent it.

This mixture of subjective and objective aspects is typically present in MASs

composed of mental agents that use agent communication languages (ACL)

[LFP99] in order to communicate. The principal aim of ACLs, such as KQML

[FFMM94] [LF97] and the FIPA's proposal [FIP99b] [FIP99a], is to o�er means

for exchanging information and knowledge. But they do this by integrating in a

message simultaneously two types of information: (i) lower-level communication

information (such as the identities of the participating agents, a unique commu-

nication identi�er, or the used protocol), and (ii) meta-information about the

content of the message, such as the general intention or the type of a message in

term of speech acts [Sea69] [Sin98a] (examples are request, deny, propose, con-

�rm), and a common understanding, possibly described with ontologies [Gru93]

identifying a common semantics between the agents.

In the next sections, we discuss more in detail both objective and subjective

coordination. Actually, we classify existing general MAS issues into the two

proposed dimensions.

18 CHAPTER 2. MULTI-AGENT SYSTEMS

2.4.1 Objective Coordination

Objective coordination is mainly concerned with the organization of the world

of a MAS. This is achieved in two ways: i) by describing how the environment

is organized, and ii) by handling the agent interactions. We address these two

points.

Organization of the Environment

The organization of the environment varies according to the space the MAS

wants to integrate. We thus propose to distinguish between implicit and explicit

environment organizations.

An implicit organization does not explicitly model the environment, because

it is given or imposed by the underlying logical structure on which a MAS evolves.

This is, for instance, the case for network-aware agents roaming on the World

Wide Web, where the environment is structured by the nodes of the network.

An explicit organization, however, establishes a model of an environment

that does not necessarily re
ect the intended logical structure. This can be done

by realizing an approximation of the target. When, for instance, one wants to

simulate a continuous physical space, he will not be able to keep the continuity

and will have to render the space discrete.

But, more importantly, the environment allows the arising of the interactions

between the agents. We discuss hereafter how this can be completed.

Agent Interactions

Handling agent interactions asks for the description of the interactions between

an agent and its environment, and the interactions between the agent themselves.

As the environment also have a container function, it can be used to com-

municate. Indeed, an agent has a relation with its environment by means of its

perception. Furthermore, it can in
uence the state of its milieu with speci�c

actions. The interaction with the environment can then be understood and used

to communicate: all information is transmitted within the environment. Com-

munication thus becomes an action that in
uences the environment. Consider,

for instance, the case of an insect-like robot dispersing in the environment infor-

mation similar to pheromone. This information can be sensed by another robot

that notices it as a trace of the roaming of the �rst agent.

But the interactions between agents are usually based on speci�c commu-

nication means. From the perspective of the direct concerned recipient of the

communicated data, we classify these communication means between agents in

four basic paradigms (�gure 2.4 pictures them):

� Peer-to-peer communication: messages are sent directly to speci�c agents.

This is usually done by identifying the partners, for instance with an email-

like address (message-passing-like communication). It is also possible that

an intermediate channel takes in charge the transmission of the data, and

that the partners of communication do not know from each other.

2.4. MODELING MASS 19

c) d)

b)a)

Figure 2.4: Basic communication paradigms: a) peer-to-peer, b) broadcast, c)

multicast and d) generative communication.

� Broadcast communication: a message is sent to everybody in the MAS.

Interested agents can evaluate the received data or ignore it.

� Group communication: A message is sent to a speci�c group of agents.

� Generative communication: communication is realized through a black-

board [HR88]: agents generate persistent objects (messages) on the black-

board, which are read by other agents. The reading can be done indepen-

dently of the time of the message generation; thus the communication is

fully uncoupled.

Furthermore, it is possible to distinguish identi�ed and anonymous commu-

nication. Identi�ed communication requires an identity of its partner. In anony-

mous communication, the agent producing the message ignores its recipient, and

vice-versa. This can be achieved, for instance, by creating in the agent ports

having the role of communication interfaces; these ports, on which an agent puts

and reads messages, are connected to other ports belonging to other agents.

2.4.2 Subjective Coordination

We distinguish two types of subjective coordination: explicit and implicit sub-

jective coordination. Their di�erentiate themselves in the explicit or implicit

20 CHAPTER 2. MULTI-AGENT SYSTEMS

treatment of the management of subjective dependencies.

The research in distributed arti�cial intelligence (DAI) has proposed several

coordination techniques [Jen96] [NLJ97] [Oss99] that deal with explicit subjec-

tive coordination. These techniques typically consider coordination as the pro-

cess by which an agent reasons about its local action and the (anticipated) actions

of others to try and ensure the community acts in a coherent manner [Jen96].

Thus, these techniques are quali�ed as subjective coordination, because they try

to resolve subjective dependencies by means of intra-agent structures that often

involve high-level mentalistic notions and appropriate protocols. We characterize

these techniques as explicit, because they explicitly handle coordination.

In [Oss99], Ossowski classi�es them in three families: multi-agent planning,

negotiation, and organization. We brie
y explain these families:

Multi-agent Planning

With multi-agent planning techniques, agents build a plan and commit

to behave in accordance with it. This plan describes all actions that are

needed to achieve the respective goals of the agents. Note also that plan-

ning can be centralized or decentralized.

An overview on multi-agent planning techniques can be found in [Dur96].

Negotiation

Negotiation has constituted the most signi�cant part of DAI research in

coordination. It can be de�ned as the communication process of a group

of agents in order to reach a mutually accepted agreement on some mat-

ter [BM92]. Often starting from contradictory demands, the negotiation

process generates agreements that can be later re-negotiated.

A review on negotiation techniques can be found in [NLJ97].

Organization

Organization techniques support a priori organization patterns by de�ning

roles for each agent. A role determines the expectations about the agent's

individual behaviour by describing the agent's responsibilities, capabilities

and authority inside the MAS. An agent then consults its organizational

knowledge of its role in the MAS and acts in accordance with it. Although

the purpose of organization belongs to objective coordination, the notion

of role typically refers to a subjective dependency towards other roles in

the MAS. This is the reason why we consider these techniques as belonging

to subjective coordination.

It is worthy to note that these methods generally su�er from lack of dy-

namicity in the structure of the organization, because the roles are thought

as long-term relationships.

A valuable review on organization theory applied to DAI can be found in

[CG98].

Agents may also coordinate themselves implicitly, without having explicit

mechanisms of coordination. This may be, for instance, the case in the frame-

work of collective robotics [BHD94] [MM95] [Mat95], in which robots act on

2.5. OUR TARGET CLASS OF MASS 21

the base of the result of the work of other robots. Thus, this result, which is

locally perceived through the sensors, allows to resolve a subjective dependency,

namely the necessity to sense a speci�c information in order to act. This kind

of coordination, which is also named stigmergic coordination, literally means an

incitement to work by the product of the work [BHD94]. Our target class of

MASs typically allows such a coordination (see section 2.5).

2.4.3 Emergence

We tackle now an aspect that does not belong to the modeling of a MAS, but

that constitutes its goal: emergence.

Indeed, MASs are interested in an interaction-centered perspective. Dealing

with agent interactions leads naturally to the concept of emergence of behavior

and functionality [Ste94] [ECJS94]. According to Forrest [For90], emergence can

be de�ned as follows: a system's behavior is considered emergent if it can only

be speci�ed using descriptive categories which are not to be used to describe

the behavior of the constituent components. Two levels of behaviors are thus

di�erentiated: i) the behavior of the constituents, ii) and the global behavior

risen from the conjunction of the constituents. The de�nition shows that it is

not possible to specify emergence, because it is only the result of the interactions

of multiple agents.

Emergence o�ers a bridge between the necessity of complex and adaptive be-

havior at a macro level and the mechanisms of multiple competences at a micro

level [For90]. Although emergence keeps a subjective aspect by directly depend-

ing on the cognitive properties of an observer [CLC99a], it has the advantage

of basing on simple components and at achieving a global behavior by letting

agents interact.

2.5 Our Target Class of MASs

The preceding sections have discussed the modeling of MASs. Before discussing

implementation issues in section 2.6, we describe a speci�c class of MASs; this

class is attempted to be implemented on distributed architectures. In chapter 8,

we will present an implementation of an application of this class of MASs using

our coordination language STL++.

This thesis has been developed in the framework of research aimed at lead-

ing to solutions for applications in the �elds of robotics and distributed systems.

For this reason, we are mainly interested in simulated embodied autonomous

agents [CKS+98] [CDSH98]. More precisely, we design multi-agent simulations

of collective robotics [BHD94] [MM95] [Mat95] [CH99], whereby global tasks

are achieved thanks to emergence. Our simulated robots are operationally au-

tonomous agents: there is no centralized control of the behaviour of the agents,

because each agent acts by itself on the basis of its perception and in accordance

with its rules (sensing and acting are strictly local to the agent). Furthermore

no explicit subjective coordination is engaged, because we follow a stigmergic

22 CHAPTER 2. MULTI-AGENT SYSTEMS

Sensors Ef
fe

ct
or

s

Sensors Ef
fe

ct
or

s

Sensors Ef
fe

ct
or

s

Cell

Connection

Sensors Ef
fe

ct
or

s

Agent

Object

Figure 2.5: Generic MAS Model.

subjective coordination [BHD94] (see section 2.4.2): an implicit coordination is

achieved on the basis of the result of the work of each agent. Thus the only

interactions are realized through the in
uences in the environment.

We organize this section as follows. In 2.5.1, we present a generic model

[CKS+98] for our intended autonomous agents' system. Then in 2.5.2, we present

a peculiar application belonging to our target class ofMASs. This model and its

application, which have been de�ned in the PAI group2, have been the subject

of several studies on the emergence of behaviour [CDS96] [CDSH96] [DCH97]

[CLC99b] [CLC99a].

2.5.1 A Generic Model for an Autonomous Agents' Sys-

tem

We �rst tackle the organization of our generic model by actually describing the

objective coordination. The model is composed of an Environment and a set

of Agents. The Environment is composed of a set of Cells. Each cell includes

i) a set of on-cell available Objects at a given time, which can be manipulated

by agents, and ii) a list of connections to other cells. This list of connections

de�nes a Neighborhood which implicitly determines the topology. As this neigh-

borhood can be de�ned separately for each cell, any type of topology may be

achieved. Figure 2.5 sketches the model presented for a four connectivity. An

agent possesses some sensors to perceive the environment within which it moves,

and some e�ectors to act in this environment (embodiment). The perception is

local, because, at a given time, an agent perceives only on one cell or on a re-

stricted collection of cells. Therefore, interactions between agents are limited to

their in
uences on the environment.

2Parallelism and Arti�cial Intelligence Group of the Computer Science department at the

University of Fribourg

2.5. OUR TARGET CLASS OF MASS 23

Environment

Sensors Ef
fe

ct
or

s

State

Perception

Content and
 connections of
 occupied Cell

Actions

Manipulate
 objects,
move

Control
Algorithm

Figure 2.6: Our target agent architecture.

Concerning the intra-agent aspects of the model, a general agent architec-

ture is de�ned, complying the autonomous agent de�nition we have adopted

in section 2.2. Figure 2.6 sketches the proposed architecture. The modules

Perception, State, Actions and Control Algorithm depend on each application;

therefore, they are under the user's responsibility. The degree of autonomy of

an agent is dependent upon the control algorithm module, because this module

determines if an agent is operationally or behaviorally autonomous [Zie97] (see

section 2.2.2). For instance, a very basic operational autonomy would consist

of randomly determining which actions to perform; a more sophisticated behav-

ioral autonomy would integrate learning capabilities using, for instance, a neural

network.

2.5.2 A Typical Application: Gathering Agents

The model presented above can support numerous applications. Among others,

it can be used for a simulation of mobile collective robotics [BHD94] [MM95]

[Mat95] [CH99]. In fact, we present such a simulation, in which agents simulate

the behavior of a real robot seeking objects spread in their environment. As a

result of the individual behaviors of each agent, a global behavior is achieved,

namely that of having agents stack all the objects, as displayed in �gure 2.7.

In the simulation, the agents are operationally autonomous, because each

agent in the system acts freely on a cell: the agents choose an action depending

on their control algorithm and local perception. The agents do not explicitly

negotiate, nor explicitly identify and handle antagonism situations (con
icts

between di�erent agents' goals). Every interaction is done in an indirect way

through in
uences upon the environment. Thus, there is no explicit subjective

coordination.

The environment is made of a discrete two dimensional L cell-sided grid, a

24 CHAPTER 2. MULTI-AGENT SYSTEMS

Figure 2.7: Collective robotics application: stacking objects.

set of No objects and Na agents roaming from one cell to the other. An object

is either situated on a cell, or carried by an agent. Several control algorithms

are possible (see for instance [CDSH96] and [DCH97] for various proposals).

A simple control algorithm can be explained as follows. Agents roam ran-

domly from one cell to a connected one. As long as an agent does not sense

any object in its cell, it moves to another neighbor cell. When it arrives at a

cell with no objects, two cases are possible: i) if the agent does not carry any

object, it will take one object with a probability given by 1=no�, where � � 0

is a constant; ii) if the agent is carrying an object, it will always put down the

object.

The simulation presented has been serially implemented [CDS96] [CDSH96]

[DCH97] [CLC99a], [CLC99b], showing the emergence of global properties in the

whole system: the agents cooperate to achieve a task without being aware of

it. In chapter 8, we will present a distributed implementation of the simulation

using our coordination language STL++.

2.6 Implementing MAS Applications

Once the model of a MAS realized, one has to lead this model to a concrete im-

plementation. Actually, a very important issue in agent technology has been the

elaboration of languages for facilitating the implementation of MASs, although

a lot of realizations have used ad hoc solutions, without trying to present an

abstracted layer on which to build. These languages should �ll the gap, often

encountered, between the model of a MAS and its implementation.

In this section, we review several important proposals of languages for MASs.

We then discuss design methodologies that are emerging from the experience ac-

quired with these languages. Finally we show why these approaches are inade-

quate and conclude by advocating the use of coordination models and languages

for designing and implementing MASs.

2.6. IMPLEMENTING MAS APPLICATIONS 25

2.6.1 Languages for MAS Applications

As most MAS implementations have been built in an ad hoc manner, sev-

eral authors have proposed agent languages that o�er a layer of abstraction

on which to develop MAS applications. We distinguish two main trends. On

one side, many proposals follow the approach of the agent-oriented programming

paradigm [Sho93]. On the other side, concurrent object-oriented programming

languages [AWY93] [BGL98] are presented as a base for implementing MASs

[GB92], [KB98], [Bri98] [GB99].

Agent-oriented Languages

Shoham has proposed an agent-oriented programming (AOP) paradigm [Sho93]

for programming MASs. This view suggests that agents be directly implemented

with mentalistic notions.

In an AOP system, a formal language describes the agent mental states. It

uses modalities that are more basic than those of BDI3 [GR95]; they encom-

pass beliefs, decisions and capabilities. The agent's actions are determined by

its decisions (possibly in the past). On their turn, the decisions depend upon

the agent's beliefs, which refer to the state of the environment (including other

agents' mental states) and the proper mental state, as well as the capabilities of

itself and others. Furthermore, Shoham slightly modi�es the decision notion by

replacing it by commitments, treating decisions as obligations.

The second element of an AOP system is an interpreted programming lan-

guage named agent-0 that is based on the formal language and that concretely

programs the agents. agent-0 de�nes an agent in term of its capabilities (what

it can do), its initial beliefs and commitments, and a set of commitment rules,

which describe the agent actions. A commitment is composed of a mental con-

dition, a message condition, and an action. A mental condition is a combination

of modal statements referring to the mental state of the agent. A message con-

dition is a combination of message patterns. A message pattern is de�ned by the

identi�cation of its sender, the type of message, and a content as a fact or action

statement. In order to trigger the rule, the conditions must be ful�lled: the

mental condition is matched against the beliefs of the agent, and the message

condition is matched against the received messages. An action can be private

by executing a subroutine or communicative by sending a message.

Shoham proposes a last AOP component: an agenti�er allowing the trans-

lation of neutral devices into programmable agents. It is a translation process

that applies the reverse method of situated automata [Ros85]. Starting from a

low-level description of the device (using a process language), the agenti�er has

the task of producing an intentional description of the device; it is therefore an

\agenti�cation" process. This should permit the integration of existing devices

in an AOP system.

A disadvantage of agent-0 is that the correspondence between the formal

language and the interpreted programming language is loosely de�ned. Con-

3Belief, desire and intention.

26 CHAPTER 2. MULTI-AGENT SYSTEMS

current MetateM [Fis94] [Fis97] enhances this drawback by providing an

agent language that faithfully executes its associated formal language. In fact,

the behaviour of an agent is de�ned with a set of temporal logics speci�cations

[Eme90] represented by logical rules. And this speci�cation is straightly exe-

cuted in order to produce the behaviour of the agent. As the execution of an

agent is described by temporal logics which models time as a sequence of discrete

states, this execution depends at each moment on the history of the agent.

agent-0 and its agent-oriented programming paradigm have inspired and

in
uenced a lot of other work. Thomas has developed PLACA [Tho93] which

improves agent-0 with planning and communication requests for action via

high-level goals. AgentSpeak [WRR94] allows agent programs to be written

and interpreted in a manner similar to that of horn-clause logic programs, inte-

grating aspects of concurrent-object technology.

Concurrent Object Oriented Languages

A lot of applications implementing MASs use an existing programming language

as a basis for their realization and do not employ a language tailored toward their

implementation. In a discussion about the relationships between agent languages

and other programming paradigms [Mey98], Clark promotes the idea of bas-

ing agent programming languages on Concurrent Object Oriented Languages

(COOLs) [AWY93] [BGL98]. This point of view is also argued, for instance,

in [GB92], [KB98], [Bri98] and [GB99], where the authors are convinced that

COOLs are especially useful as a basis for implementing MASs, although these

languages are not directly agent languages. This approach is precisely taken by

April [MC94b], as we shall see later in this section.

COOLs combine concurrency with object-orientation, leading to the notion

of active object. An active object adds to the object design the capacity to have

its own activity. This leads to programs with inter-object concurrency. Certain

languages also allow degrees of intra-object concurrency, i.e. several threads of

execution inside the same object4.

While the passive object model follows a reactivity principle (methods of an

object are invoked synchronously by reception of a message), active objects are

active since their creation. Some COOLs keep reactivity, like ACT++ [KL90].

But most of them respect more autonomy, by requiring the active objects to ac-

cept incoming messages and handling them explicitly. COOLs contain, however,

an important drawback to their basic aim of being object-oriented, particu-

larly in what concerns code reuse by inheritance. This drawback is called the

inheritance anomaly [MY93] [McH94]. Essentially it is originated in the inter-

ference between inheritance and synchronization constraints, which often causes

re-implementation of synchronized code.

The property of encapsulation of a private state and the support for a proper

thread of execution make active objects an attractive layer on which to build au-

tonomous agents. This has led to the use of several COOLs to implement agent-

4For a discussion on the levels of object concurrency, see [Weg90]

2.6. IMPLEMENTING MAS APPLICATIONS 27

Message

Behaviour

Mail queue

Become

Create

Replacement
behaviour

Send

Actor Actor

Actor

Figure 2.8: The Actor model.

based applications. The COOLs that implement the Actor model [Hew77]

[Agh86] have a strong in
uence in this respect [KB98]. As showed in �gure

2.8, an actor communicates asynchronously by sending messages to other actors

whose addresses it knows. At the receiver actor, the reaction to an incoming

message is determined by its behaviour de�ned by a script. This behaviour al-

lows an actor to send new messages, create new actors, and determine its own

subsequent behaviour by the next message arrival. The Actor model supports

both inter-actor and intra-actor concurrency. Several implementations of the

Actor model exist, see for instance [Bri89] and [KML93].

A well-known example of object-oriented concurrency for MASs is April

[MC94b]. This language is a strongly typed object-based concurrent language

with active objects as processes. It is oriented towards the implementation of

multi-agent applications. Thus, it is not, as such, strictly an agent language,

but it can be applied to implement further agent-oriented languages. Actually,

April has been used to realize MAIL [HSM94], a high level language that can be

used for implementing MASs. Fundamentally, April de�nes means for process

creation and inter-process communication in a message-passing style, possesses

higher-order features that allow program structuring with modules (records of

functions and procedures), and permits the sending of code in messages.

We have identi�ed two main groups of existing languages for implementing

MASs. On one hand, agent-oriented languages such as agent-0 have a typical

intra-oriented view of MASs, because they implement a MAS by specifying the

mental structures of the agents. They do not support an emphasis of objective

coordination in the development of a MAS. On the other hand, COOLs are only

considered as a basis for implementing MASs, because the active object model

seems adequate for supporting the implementation of agents. But originally

COOLs do not directly tackle the space organization of the active objects and

28 CHAPTER 2. MULTI-AGENT SYSTEMS

their coordination. For that reason, some enhancements around the basic Ac-

tor model have been proposed, for instance by structuring the actors in Actor

Spaces [CA94], which are passive containers, or by organizing them in Casts

[VA99], which are groups handled by a director. Another approach uses Syn-

chronizers [FA95], which allow declarative constructs of coordination activity

between several actors. These enhancement enter the framework of the research

on coordination models and languages [CG92a] [PA98c], which precisely give nec-

essary abstractions for handling objective coordination. But before discussing

coordination models and languages in the next chapter, we review methodologies

for the implementation of MASs and discuss the appropriateness of coordination

models and language for MASs.

2.6.2 Methodologies for MAS Applications

The development of numerous agent languages had the advantage of bringing

the theories of agenthood on a practical ground by o�ering concrete means to

program MASs. This has supported the beginning of an engineering view of

multi-agent system construction. Nevertheless, the need for methodologies has

recently arisen as a help for the design of MAS applications [FMS+97] [IGG98].

Several methodologies have been, to date, proposed, all remaining at an

experimental stage [Oss99]. They concern mostly the design of mental agents

systems. Furthermore, none has yet gained a large acceptance. [IGG98] re-

views several approaches to agent-oriented methodologies, all mostly extending

other existing methodologies. Two main groups have been proposed, which are

respectively based on knowledge engineering or object-oriented methodologies.

Research extending knowledge engineering methodologies is intended for men-

tal agents. They center their design in the knowledge acquisition process. They

present, however, an important drawback, by conceiving a knowledge based

system as centralized. Two important works are the CoMoMAS [Gla96] and

MAS-CommonKADS methodologies [IGGV97].

Object-oriented languages are often used as a natural framework for the con-

struction of agent-based applications. Furthermore, the relation of agents to

active objects in the COOLs has already been discussed in section 2.6.1. There-

fore, it was natural that methodologies such as the Object Modeling Technique

(OMT) [RBP+91] have been proposed as a base for agent-oriented methodolo-

gies. In [Bur96], for instance, Burmeister proposes a methodology based on

OMT. The author de�nes three models and appropriate process steps for the

design of multi-agent applications, all conceived in a mental perspective. First,

in the agent model, agents are described by their beliefs, motivations, plans and

cooperative attributes. Second, the organization model uses an OMT notation

for stating the inheritance hierarchy and the roles of each agent. Third, a co-

operation model identi�es partners, messages and used protocols, all considered

in a mental dimension. Another proposal based on object-orientation is, for

instance, the method for BDI agents [KGR96].

2.6. IMPLEMENTING MAS APPLICATIONS 29

The presented methodologies concentrate therefore on intra-agent aspects

and do not really tackle objective coordination as a design dimension. In the next

section, we motivate the use of coordination models and language for designing

and implementing MASs.

2.6.3 Using Coordination Models and Languages for De-

signing and Implementing MASs

The research has lead to solutions for facilitating the design and the imple-

mentation of MASs. These proposals try to �ll the gap, often encountered,

between agent theory and agent applications. However, as noted in [COZ99a]

and [COZ99b], the proposed solutions are mostly concentrated on intra-agent

aspects. They generally design MASs in terms of the internal agent structures,

based on mentalistic notions such as the BDI model [GR95], and concentrate

on the resolution of subjective dependencies using several (often useful) coordi-

nation techniques. Generally, however, they do not explicitly design and treat

objective coordination in the MAS, or they do it implicitly by considering, most

of the time, only peer-to-peer communication schemes.

However, we have seen that, when modeling a MAS, several objective de-

pendencies clearly appear. The modeling and the resulting design of a MAS is

therefore facilitated by separating what concerns inter-agent aspects (objective

coordination, i.e. the description of the environment and the agent interactions)

from intra-agent aspects (agent tasks and subjective coordination). This idea

analogously follows the proposal of Carriero and Gelernter [CG92a] which advo-

cates that programming can be understood as the combination of computation

and coordination (see section 3.2.1). Actually, objective coordination is orthog-

onal not only to the agents tasks, but also to subjective coordination, because

this latter handles intra-agent aspects that are in relation with other agents.

Thus, we sustain that it is only on the basis of this separation that one can

appropriately design and implement a MAS. And, like a few recent work such as

[COZ99a] and [COZ99b], we maintain that this design and implementation can

be done with an appropriate coordination model and language.

Indeed, research from concurrent and distributed computing, programming

languages and software engineering has developed several coordination models

and languages [CG92a] [PA98c] (discussed thoroughly in the next chapter). They

are suitable precisely for supporting the design and the implementation of ob-

jective coordination in MASs, because they de�ne abstractions dealing with the

management of the interactions between activities and the organization of the

activity space. We therefore propose the use of a coordination model to sustain

the design phase of a MAS, and the use of a corresponding coordination language

(the linguistic embodiment of the coordination model) to implement the MAS.

The use of a coordination model for designing a MAS is also promoted in

[COZ99a] and [COZ99b], but the authors go even further by following a stronger

societal view of MASs [ST95] [Sin98a] [HOY+99]. They maintain that a MAS de-

sign should de�ne social laws that regulate the interactions between the agents.

30 CHAPTER 2. MULTI-AGENT SYSTEMS

These laws should be extensible by having the possibility to specify new rules

regulating the communication means. This may be achieved by de�ning in the

interaction space new rules reacting to and ruling communication events. Ac-

tually, the authors propose a coordination model that integrates a so-called

programmable coordination medium [DNO97] (see section 3.5) enabling the def-

inition of new rules detecting and reacting to communication events.

Employing a coordination model and language becomes even more crucial if

a MAS runs on a distributed and concurrent architecture, which should be the

natural substrate for its execution. In fact, coordination models and languages

are utilized for implementing applications executing on such architectures, and

have therefore a strong expertise in concurrent and distributed computing. We

explain this point.

At a conceptual level, agents in a MAS run concurrently and are organized

in several activity spaces. It seems thus obvious that concurrent and distributed

architectures should constitute the perfect substrate for MASs. However, the

projection of a MAS onto such architectures is not trivial [DC97]. This is espe-

cially true for the class of MASs we are interested in, namely simulated-embodied

autonomous agent systems, because they possess an explicit organization of an

environment (see section 2.4.1) that simulates a continuous space, and this or-

ganization does not comply with the structure of our underlying architecture.

This may be the main reason why most implementations of this class of MASs

are based on sequential architectures with round-robin mechanisms. This is, for

instance, the case of important toolkits such as Swarm [LBDL99], Sim Agent

[SP95] [Slo99], and the Khepera Simulator [Mic99].

At an implementation stage, we thus have to deal with the organization of the

actual processes, the active pieces of software which represent the agents, along

with the inherent problems of shared resources and data, synchronization and

consistency concerns. Coordination models and languages are precisely aimed at

providing solutions for these problems: they use coordination media and tools so

as to deal with the consequences of the concurrency and the spatial distribution

of the supporting processes.

Therefore, to realize a MAS on a concurrent and distributed architecture

in the most natural way, an appropriate coordination model and corresponding

language are needed. On one hand, the coordination model should re
ect the

image of the MAS model (objective coordination at the modeling level) with

the utmost �delity, while preserving the structure of the agents and their be-

havior, such as, for instance, their degree of autonomy. On the other hand,

the coordination language must enable a mapping of the MAS on a distributed

and concurrent architecture by managing the creation and destruction of the

processes that support the agents and by insuring their interactions and organi-

zation within structured and hierarchical spaces.

In conclusion, our approach, which is sketched in �gure 2.9, can be summa-

rized in three steps:

Modeling: One �rst analyzes which objective coordination is needed in the

2.6. IMPLEMENTING MAS APPLICATIONS 31

Agent Tasks

Subjective
Coordination

Objective
Coordination

Coordination
Language

Agent
Language

D
is

tr
ib

u
te

d
 A

rc
h

it
ec

tu
re

Coordination
Model

Agent
Model

MODELING DESIGNING IMPLEMENTING

Figure 2.9: Implementing MASs.

MAS. It is only on this basis that one should identify two remaining crucial

issues, namely the agent tasks, as well as the arisen subjective dependencies

and, if necessary, the handling of these dependencies.

Designing: An appropriate coordination model is applied for designing the

objective coordination in the MAS, and an agent model is also applied for

designing agent tasks and subjective coordination.

Implementing: The realized design is implemented using a corresponding co-

ordination language and, respectively, an agent language, which can be, in

some cases, a common computation language.

In the next chapter, we thoroughly review what are coordination models

and languages. Subsequently, we present the ECM coordination model and its

instance STL++.

32 CHAPTER 2. MULTI-AGENT SYSTEMS

Chapter 3

Coordination Models and

Languages

3.1 What is Coordination?

Coordination is a central problem for numerous complex dynamic systems com-

posed of interacting activities. In order to study issues related to coordination,

Malone and Crowston proposed the development of a new theory called Coor-

dination Theory [MC94a]. This theory intends to study how coordination is

handled in various systems such as in enterprises, animal colonies or markets

[Kle97]. It is therefore interdisciplinary, re-grouping ideas from sciences such

as computer science, organization theory, economics, linguistics or biology. By

providing practical cases from these di�erent sciences, the authors try to identify

common key concepts of coordination in order to facilitate a cross-fertilization

of these di�erent disciplines.

Diverse de�nitions of coordination have been proposed. Probably the most

general has been stated by Malone and Crowston [MC94a]:

Coordination is managing dependencies between activities.

This de�nition means that all participants in a coordination process have inter-

dependencies. Thus the elaboration of coordination theory has tried to identify

which generic dependencies can exist and which sort of processes may be in-

volved.

An interesting general outlook on coordination can be found in [Oss99], in

which Ossowski gives an overview on formal and informal characterizations and

models of coordination in human societies and its models in social science.

33

34 CHAPTER 3. COORDINATION MODELS AND LANGUAGES

3.2 What are Coordination Models and Languages?

3.2.1 Motivation

The �elds of concurrent and distributed programming, programming languages

and software engineering have also recognized the need of handling coordination.

In particular, the research has focused on the de�nition of several coordination

models and corresponding coordination languages [CG92a] [PA98c]. Based on a

model, a coordination language provides means to compose and control software

architectures consisting of concurrent components [ACH98]. Its basic goal is

therefore to handle the interactions among concurrent activities.

The starting consideration of this research has been stated by Carriero and

Gelernter by advocating the following slogan [CG92a]:

programming = computation + coordination

This means that a clear distinction between computation and coordination

is a key element in the design of concurrent programs. The lack of separation

between the computation elements and their interaction makes a program dif-

�cult to be implemented and understood. This separation has therefore the

advantages of facilitating the reuse of the components and of trying to iden-

tify patterns of coordination that could be applied in similar situations (see for

instance [FK97]).

These considerations lead to a speci�c de�nition of coordination in the con-

text of this research [CG92b]:

Coordination is the process of building programs by gluing together

active pieces.

This de�nition shows that coordination models and languages typically be-

long to middleware. However, other middleware solutions for implementing con-

current and distributed applications mostly concentrate on low-level communica-

tion mechanisms. Most known platforms include message passing libraries such

as PVM [Sun90] [GBJ+94] and MPI [GLS94]. The distributed objects platform

CORBA [OMG97b] is also very used. Coordination languages are viewed as the

linguistic counterpart of these approaches.

3.2.2 Key Elements

A coordination model is an abstract framework for the composition and inter-

action of active entities. It proposes solutions for dynamic process creation and

destruction, communication mechanisms, multiple communication
ows and ac-

tivity spaces.

A general coordination model can be de�ned by the following elements [PA98c]

[ACH98] [Cia99]:

� The coordinable entities, which are the active entities running concurrently.

They are the direct subject of coordination, therefore the building blocks

of a coordination architecture.

3.3. DATA-DRIVEN COORDINATION MODELS 35

� A coordinating medium, which allows the coordination of all participating

entities. This medium also serves to assemble entities into a con�guration.

It is therefore the actual space where coordination takes place.

� The coordination laws, which specify the semantics framework of the model.

They determine how the entities are coordinated using the coordinating

media.

A coordination language is the materialization or the linguistic embodiment

of a coordination model [CG92a]. It o�ers syntactical means with which a coor-

dination model can be used for implementing an application. The coordination

language is orthogonal to a computation language in the sense that it is only

concerned with coordination purposes. Hence coordination languages are not

general purpose programming languages.

The concept of separation of concerns requires principally that the designer

of a concurrent application identi�es the two parts and uses appropriate means

for implementing coordination. Although originally, Carreiro and Gelernter

introduced the term `coordination language' to designate systems supporting

compilers, this expression has evolved to designate also simple language exten-

sions realizing a speci�c coordination model, for instance using macros (applying

therefore a pre-compiler) or a library. In this second case, the coordination code

is usually intermixed with the computation code, but mixture is only stylistical

or at language level.

There exist several dimensions that can be used to classify the numerous co-

ordination models and languages. For instance, they can be classi�ed in endoge-

nous and exogenous models [Arb98], whereby the criterion of the categorization

is the integration or not of the coordination mechanisms in the computation.

But the most used classi�cation distinguishes between data-driven and process-

oriented coordination models [PA98c].

Based on this latter taxonomy, the next sections review the two families of

models, basing on the cited paper. We do not try to give an overall review of

these models, but rather describe the most characteristic of each family and con-

cisely discuss several other proposals. For a deeper understanding, an interested

reader can refer to the cited papers.

3.3 Data-driven Coordination Models

In data-driven coordination models, the state of a program is de�ned in terms

of both the values of the data being received or sent and the actual con�guration

of the coordinated components [PA98c]. This means that processes are in charge

of handling the data and coordinating themselves with the other processes.

This double function of the processes introduces a stylistical mixture between

the coordination and the computation code. Although a language of this class

of models o�ers clear means for the communication and the con�guration of

the components, a certain diÆculty to distinguish between coordination and

36 CHAPTER 3. COORDINATION MODELS AND LANGUAGES

computation may consequently appear. These models delegate to the user the

task of organizing the code so that the coordination remains clearly identi�ed.

Data-driven coordination models are therefore mostly concerned with data.

This is the reason why most of them are designed primarily using a shared

dataspace [RC90] that functions as the unique mean of communication: this

shared dataspace is the coordination medium through which the coordinables

exchange data structures. Data can be put, retrieved or copied from it. This

access to the data and its representation is determined by the coordination laws

of the coordination model. Communication through a shared dataspace is often

referred to as generative communication.

It is important to see that the generative communication scheme allows pro-

cesses to be uncoupled in space and time. Producers and consumers do not have

to synchronize in order to exchange data. The existence of a consumer is not

even required when data is posted on the dataspace. But a consumer will have

to wait until a producer creates some desired data. This means that this style

of communication is anonymous, because the communicating processes do not

necessarily know the identity of each other.

Proposed data-driven models di�erentiate themselves in several aspects. How-

ever, most of them belong to two major groups: models derived from Linda

[Gel85] [CG89] and models based on multiset rewriting. Note that a few models

cannot be classi�ed in these two families. They are not treated in this review.

An interested reader can refer to [PA98c], which discusses some of these models.

3.3.1 Linda

The principal characteristics of Linda [Gel85] [CG89] is its generative communi-

cation style. To communicate, processes do not send messages or share a variable,

but they communicate through a shared data space. The communicated data

items are called tuples. A tuple is a non-empty sequence of data items of simple

data types. Tuples are generated by a producing process on a tuple space, which

is a multiset of tuples. Later, a consuming process can consume or read a tuple.

The creation of concurrent processes uses the same mechanism. A creator

puts on a tuple space an active tuple. Active tuples are tuples associated with

processes that perform a computation. When an active tuple terminates, it re-

turns a result that becomes an ordinary data tuple (passive tuple). Note that the

simplicity introduced by the homogeneity between data and process generation

is one of the advantages of Linda.

Tuples are looked up associatively, using a tuple matching mechanism. In

order to retrieve a tuple from the space, a consumer must use a template, which

is called an anti-tuple. A template can consist of either actual or formal data

items. An actual data item is a constant of a speci�c type. A formal item is a

placeholder for a desired type. The tuple matching functions as follows: a tuple

matches a template if both have the same arity, and if each tuple data item

matches each template data item at the same position: an actual item matches

a tuple item from the same type and value, a formal item matches a tuple item

from the same type but with any value.

3.3. DATA-DRIVEN COORDINATION MODELS 37

out("toto", 9, 3.0) in("toto", ?x, ?y)

eval(f(u), g(v))

("toto", 9, 3.0)

(f(u), g(v))->(37, 99)

Tuple Space

Figure 3.1: A Linda tuple space example.

Linda de�nes several primitives, which are used for storing and retrieving in-

formation from the tuple space, and which must be integrated in a host language.

Several robust implementations have been realized, integrating these primitives

in conventional programming languages, for instance C-Linda [CG92a] or Ei�el-

Linda [Jel90]. The Linda primitives can be re-grouped in three categories,

namely communication (out, in and rd), predicates (inp and rdp) and process

control (eval) primitives.

out allows one to store a tuple in the tuple space. As the space is a multiset

(or bag), identical tuples can coexist. in retrieves a tuple from the tuple space

using an anti-tuple. The formal items are instantiated by the actual values of

the retrieved tuple. If several tuples match the anti-tuple, one of them is chosen

non-deterministically. The in operation is blocking: it returns only when a

matching tuple is found. rd functions like the in, with the di�erence that it

does not retrieve a tuple, but makes a copy of the matching tuple.

inp is the predicate version of the in primitive. It returns a tuple only in

case there is one. If no tuple is present at the moment of the invocation, the

primitive returns a failure at once. rdp has the same non-blocking semantics as

inp, except that it reads a tuple.

eval is used for the creation of active tuples. In an active tuple, at least

one element is a function returning a value. Each function is computed with its

proper thread of control. After each function has terminated, the active tuple

becomes a passive tuple created with the returned values in the same order as the

functions. The tuple only becomes visible at this moment: before completion,

the active tuple was not \visible" for other primitives.

Figure 3.1 shows an example of the use of Linda primitives. A process posts

on the tuple space the tuple ("toto", 9, 3.0) whose items are all actual.

Another process retrieves this tuple with ("toto", ?x, ?y). The template

used contains two formal items ?x and ?y, which are bound to 9 and 3.0.

The operation eval(f(u), g(v)) creates an active tuple. After completion this

active tuple becomes a new passive tuple, in our case (37, 99), 37 and 39 being

the returned values of respectively f(u) and g(v).

Linda has been applied extensively, for instance with Piranha [CFGK95]

for supporting adaptive parallelism (parallel computation on a dynamic set of

processors). Furthermore, Linda has inspired many new coordination models.

We discuss some of them in the next section.

38 CHAPTER 3. COORDINATION MODELS AND LANGUAGES

3.3.2 Linda-based Models

Many coordination models have evolved around the �rst and most in
uencing

coordination model, namely Linda. These models are constructed around a

shared dataspace whose elements are tuples. The semantics on the manipulation

of tuples and even the evolution of this data form di�erentiate the models. They

all have tried to address several drawbacks of the original Linda.

The most important enhancement, which was soon recognized, is the need of

modularity of spaces. This has led to several proposals for supporting multiple

spaces [Gel89] [Jen94], such as Bonita [RW97], Laura [Tol96], Polis [Cia91]

or Sonia [Ban96].

Another improvement of Linda can be achieved by o�ering more
exible

primitives in order to better the expressivity and the performance of the ma-

nipulation of tuples. This is, for instance, achieved by Bonita [RW97], which

de�nes a �ner grain notion of tuple retrieval by separating the search for a tuple

from the checking of its arrival. This separation allows to launch several parallel

requests on tuple spaces without being blocked after each invocation. An id is

then used for checking the arrival of the tuple. This scheme allows important

gains in performance. Note that Bonita also supports multiple tuple spaces

and the manipulation of groups of tuples for moving them from one space to the

other.

Due to its generative communication style that decouples processes in time

and space, Linda seems to have strong advantages for supporting the imple-

mentation of open systems. But in spite of its uncoupling character, Linda may

present several problems for implementing them.

In open systems, security requirements are of particular importance, because

such systems are highly dynamic and not predictable. However, the commu-

nication in Linda is very unsafe, because every process can potentially access

every tuple. Several works have tackled security issues of Linda. [vdGSW97],

for instance, suggests the use of strongly typed spaces, �eld access patterns,

tuple space access patterns and assertions. [BOV99] introduces cryptographical

methods, proposing the Secure Object Space model, in which a data element

can be locked with a key and is only visible for a process possessing a matching

key.

But security issues may not be the only diÆculties of Linda when imple-

menting open systems. As, in open systems, services may dynamically appear

and disappear, one sometimes want to ensure that a tuple is the result of a spe-

ci�c corresponding eval. This is precisely achieved by Laura [Tol94] [Tol96],

whereby processes exchange services through a shared service space (analogous

to the Linda tuple space). The elements contained in the service space are

forms for service o�ers, requests and results. A process providing a service puts

a service o�er form in the space. Another process interested in a service posts a

service request form onto the space; this will start a search for a matching service.

If both match, the corresponding service is executed and returns a service-result

form.

Another important enhancement of Linda is its integration in an object-

3.3. DATA-DRIVEN COORDINATION MODELS 39

oriented paradigm. This is the main aim of Objective Linda [Kie97], in which

tuples become objects and tuple spaces object spaces (OS): the coordination is

achieved using the production and consumption of objects over nested object

spaces. As objects are handled as encapsulated entities, the matching is based

on object types (de�ned using Object Interchange Language (OIL), a language-

independent notation) and on predicates de�ned by the type interface. As in

Linda, Objective Linda distinguishes between passive and active objects. A

passive object is a passive data that can be stored in an object space. When

it is in such a space, it is not possible to call methods on it. Active objects

execute their own activity operating on object spaces. In order to support dy-

namic composition of spaces, Objective Linda allows to assign dynamically

another OS to an active object. This is achieved by using so-called object space

logicals, which are references to OSs that can be passed around by active ob-

jects. The operations on tuple spaces furthermore include a timeout parameter,

which allows a compromise between communication that immediately returns

and in�nitely blocks: this is very useful for open systems, in which resources

may dynamically disappear.

Objective Linda has shown an integration of Linda in an object-oriented

paradigm. Recently, another integration proposal has been made, namely JavaS-

paces [Sun98]. Based on a matching mechanism, it allows to put and take groups

of objects from an object space. A particularity is that objects are stored per-

sistently in the space and that transactions over multiple spaces are possible. A

noti�cation mechanism is also proposed, allowing active objects to ask the space

to notify them when a speci�c object, which should match a given template, is

written in the space.

3.3.3 Models based on Multiset Rewriting

Models based on multiset rewriting [BM93] constitutes another group of data-

driven models. The coordination medium is composed of multisets, i.e. sets

whose elements can have multiple copies. A coordination model is then con-

cerned with the manipulation of the multisets, mostly de�ning rewrite rules.

Gamma (General Abstract Model for Multiset mAnipulation) [BM90] [BM93]

is one of the �rst proposals of this family of models. Gamma is based on a chem-

ical reaction metaphor. The model de�nes a unique operator � that attempts

to transform the whole data by applying reactions on the multiset. A reaction

is de�ned as a pair (R;A), where R denotes a reaction condition that must be

ful�lled in order to execute the action A. An action is a rewrite rule lhs �! rhs

that selects the elements of the multiset that match lhs and replaces them with

rhs. As long as a reaction is possible, the � operator applies it on the mul-

tiset until no more reaction is applicable (implicit termination condition). If

several reaction conditions are valid at the same time, a reaction is chosen non-

deterministically. Furthermore R and A are pure functions. Therefore, if a

reaction condition is true for disjoint subsets, the corresponding reaction can be

applied simultaneously on each subset, leading to a strong parallelism.

40 CHAPTER 3. COORDINATION MODELS AND LANGUAGES

Chemical Abstract Machine (CHAM) [BB92] follows the same metaphor

as Gamma by describing computation as a form of chemical reaction. But

CHAM principally enhances Gamma by allowing molecules to be encapsulated

into solutions. This leads to a hierarchical coordination medium. The interest-

ing property of CHAM is its generality: CHAM is a model that can be used

to represent non sequential computations based on multiset rewriting schemes.

It can thus be applied to map several coordination models (see [CJY95] for an

example).

Interaction Abstract Machine (IAM) [ACP93] is a model close to the

CHAM. An IAM is composed of several independent subsystems, named agents

by the model. The particularity of IAM is that an agent has a state, de�ned by a

multiset of resources. This multiset can evolve under the action transformation

rules (called methods) of the subsystem. A method, which has the general

form: A1; A2; :::; An �! B1; B2; :::; Bm, rewrites the multiset as follows: if the

state of an agent contains the resources A1; A2; :::; An, then they are replaced by

B1; B2; :::; Bm. If two di�erent methods can be applied on two disjoints subsets

of the state, they will be executed concurrently. In the opposite case, a method

is chosen non-deterministically. Concerning the communication, it is done with

broadcasting resources. Note that one of the drawbacks of IAM is that it does

not o�er means of structuring the environment.

The object-oriented logic language Linear Objects (LO) [BAP92] is based

on Interaction Abstract Machine and uses Linear Logic [Gir87]. In Lin-

ear Objects, methods are also rewriting rules, like IAM methods. However

the manipulating resources are implemented as tuples with variables. Thus, to

apply a method, each variable must be instantiated by pattern matching. The

corresponding tuples are then replaced with new tuples.

ShaDe [CCR96] [CR98] is an object-oriented coordination model and corre-

sponding language directly inspired from IAM. Methods of ShaDe classes are

the coordination rules describing the behavior of the objects. As in IAM, the

state of an object is de�ned by its associated multiset. It changes when the rules

are triggered, the state is rewritten, and the object receives a message. If the

head of the method, which can contain Linda in and rd, is satis�ed, the body

is executed. The body can write items in the object's multiset, write items in

other object's multisets, or create a new object. The sending of messages uses a

special form of multicast, because the message is received by each object whose

name matches the pattern. In this way, point-to-point, multicast and broadcast

communications can be expressed. Furthermore, messages are persistent: at its

creation, an object receives all messages that have been sent before and that

match its name.

Bauhaus [CGZ95] [Hup96] is an extension of Linda to a multiset rewriting

scheme. The model simpli�es Linda by unifying the notions of tuples and tuple

spaces in nested multisets supporting multiple spaces: a Bauhaus multiset can

contain primitive elements or other multisets. The model also uses a matching

mechanism for posting and retrieving multisets but this mechanism is based

on set inclusion rather than on the order, value and type-sensitive matching

3.4. PROCESS-ORIENTED COORDINATION MODELS 41

scheme of Linda: templates (anti-tuples) are not necessary anymore. Unlike

in Linda, there is no di�erence between passive data objects and active data

objects (processes): the out primitive is used for both types of objects and

processes are represented explicitly in multisets by using tokens. Furthermore,

the in and rd primitives do not have side-e�ects, but are functions returning

multisets.

3.4 Process-oriented Coordination Models

With process-oriented (or control-driven) coordination models, the state of the

computation at any moment in time is de�ned in terms of only the coordinated

patterns that the processes involved in some computation adhere to [PA98c].

Therefore an application is centered on the processing or
ow of control. The

attention is concentrated on processes and their organization. The data does

not play a role in the coordination.

This orientation mostly brings with itself a stylistical separation between

computation and coordination, providing a new coordination language totally

distinct from a computation one. The components being coordinated are con-

sidered as black boxes that produce and consume data on well-de�ned interfaces

to the external world, usually referred to as ports. This separation results in a

more comprehensible separation of concerns and strongly helps reusability.

Connections between ports are mostly of a channel nature, allowing point-

to-point interactions. In addition to these communication means, many models

broadcast control messages or events in the environments. These last are used

to inform other processes of state information. A typical example is an event

that is sent by a process in order to indicate that it has terminated.

The variation of the concepts presented results in several di�erent coordi-

nation models. Events can be simple information units or contain data of a

speci�c type. They can be transmitted through the connections or broadcast

in the environment. The semantics of the connections is also a varying factor.

In addition to that, several degrees of dynamicity are allowed: connections can

be totally static or evolve during an application, and ports can be identi�ed by

other processes or not.

The next section review the IWIM model of coordination, a typical control-

driven model that de�nes a family of models, andManifold, a language-binding

of IWIM. We then discuss other control-driven approaches.

3.4.1 IWIM

Idealized Worker Idealized Manager or IWIM for short [Arb95] [Arb96] is

a general model of coordination. As basic abstractions, IWIM de�nes processes,

ports, channels and events.

A process is considered as a black box. It communicates through ports of

connections, which are named openings in the bounding wall of the process.

To communicate, a process writes and reads units (data) on its ports. It is not

42 CHAPTER 3. COORDINATION MODELS AND LANGUAGES

aware to whom information is transmitted to: the communication is anonymous.

Two classes of processes may exist: managers and workers. Workers basically

perform a (computational) task. Managers create new processes and regulate the

connections between workers by dynamically binding ports of di�erent workers

into connections, or disconnecting existing connections. In general, no process

determines its communication with other processes by itself. Note also that a

process can play both the role of a worker and a manager at the same time.

This allows the construction of hierarchies of processes, where the leaves are

pure workers.

The established connections are of channel nature. A channel is considered

to be unidirectional, connecting a producer process (source side) to a consumer

process (sink side), and reliable, assuring that units are transferred without loss,

error, or duplication. IWIM de�nes �ve general channel types, di�erentiating

themselves in their way of handling disconnections and the resulting pending

units (units created by a producer that have not yet been consumed). An

S Channel is a synchronous channel, in which pending data never exists and

producer-consumer pairs are always required for the existence of the channel.

The four other types are of an asynchronous nature. A BB Channel (B for

break) is disconnected if one of the two sides is disconnected. A KK Channel

(K for keep) does not disconnect from one side if it is disconnected from the

other. A BK Channel disconnects from its producer if it is disconnected at the

consumer side; there is no disconnection at the consumer side if the producer is

disconnected. A KB Channel has the opposite semantics of a BK channel.

Reading on a port blocks the corresponding port until a unit is available.

Writing on a port blocks as long as the port is not connected, and, in the case

of an S channel, until a producer has read the data.

Events are used for information exchange. They usually indicate process

state information to other processes. An event is therefore a signal broadcast

in the environment, causing an event occurrence, composed of the identity of

the event and of its producer. Every process in an environment may capture an

event occurrence and react to it. However an event is caught only by interested

processes.

Manifold

Manifold [AHS93] is a coordination language based on IWIM. To every ba-

sic IWIM abstraction corresponds a Manifold language construct. The whole

communication is asynchronous, because Manifold uses asynchronous chan-

nels, and the launching and reacting to events does not synchronize the cor-

responding ports. Moreover, the separation between computation and coordi-

nation is enforced by clearly distinguishing computational from coordination

processes. A computational process may be implemented in any language ex-

tended with primitives for producing and consuming units on ports, and raise

and receive events. A manager process implemented in the Manifold language

do not provide means for computation.

Manifold supports BB, KK, KB, and BK channels with in�nite capacity.

3.4. PROCESS-ORIENTED COORDINATION MODELS 43

Only KB and BK streams can be re-connected. On producing an item on a

port that is connected to several streams, this item is replicated for each con-

nection. A read on a consuming port connected to several streams will choose

non-deterministically an item.

The evolution of the communication topology is event-driven, based on state-

transitions. An event is a signal that is not parameterized and does not transmit

data. When an event has been triggered, it is propagated in the environment.

An interested process receives it automatically in its event memory which is a

set of events (only a single copy of identical events is possible). A process can

then examine and react to event occurrences.

A coordinator (manager) process is called a manifold. Its body consists in

several states, composed of a label and a body. The label, which is a condition

for the transition to the state, is de�ned on the event memory as a conjunction

of patterns that match observed events. The body of a state de�nes a set of

actions executed at the time of a transition to that state. These actions which are

executed in a nondeterministic order can create new processes, broadcast events,

post events in their own event memory and create or reconnect connections.

After execution of the actions and on satisfaction of a new label condition,

all streams that have been constructed and/or (re-)connected in that state are

preempted, i.e. broken at their B-end, and a transition to the new state is

realized.

Manifold has been applied to diverse application domains (see for instance

[PA98b] or [EL99]). Furthermore, it is promoted for the support of distributed

and parallel software engineering [Pap98]. It has also been proposed for the

modeling of activities within information systems [PA98a], whereby the modeling

framework presented di�erentiates three steps in the design: �rstly, a graphical

representation views the interrelationships and behaviours of every process (this

can be done using Visifold [BA96]); secondly, each process and its reactions

to launched events are described semi-formally; thirdly, the implementation is

realized.

3.4.2 Other Approaches

A coordination language very near to Manifold is ConCoord [Hol96]. Con-

Coord separates processes into computation and coordination processes. Com-

putation processes carry out a sequential computation in any language (extended

with few communication primitives), communicating anonymously through ports.

They are created and killed by the coordination processes, which are imple-

mented in ConCoord's coordination language: coordination processes are only

concerned with concurrency, managing the dynamic evolution of the program

structure by creating channels between ports.

Con�guration or architectural description languages, likeDurra [WDGL96],

the Programmer's Playground [GSM+95], or RAPIDE [SDK+95], deal

with the construction of complex software by interconnecting existing compo-

nents. They are concerned with the separation of the structural description

of the components from their concrete behaviour. For these reasons, they can

44 CHAPTER 3. COORDINATION MODELS AND LANGUAGES

be considered as coordination languages too, mostly belonging to the process-

oriented family.

Darwin [MNK93] [MDK96] is a typical con�guration language. Its principal

aim is to permit the dynamical structuring of parallel and distributed programs

in groups of processes that communicate with message-passing. Darwin sep-

arates the description of the structure or the interconnections between process

instances from the actual code that implements the process computation. To

achieve this purpose, processes are de�ned as context independent types with well

de�ned interfaces; thus they only possess references to local entities and refer to

ports for communication. A process can export (provide) its own ports, which

are then used to receive data. A process can also have references to remote ports

that it has required. Furthermore, it is possible in Darwin to de�ne components,

which are speci�ed by a set of processes and/or other component types, a set of

instances of these types, and bindings between port variables (provided ports)

and port references (required ports) of these instances. A component can also

have its own port variables and references. But the most powerful mechanism of

a component is its ability to be generic. This genericity is achieved by de�ning

a component specifying the structure of interconnected components, without

de�ning the implementation of each instance. An implementation (a compo-

nent type) can be assigned to the generic component at runtime; its interface

must only be compatible, namely by having the identical number of required

references and provided ports, declared in the same order.

Toolbus [BK96b] [BK96a] proposes a di�erent approach, by providing a

communication bus (a Toolbus) to which components or tools can be con-

nected and thanks to which they can be coordinated. Tools, which can be

totally heterogeneous, can so be combined into a coherent system. They cannot

communicate directly: the interactions between them are handled through the

Toolbus by controlling them with a script. Furthermore, an adapter acts as a

wrapper of the tools with the task of mapping the tool's internal data format

and message protocols into those of the Toolbus. The Toolbus is then com-

posed by the parallel composition of processes that represent the tools. These

processes are described as expressions including communication primitives, and

process creation and composition operators. Note that Toolbus has been used

for several applications. For instance, a framework has been developed for debug-

ging distributed applications [Oli97]; it is built on existing sequential debugger

techniques and implementations.

[Buf97] proposes theContextual Coordinationmodel, which is an IWIM-

like model that focuses on coordination in distributed objects systems. To that

aim, the model separates objects from their execution contexts. A context is a

group of active objects that have on their turn their own context; it is therefore

an encapsulation mechanism that delineates executing worlds. In this hierarchy

of contexts, objects interact through connections linking gates (output ports)

with methods (input ports).

The coordination languageCoLa [HAK94] is intended at the implementation

of applications in massively parallel environments. In such systems, the cost

3.5. HYBRID COORDINATION MODELS 45

of maintaining a global coherent computation space would be very important.

For that reason, CoLa has no global name space: each process has a locally

temporary view of the system (locality). This is achieved using for each process

two abstractions: i) a Range of Vision de�nes the set of processes a process

can communicate with at a speci�c moment of its life; and ii) a Point of View

de�nes a group of processes in a particular Range of Vision, allowing to abstract

communication topologies such as rings or hypercubes. In order to communicate,

CoLa extends the message passing paradigm by adding to a message: (i) a high-

level descriptor indicating the sender, the set of receivers, and a set of methods

used by a receiver to treat the body of the message; and (ii) a high-level protocol

describing the communication protocol used to deliver the message.

3.5 Hybrid Coordination Models

The last sections have presented important coordination models and languages,

following the classi�cation into data-driven and process-oriented approaches. It

is worth to note that most data-driven and process-oriented models can respec-

tively be classi�ed in logically non-distributed (communication with shared data

spaces) and logically distributed (communication with message passing) models,

which is a taxonomy of distributed computing models proposed by [BST89].

The investigation in coordination models and languages is still an important

research area that has many open issues [Cia99]: study of semantics issues of

coordination models; extension of existing models or proposal of new models

and languages adapted for speci�c application areas; further investigation of

the use of coordination technology for the internet (see for instance [GNSP94]

[CKTV96]). An important source of inspiration for appropriate coordination

models is the comparison of the models with one another. This may be realized

by studying the expressive power of the communication primitives of coordina-

tion models (see for instance [BJ99] for a comparison of Linda-like models), or

by comparing models with case studies (see for instance two case studies [dJ97]

and [CNT98], and corresponding sample implementations [HPS97] [SvK97] and

[Scu99] [RV99]). Both data-driven and process-oriented models present several

advantages and drawbacks depending on the application domains. For this rea-

son, the confrontation between data-driven and process-oriented models seems

to be especially fruitful. Indeed, several hybrid models [COZ99b] have already

been designed by wanting to improve a model of one of the two families or by

explicitly confronting and integrating elements from one family in the other. We

discuss some hybrid models hereafter. The �gure 3.2 summarizes the complete

taxonomy presented.

A �rst group of work integrates the event mechanism into shared datas-

pace models. This can be done by considering a tuple space as being reactive

in the sense that the space can react to communication events rather than to

the communication state changes only. Thus, from the point of view of the

coordination medium, the observability is shifted from the tuples to the com-

munication operations over the tuples. When an operation is realized on the

46 CHAPTER 3. COORDINATION MODELS AND LANGUAGES

Data-driven Process-oriented

COORDINATION MODELS AND LANGUAGES

- Linda, Bonita
- Laura
- Objective Linda,
 JavaSpaces
- CHAM, Gamma,
 IAM, Bauhaus

- IWIM
- Manifold, ConCoord
- Darwin
- Toolbus
- Contextual Coordination
- CoLa

- Law-Governed Linda
- ACLT, TUCSON, MARS
- IWIM-Linda
- ECM, STL, STL++, Agent&Co

Figure 3.2: A taxonomy of coordination models and languages.

space, a corresponding reaction is triggered. For most Linda-derived models,

the reactions cannot be modi�ed, because their semantics is �xed by the model.

But reactive models allow reactions associated to speci�c communication events

to be programmed, leading to the notion of programmable coordination medium

[DNO97]. When a communication operation is executed, a reaction catching the

event produced atomically executes a sequence of operations which usually have

access both to the space and the information associated with the event. The idea

of a programmable medium can be found in the ACLT model of coordination

[Omi95] [DNOV96], which extends Linda with logic1, multiple, and reactive

tuple spaces. In the context of mobile and network-aware agents, two models

also integrate a programmable medium: TuCSoN (Tuple Centers Spread Over

Networks) [OZ98] [OZ99] and MARS [CLZ98]. Note that, applied to MASs, a

programmable coordination media can elegantly support the programming of

new laws regulating the communication in a MAS [COZ99a] [COZ99b]. This

allows a design focus on the interactions that is even stronger than the view

presented in this thesis, because one can adapt the coordination laws for its

needs.

Law-Governed Linda [ML94] is also a model that follows the notion of

programmable media. The basic motivation of Law-Governed Linda is the

inherent security problems of Linda that we already have discussed in section

3.3.2. In order to control each exchange of tuples through the tuple space, the

model forces every process to adopt speci�c laws that control each exchange

of tuples through the tuple space. For achieving this goal, Law-Governed

Linda attaches a controller to every process. Each controller, which is in charge

of regulating the exchange of tuples, has a copy of the law, and only allows a

communication if it conforms to the law. This law regulates the occurrence of

so-called controlled events that occur at the boundary between a process and

1A logic tuple space is a collection of �rst-order unitary clauses, identi�ed by a ground

term. This space can be used both as a communication device and as a knowledge base.

3.6. PREREQUISITES FORACOORDINATIONMODEL AND LANGUAGE47

the medium. It determines the e�ect of an event using a prescription, which

is the ruling of the law, realized with a sequence of primitive operations. An

example for the ruling of the law controlling an out could be to transform the

corresponding tuple by concatenating some useful information.

Another hybrid model that combines control-driven elements with a data-

driven model is IWIM-Linda [PA97a] [PA97b]. As indicated by its name, this

model integrates the functionality of IWIM in Linda, o�ering thus secure and

private communication channels to Linda. IWIM-Linda is basically composed

by three types of processes. Firstly, there are ordinary computation processes,

which have access to the tuple space by means of Linda operations; they should

not have information about the other computation processes. Two classes of

computation processes are distinguished: IWIM-compliant processes (i.e. able

to communicate via ports, and to broadcast and receive events, all via the tu-

ple space) and non-compliant ones. Secondly, a monitor process is charged of

intercepting all communication between a process and the tuple space; it trans-

fers sent data to the concerned ports and treats events. Thirdly, coordination

processes establish the streams between the monitor processes, which represent

the computation processes. Although the model integrates the functionalities of

IWIM into a concrete data-driven model (namely Linda), the cited papers show

that IWIM can be embedded in other shared dataspace models in a similar way

as for IWIM-Linda.

The ECM coordination model, presented in this thesis, is also a hybrid

model, because it integrates shared dataspace functionalities in a process-oriented

view. But before to explain ECM and its instances in the next chapters, we dis-

cuss which prerequisites we have considered for our coordination model and

language to be used for a simulated embodied autonomous agents' system.

3.6 Prerequisites for a Coordination Model and

Language

Having motivated in section 2.6.3 the use of a coordination model and language

for designing MASs and for mapping them on a concurrent and distributed

architecture, we must ask ourselves which prerequisites a coordination model and

language should ful�ll, which properties they must have. Our design decisions

have been guided by the class of MASs that we want to support, that is, by

systems composed of simulated embodied agents (see section 2.5). This does

not mean that our coordination model and language cannot be applied to other

types of MASs: chapter 9 indeed discusses the implementation of an application

belonging to another class of MASs.

We want therefore the following prerequisites:

� Any agent grouping mechanism that encapsulates a set of agents should

be supported, allowing local communication and a structuring mechanism

for the environment. Furthermore, means to describe nested environments

should also be o�ered.

48 CHAPTER 3. COORDINATION MODELS AND LANGUAGES

� The second point, which concerns the representation of agents, can be

summarized by three aspects:

Firstly, agents should be considered as black boxes. They should encapsu-

late data and behaviour that remain non-accessible for other entities, run

concurrently from one another, and act in a pro-active fashion, i.e. they

must have the initiative of their action. In this way, the possibility of a

basic operational autonomy should be ensured.

Secondly, we must provide an agent with basic means to access its sur-

roundings. For this reason, an agent should have well-de�ned interfaces or

boundaries with the outside world, through which it can communicate (we

name them ports). These boundaries are precisely useful for supporting

sensors and e�ectors.

Thirdly, we want agents to communicate anonymously through these bound-

aries, because anonymous communication allows to view communication

as an action in the environment and to abstract it from the environment.

� Concerning the means of communication for an agent, we want to support

basic communication paradigms, namely peer-to-peer, group and gener-

ative communication. In this way, we insure private channels between

agents and provide accesses to blackboards. These latter allow interacting

agents to be decoupled in time and space, which is a strong advantage.

The setup of the communication means should be realized in a decentral-

ized manner. No mechanisms should be at disposition to bind explicitly

agent boundaries with one another, i.e. to create explicitly connections

between these boundaries.

The coordination laws ruling every communication should be clearly de-

�ned.

� Dynamicity is a key element: agent creation/destruction and changing

communication means should be supported at runtime. The semantics

of freed connections therefore has to be carefully speci�ed. Again, this

dynamicity should be supported in a decentralized manner: as we are

interested in emergent collective behavior properties, a central control over

the interactions should be avoided.

� We should use few mechanisms, so that the designer of an application

really concentrates on coordination issues.

Object-oriented technology is especially suited at implementing MASs, ba-

sically because agents are encapsulated entities. This is the reason why

our coordination language should be incorporated in an existing object-

oriented language. Moreover, the coordination language is intended to

project a multi-agent application onto a concurrent and distributed archi-

tecture. This means that it must exploit concurrency and distribution.

3.6. PREREQUISITES FORACOORDINATIONMODEL AND LANGUAGE49

STL [Kro97] [KCD+98] [SKCH98] [KCDS98] (reviewed in chapter 5) has

been proposed as a coordination language for multi-threaded applications on

a cluster of (UNIX) workstations. We considered the philosophy of STL as

presenting high potentials for implementing MASs in the sense of the proposed

prerequisites. However, the evaluation of STL showed us several drawbacks

with respect to our target. For this reason and in a desire of continuity in the

research, we decided to abstract STL's basic ideas and de�ned, together with

colleagues from the PAI group, the general coordination model ECM (presented

in the next chapter) [SCKH98] [KCDS98] [SCH99]. We then proposed STL++

[SCKH98] [SCH99] [SCK+99] (presented in chapter 6) as a new instance of

ECM integrating our requirements in order to support the implementation of

our target applications.

The next chapters thoroughly present the coordination model ECM and its

instances, and more speci�cally STL++.

50 CHAPTER 3. COORDINATION MODELS AND LANGUAGES

Part II

ECM and its Instances

51

Chapter 4

The ECM Coordination

Model

4.1 Introduction

In this chapter, we present the ECM1 coordination model [SCKH98] [KCDS98]

[SCH99], which proposes coordination abstractions that are orthogonal to com-

putation. ECM is a general model of the coordination languages STL2 [Kro97]

[KCD+98] [SKCH98] [KCDS98], STL++ [SCKH98] [SCH99] [SCK+99] and

Agent&Co. It includes the following design characteristics:

� The model restricts features to the minimum, in order to concentrate on

coordination duties only. So, only �ve abstractions have been proposed.

� The model supports only anonymous communication; this means that the

entities communicate anonymously through communication means without

any knowledge of the identity of the communication partners. Further-

more, entities communicate through well-de�ned ports of communication,

which are openings to their surrounding. This has several strong advan-

tages:

{ the programmer can treat entities as black boxes and abandon depen-

dencies coming from the identi�cation of communication partners;

{ this forces the designer to de�ne clean interfaces and it helps the

reusability of code.

� The
ows of communication are automatically established, according to

the state of the communication interfaces. No coordinator is in charge of

binding ports in order to establish connections; this is done implicitly by

the system.

1Encapsulation Coordination Model
2
Simple Thread Language.

53

54 CHAPTER 4. THE ECM COORDINATION MODEL

� Modularity is a key element of ECM, in the sense that the model supports

encapsulation and nested blocks.

� ECM introduces a preliminary level of privacy, because connections are

private means of communications: only participant processes may read

or write information on these connections. However, there is no support

for stronger security such as encryption or identi�cation of communication

partners.

Figure 4.1 gives a �rst overview of the programming metaphor used in ECM.

The model uses an encapsulation mechanism as its primary abstraction (referred

to as blops3), o�ering structured separate name spaces which can be hierarchi-

cally organized. Within them, active entities communicate anonymously within

and/or across blops through connections, established by the matching of the

communication interfaces (the so-called ports) of these entities.

Therefore, ECM consists of �ve building blocks:

1. Blops, as an abstraction and modularization mechanism for a group of

processes and ports;

2. Processes, as a representation of active entities;

3. Ports, as the interface of processes/blops to the external world;

4. Connections, as a representation of connected ports.

5. Events, as a mechanism to support dynamicity (creation of new processes

or blops);

According to the general characteristics of what makes up a coordination

model and corresponding coordination language (see section 3.2.2), these ele-

ments are classi�ed in the following way:

� The Coordination Entities of ECM are the processes;

� There are two types of Coordination Media in ECM: ports and connections

which enable coordination, and blops, the repository in which coordination

takes place;

� The Coordination Laws are de�ned through the semantics of the ECM

events, the creation of the media, the operations on the media, and the

state changes of the media (as a result of operations on them or of state

changes of other media).

Designing an application using ECM consists of creating a hierarchy of blops

in which several processes run. These processes communicate and coordinate

themselves via events and connections. Ports serve as the communication end-

points for connections which result in pairs of matched ports. The next sections

explain step by step each ECM key element4.
3This is a term STL has coined.
4Relating to the prerequisites presented in section 3.6, section 6.9.2 discusses the use of the

key elements of ECM/STL++ for MASs.

4.2. BLOP 55

PORT3.

BLOP1.

PROCESS2.

BlackboardGroupStream

CONNECTION4.

EVENT5.

Figure 4.1: The ECM coordination model.

4.2 Blop

A blop is a mechanism to encapsulate a set of objects. Objects residing in a

blop are by default only visible within their \home" blop. Blops have the same

interface as processes, a (possibly empty) set of ports, and can be hierarchically

structured. Blops serve as a separate matching name space (see section 4.5)

for port objects, processes, and subordinated blops as well as an encapsulation

mechanism for events.

4.3 Process

A process in ECM is a typed object with a (possibly empty) set of ports. Pro-

cesses in the ECM model do not know any kind of process identi�cation; instead

a black box model is used. A process does not have to care about which process

information will be transmitted to or received from.

Process creation and termination are not part of the ECM model and are to

be speci�ed in the instance of the model.

4.4 Ports and Connections

Ports are the interface of processes and blops to establish connections to other

processes/blops. They can be considered as a gateway between the inner side

and the outer side of their owner (port or blop).

56 CHAPTER 4. THE ECM COORDINATION MODEL

Port type

Names
(only used for
port matching)

Set of feature values
(description of the
port characteristics)

Signature
within a blop

Figure 4.2: Signature of a port.

4.4.1 Port Features

Each ECM language binding must specify a minimal set of port features, each

of which describes a port characteristic. The communication feature is manda-

tory for every ECM instance and must support the following communication

paradigms:

� point-to-point stream communication (with message-passing semantics):

information transits from one entity to another through a private channel;

note that the communication partners are not identi�ed, because ECM

only supports anonymous communication;

� closed group communication: only the members of the group can receive

and send information with multi-cast semantics;

� and blackboard communication, which allows generative communication.

Additional features are available to re�ne the semantics of the communication

between ports. The ECM coordination model does not specify them, because

they are de�ned by each ECM instance.

The set of feature values of a port de�nes its type. A port is created with

one or several names. Names are not to be used for identi�cation, but for

matching purposes. The names and type of a port are referred to as its signature.

Figure 4.2 summarizes these notions.

4.4.2 Connections

Connections are established automatically as the result of the matching of ports.

Resulting from the basic port semantics, the following generic types of connec-

tions are possible (see �gure 4.3):

� Point-to-point Stream: 1:1, 1:n, n:1 and n:m communication patterns

are possible;

� Group: messages are multicast to all members of the group. A closed group

semantics is used, i.e. processes must be members of the group in order to

distribute or receive information in it;

� Blackboard: messages are placed on a blackboard used by several processes;

they are persistent and can be retrieved more than once in a sequence

de�ned by the processes.

4.5. PORT MATCHING 57

Stream

GroupBlackboard

Figure 4.3: ECM connections.

4.5 Port Matching

The matching of ports is de�ned as a relationship between port signatures. Four

general conditions must be ful�lled for two ports to match:

1. both must share at least a common name;

2. both must belong to the same level of abstraction;

3. both must belong to di�erent objects (process or blop);

4. both types must be compatible: a compliance relationship must be de-

�ned for every feature in the ECM instance5. Regarding the communica-

tion feature, ECM requires that both ports have the same communication

paradigm.

The second matching condition has a particularity in what concerns blop

ports. As a blop port is a gateway between the interior and the exterior of a

blop, it may be connected both on the inner side and the outer side; thus, with

regards to this condition, such a port is considered to belong both to the inner

5Section 6.4 presents the features used for STL++ and the compliance relationship for each

of them.

58 CHAPTER 4. THE ECM COORDINATION MODEL

1

2

3

matching?

Figure 4.4: ECM port matching (signatures are indicated as a spiral).

abstraction level (the owner blop) and the outer abstraction level (the father

blop). This means that the matching is independently realized on each side in

order to establish respective connections.

As we have already mentioned, the matching of ports is automatically es-

tablished. This means that there exists no language construct to bind ports in

order to establish a connection: the matching is therefore realized implicitly.

Conceptually, the matching is established in the following manner (see �g-

ure 4.4). If two ports are created by their respective entity within the same blop,

then their signatures are tested for compliance: if the two signatures have a name

in common and their types are compatible, then a connection is established with

a semantics depending on the port types.

4.6 Events

Events can be attached to conditions on ports of blops or processes. Conditions

check the port state on which they are attached, determining when the event

will be triggered in the blop. Therefore, when a condition is ful�lled, the corre-

sponding event is executed; this means that the event runs an action to which

it was assigned. An event is not to be understood as a control message, but as

a �red action6. Typically, it creates new processes or blops.

Each language-binding must determine its proper conditions (see section 6.6

for STL++ condition de�nitions). Condition checking is implementation de-

pendent.

4.7 ECM Instances

ECM is a general model of coordination in the sense that it de�nes a frame

6ECM does not de�ne a broadcast mechanism, because the model wants to restrict com-

munication through ports and connections. However, it is possible to simulate a restricted

broadcast within a blop by attaching a default group port with a common name to each

process in the blop.

4.7. ECM INSTANCES 59

that must further be speci�ed by its instances. For example, the model does

not impose which port features must be supported by the language binding.

One exception exist for the communication feature. But also in this case, the

semantics of each arisen connection must be speci�ed.

Figure 4.5 summarizes the three existing instances of ECM:

� STL, which has been the subject of another thesis [Kro97], has been fully

implemented as a separate language that must be used with a computa-

tion language implementing the coordinated processes. STL is applied

to multi-threaded applications in the context of network-based concurrent

computing.

� STL++, which is the main subject of this thesis, is an object-oriented

instance of ECM that follows the prerequisites of chapter 3 for our target

class of multi-agent systems. It has a single language approach, i.e. the

language is implemented as a library extended by few macros. The object-

oriented integration is a target design issue: every abstraction of ECM

is described by a class, and the primitives on these abstractions become

member functions except some creation macros. Furthermore, STL++

emphasizes dynamicity and uniformity in the realization of the ECM con-

structs.

� Agent&Co, which is still an ongoing research project, tries to enhance

STL++ in two ways. Firstly, Agent&Co slightly extends ECM in order

to support mobility of active entities over blops. Secondly, the language is

implemented in Java over an object request broker architecture [OMG97b]

in order to enhance portability.

These three ECM instances are presented in the next chapters. Chapter 5

presents the coordination language STL. After that, chapter 6 is devoted to a

thorough description of our coordination language STL++, accompanied by an

overview of its implementation. Agent&Co is introduced in chapter 7.

STL
Separate coord. language
Multi-threaded applications

STL++
Object-oriented library
Multi-agent systems

Agent&Co
Java Mapping over an ORB
Multi-mobile-agent systems

The ECM
model of coordination

Figure 4.5: The ECM instances with their implementation and target applica-

tions.

60 CHAPTER 4. THE ECM COORDINATION MODEL

Chapter 5

The STL Coordination

Language

5.1 Introduction

STL1 [Kro97] [KCD+98] [SKCH98] [KCDS98] is applied to multi-threaded ap-

plications on a LAN of UNIX workstations. STL materializes the separation

of concern as it uses a separate language exclusively reserved for coordination

purposes; it however provides some primitives which are used in a computation

language to express interactions between the entities. The implementation of

STL is based on Pt-pvm [KHS96], a library providing message passing and

process management facilities at thread and process level for a cluster of work-

stations. In particular, blops are implemented as heavy-weight UNIX processes,

and processes are realized as light-weight processes (threads).

An application written using STL is composed of two parts (see �gure 5.1

as an illustration):

� The computation part implemented in an ordinary computational lan-

guage (�le app-func.c). The implementation supports the C program-

ming language [KR78]: every process is implemented with a function that

is launched as a thread.

� The coordination part implemented in STL (�le app.stl).

From the STL code (app.stl), the STL-compiler produces pure C code

(app.c), which uses the Pt-pvm communication API; the generated C �le

(app.c) together with the computation �les (app-func.c) must then be com-

piled and linked together with the Pt-pvm and STL runtime libraries, in order

to generate the executable (app).

As already stated, STL implements only coordination duties of processes im-

plemented in a computation language (namely C). However, several primitives

1
Simple Thread Language.

61

62 CHAPTER 5. THE STL COORDINATION LANGUAGE

STL COMPILER

C COMPILER

app.c

app.stl app-func.c

app.o app-func.o ptpvm.a stllib.a

LINKER

app

Figure 5.1: Programming environment of STL.

have been implemented to be used in the computational language. They are

necessary to interact with the STL coordination elements. The set of primitives

includes the following families: i) Operations to dynamically create ports, re-

ferred to as dynamic ports; note that the port type de�nition can only be done

in the coordination language; ii) Operations for process management, namely for

dynamic creation of processes from within the computation language; iii) Meth-

ods to transfer data from and to ports.

Figure 5.2 gives a �rst impression of what STL code looks like. In a default

world blop (line 1), which is a root blop encompassing every other entity, a

hierarchy of processes and blops are de�ned (process the process and blop

the blop at lines 3 and 10) and then created (lines 14 and 16). This shows that

the hierarchical structure is used yet at de�nition level, because a blop is always

de�ned within another blop.

5.2 Blops

A blop is de�ned with a speci�c name; this name is used by an STL code to

create new instances of blops. It is possible to create blops on speci�c computers,

or to distribute them transparently on a cluster of workstations (which is done

by default if no machine name is indicated).

As blops are hierarchically de�ned, their instanciation results in a recursive

creation of all enclosed blops and static processes. At creation, an identi�er is

assigned to a blop; it is used only for referring to the ports of the newly created

blop within its creator (mostly to attach events to such ports) and is not used

by other blops.

5.3. PROCESSES 63

1 blop world f
2 // Process de f in i t i on
3 process the p roce s s f
4 P2Pin port1 <"INPUT">;
5 BB port2 <"BB">; // with i t s ports
6 . . .

7 func fp ; // Thread entry point
8 g
9 . . . // More processes

10 blop the b lop f
11 . . . // A new blop
12 g
13 . . . // More blops
14 create process the p roce s s p1 ; // Create processes
15 . . .

16 create blop the b lop b1 () ; // Create blops
17 . . .
18 g // End of blop world

Figure 5.2: An STL code example.

Blop declaration and invocation are illustrated in �gure 5.3. Two blops are

de�ned: world and sieve. Using create blop, a blop is created somewhere

on the cluster (see line 9), assigning to it the name s. Lines 5 and 6 (port

de�nitions) are explained later.

1 blop world f
2 . . .
3 blop s i eve f // Declaration blop s ieve
4 // Two ports : types and names
5 Group a <"CONNECTOR">;

6 P2Pout b <"RESULT">;
7 g
8 . . .

9 create blop s i eve s () ; // Create blop
10 g

Figure 5.3: Blop declaration and invocation in STL.

5.3 Processes

STL distinguishes between static and dynamic processes. Static processes are

de�ned in blop declarations and created through the instanciation of the pro-

cess object inside the parent blop (by its creation). Dynamic processes can be

activated in the body of an event or within the computation language using the

primitive createProcess.

In STL, process creation assigns an identi�er to the process object. As for

blops, it is only used for referring to the ports of the newly created process within

its creator, mostly in order to attach events.

The introduction of a facility to create new processes in the computation

code comes from the necessity of dynamicity. In fact, the reduction of process

creation at blop instanciation and event triggering would substantially reduce

the expressivity of STL. This constitutes, however, a compromise regarding the

64 CHAPTER 5. THE STL COORDINATION LANGUAGE

Feature Explanation Possible Values

Communication Communication paradigm stream, blackboard, group

Saturation Amount of ports that may connect Integers or * for in�nity

Capacity Capacity of the port in data items Integers of * for in�nity

Synchronization Message passing semantics Integers of * for in�nity

Orientation Direction of data
ow in, out, inout

Table 5.5: STL features.

goal of STL to totally separate stylistically coordination from computation, i.e.

at code level.

Using the keyword func, the de�nition of a process must indicate a function

name, which constitutes the thread entry point of this process. Thus, this func-

tion is implemented in the computation language, using as arguments the static

ports (see next section).

The termination of a process is issued when the corresponding function ter-

minates; thus the process disappears from the blop. STL does not treat the case

of pending connections of the terminated process; this may introduce important

inconsistencies. Chapter 6 will show how STL++ tries to solve the semantics

of process termination and more generally port termination.

Example 5.4 shows how a worker process is declared (lines 2 to 6) and created

(line 7).

1 // Process type worker
2 process worker f
3 P2Pin in <"WORK"> // input port
4 P2Pout res <"RESULT"> // output port
5 func worker ; // Thread entry point
6 g
7 create process worker w; // An instance

Figure 5.4: Process declaration and invocation in STL.

5.4 Ports and Connections

Table 5.5 gives an overview of STL's port features2. By combining them, a

user can de�ne in STL several port types. By default, some built-in types are

provided by STL. Their respective feature values are summarized in table 5.6.

The semantics of the resulting connections directly follows the semantics of the

matching ports.

The prede�ned ports encompass the following:

P2P

This port type realizes an asynchronous stream port. Sending data on

2Originally, STL denominates ECM's features as attributes. In order to have a uniformity

in the terminology of this thesis, we keep the term feature.

5.4. PORTS AND CONNECTIONS 65

Feature P2P BB Group MyPort

Communication stream blackboard group stream

Saturation 1 * * 5

Capacity * * * 12

Synchronization async async async async

Orientation inout inout inout in

Table 5.6: STL's built-in ports and a user de�ned port MyPort with correspond-

ing port feature values.

this port is non-blocking; getting data is blocking. The storage capacity is

set to in�nite (symbolized by *), and the saturation limited to one other

port. By varying the orientation feature's values, the following types are

achieved: an output port (P2Pout), an input port (P2Pin), or both (P2P).

Group

With this port, the group mechanism of ECM is realized. Every send op-

eration is based on multicast; the message items will always be transferred

to all members of the group, and only to them.

BB

The BB implements a blackboard port with a blackboard semantics for the

resulting connection. The messages can be stored and retrieved using a

symbolic name and a tag.

As depicted in table 5.6, the user can de�ne in STL new port types. For

instance, one can de�ne a 1:n point-to-point connection by setting the satu-

ration feature to n. For the concrete example of port type MyPort from table

5.6, �gure 5.7 shows the necessary code for the port de�nition. Synchronous

communication may also be achieved by setting the communication feature to

sync. Posting data on such a 1:n port will then block until all the n processes

have connected to the port and read the data.

1 port MyPort f
2 communication = stream ;
3 saturation = 5;

4 capacity = 12;
5 synchronization = async ;

6 orientation = in ;
7 g

Figure 5.7: De�ning a port in STL.

STL's port semantics presents several ambiguities. The �rst ambiguity re-

sults from distinguishing two kinds of ports: on one hand static ports as statically

created in the coordination language; and on the other hand dynamic ports as

created at runtime in the computation language. Figure 5.4 shows the example

of a static port creation: two asynchronous stream ports are created respec-

tively with \WORK" (line 3) and \RESULT" (line 4) as names. This distinction

66 CHAPTER 5. THE STL COORDINATION LANGUAGE

between static and dynamic ports introduces the following semantics diÆculties:

i) matching between a static port and dynamic port is not allowed; ii) events

can only be attached to static ports.

If one considers STL's port features in more detail, one will see that some

dependencies exist between them. For instance, the synchronization feature

can override the capacity feature; the reason is obvious: synchronous commu-

nication implies a capacity of zero.

Another problem of STL is the following: the language does not consider

direct deletion of ports. But this may, for instance, implicitly happen when a

process terminates; automatically, all ports must terminate. This restriction

can introduce semantic inconsistencies. Consider the case of \free" connections

within a blop. They will not be reused to be re-connected to free ports: data

may thus be lost.

5.5 Port Matching

The matching in STL follows the basic matching conditions of ECM (see section

4.5). Furthermore, for two ports to match, their communication and synchro-

nization features must be equal, both ports must not be saturated, and their

orientation features equal (in the case of inout) or contradictory (in the case of

in or out).

5.6 Events

ECM events are realized with event handlers inside a blop. An event handler is

only de�ned and used in STL code; there is no primitive de�ned in the compu-

tation language that can treat events.

Figure 5.8 shows how an event is typically de�ned and used. Lines 1 to 4

de�ne the event new worker. This event will create a new process worker and

bind recursively to its outgoing port out the same event, leading to an in�nite

recursion.

1 event new worker () f
2 create process worker new ;

3 when unbound(new . out) then new worker () ;
4 g
5 // Process type worker
6 process worker f
7 P2Pin in <"WORK"> // in port
8 P2Pout out <"WORK"> // out port
9 func worker ; // Thread entry pt

10 g
11 create process worker w;
12 // Attach event to port
13 when unbound(w. out) then new worker () ;

Figure 5.8: An example of event handling in STL.

5.6. EVENTS 67

After an event has been triggered, it must be re-installed in order to be re-

launched. The re-installation is often realized by the same event routine that is

currently processed.

STL has de�ned several conditions that test port states; they are checked

every time data
ows through the corresponding port or a process accesses the

port. An example is the unbound() condition that returns true if the port is

not yet matched to all its potential communication partners (see �gure 5.8, line

13).

Further details on STL can be principally found in [Kro97], and also in

[SKCH98] and [KCDS98].

68 CHAPTER 5. THE STL COORDINATION LANGUAGE

Chapter 6

The STL++ Coordination

Language

6.1 Introduction

With the experience of STL, it turned out that in ECM the separation of code

cannot always be easily maintained. Although the blackbox process model of

ECM is a good attempt to separate coordination and computation code, dy-

namic properties proved to be diÆcult to be expressed in a separate language.

This consideration led us to initiate the development of our new coordina-

tion language called STL++ [SCKH98] [SCH99] [SCK+99]. Starting from the

experience acquired with STL, a single language approach has been adopted:

STL++ implements the conceptual model of ECM by embedding it in a given

object-oriented language (namely C++ [Str97]) with coordination primitives re-

alized in a library.

This chapter is organized as follows. In this introduction, we expose the

principal design decisions of STL++ and give an overview of an STL++ appli-

cation. Sections 6.2 to 6.6 give a semi-formal presentation of STL++. Section

6.7 discusses a tutorial example implemented in STL++. Section 6.8 sketches

the main characteristics of a prototype implementation of STL++. Section 6.9

concludes the chapter with a discussion. Appendix A systematically presents

the core interface of STL++.

6.1.1 Design Decisions

In the following paragraphs, we want to explain the reasons that motivated the

de�nition of our new ECM instance. This is done by showing which design

decisions have been taken. It is straightforward that, being a mapping of the

coordination model ECM, STL++ directly follows the design characteristics

described in section 4.1. But, in addition, the language binding has the following

motives and conceptual decisions:

69

70 CHAPTER 6. THE STL++ COORDINATION LANGUAGE

� Dynamicity. The coordination language should support dynamicity as a

key element of our requirements (see section 3.6): the system should be

able to dynamically create and connect new services. In order to achieve

this, blops, processes and ports should be created dynamically and the

connection patterns should change during program execution. Processes

must also have the possibility to delete ports (bound connections may

terminate), whereby new ports can connect to existing ports or free con-

nections.

� Single language approach. As already said, our experience showed us that

an approach based on a separate coordination language makes compromises

with respect to its goal design, in the sense that it introduces several

facilities in the computation language in order to achieve the maximum

exibility in the interactions with coordination duties, especially in what

concerns dynamic aspects.

This is re
ected in STL, where several coordination elements are present

in the computation language to provide dynamic coordination facilities.

These elements include the de�nition of dynamic ports, few primitives

for creating dynamically these ports and launching also dynamically de-

clared processes, and operations for transferring data from and to the ports.

Hence, in ECM, dynamic properties cannot be totally separated from the

actual program code.

Therefore, in STL, in addition to the fact that each process and its ports

must be declared both in the computation language and in the separate

coordination language, a duplication of code concerning coordination du-

ties is often inevitable. As a result, this duplication may introduce some

diÆculties in managing an application.

For these reasons, STL++ is proposed rather as an extension of an existing

computation language, than as a de�nition of a separate one. In this way,

we achieve a uniformity in the programming methodology while maintain-

ing the expressivity of the host programming language, for instance that

of typing and control structures.

� Object-orientation. Object-orientation is a key design issue, in the sense

that the objective is an object-oriented coordination language. In STL++,

blops, processes, ports and connections become objects, and the di�erent

primitives become member functions. An STL++ program is then a col-

lection of classes and their instanciations.

Strong typing and class libraries allow an increase of the expressivity. Mod-

ularity and reuse of code are also important requirements for STL++ and

are automatically applicable in the object-orientation paradigm. In this

way, we make blops and processes to be parameterizable, which is not the

case in STL.

ECM processes and blops are implemented as active objects. But object-

orientation for these entities is restricted to the ECMmodel: the attributes

6.1. INTRODUCTION 71

of the active objects (blops and processes) are not accessible by other blops

and processes (not even ports), in order to limit communication through

the ports to the established connections.

� Simplicity and uniformity. STL++ should be restricted to the minimum

of constructs and follow a uniformity in their realization. For instance,

there is no more distinction between static and dynamic ports or static

and dynamic processes (as is the case in STL), because this introduces

semantic diÆculties. Moreover, message manipulations are handled by

ports: a user does not need to bu�er data before passing them to a port,

as it is the case in STL.

� Semantics. The semantics of each ECM construct should be precisely

de�ned in order to avoid any kind of ambiguity. Two issues are particu-

larly important in that respect. Firstly, the matching mechanism between

several ports must be cleanly speci�ed in order to avoid each confusion.

Secondly, as a consequence of enhanced dynamicity, the mechanisms and

the semantics of the termination of ports and processes must be studied

in order to keep consistency of the freed connections and their respective

pending data. This is only possible if the consistency state of each type of

connection is analyzed.

6.1.2 An Overview

Our systematic description of each STL++ element is illustrated by a simple

example, namely the sieve of Eratosthenes, which searches for prime numbers.

In [Kro97], the same example is described using STL. In order to allow a com-

parison, we expose the STL code in appendix B.

We brie
y recall how the sieve works and present the overall construction of

an STL++ application.

The Sieve of Eratosthenes

Figure 6.1 pictures the organization of the sieve. A source agent1 produces

integers. A �ltering pipeline is gradually constructed with �lter agents (sieve)

by attaching, on unbound ports, events that create new sieve agents; the used

event condition tests if the port is already bound or not. Each sieve agent

is responsible for one prime number by �ltering its multiples (the primes are

ascending in the pipeline). When it cannot divide a number, it writes it on its

port bound to the pipeline. If this port is not bound (which means that the

new number is a prime), an event creates a new sieve. The newly created sieve

agent receives its prime, writes it on a result port bound to a connection with

the source agent, and begins its �ltering job.

72 CHAPTER 6. THE STL++ COORDINATION LANGUAGE

2 3 5 7

source sieve sieve sieve sieve

Figure 6.1: The sieve of Eratosthenes.

Overall Construction of an STL++ Application

An STL++ application is a set of classes that inherit from the base classes

of the user library depicted in �gure 6.2. Several methods must then be re-

implemented. For the sieve example, �gure 6.3 shows the classes re-implemented.

First, the main procedure must initialize the system by calling STLppInit().

Then an instance of the main class must be created; this main class must inherit

from WorldBlop, which is the default blop containing all other entities. Last,

STLppTerminate() is called in order to wait for every activity in the system to

terminate; the system is then shut down.

Every blop and agent class must be pre-declared using the STL++ macro

declareRunnable. This macro allows to embed the instances of the respective

classes in a thread. The implementation must then de�ne the blop and agent

classes as a blop or agent with their respective constructor types; this is done

respectively with the macro defineBlop and defineAgent.

An application is launched on a distributed network of UNIX workstations:

a number of machines must be indicated at any program start. During program

execution, blops are transparently distributed over the cluster of workstations.

Agents are always created locally, i.e. on the same node as its creator.

6.2 Blops

A blop class inherits from the base class Blop and has to re-implement its start

method; this method contains the description of the blop. In it, the user must

�rst call Blop::start() in order to initialize the blop.

In STL++, new blops can be dynamically created at runtime. This creation,

which can be done by other blops, agents or events, results in the initialization

of all enclosed blops, ports and agents. Actually, the role of a blop is to handle

all its enclosed entities. Furthermore, as ECM asks for, a blop can also create its

own ports; these ports are then gateways binding the external with the internal

sides of the blop.

1ECM processes are named agents in STL++.

6.2. BLOPS 73

WorldBlop

Condition

AbstractPort

Event

STLpp

ThreadObj Entity
Blop

Agent

KK_Blop_inPort

KK_Blop_outPort

S_Blop_inPort

S_Blop_outPort

KK_outPort

S_inPort

S_outPort

S_Blop_Port

KK_Blop_Port
Group_Blop_Port

Stream_Blop_Port
Blop_Port

Process_Port

BB_Port

Group_Port

Stream_Port
KK_Port

S_Port

KK_inPort

Port

AccessedCond

GetAccessedCond

PutAccessedCond

TerminatedCond

MsgHandledCond

UnboundCond

SaturatedCond

Figure 6.2: STL++ user classes.

The blop creation is done using the macro createBlop. The user must

indicate to this macro the name of a blop class to create. No reference is given

back. Note also that the blop constructor can be parameterized as for normal

classes.

In �gure 6.4 can be found for our example the declaration of a blop (class

PrimeBlop) and the re-implementation of its start method.

WorldBlop

ThreadObj

Event

STLpp

Entity
Blop

Agent

World

PrimeBlop

Source

Sieve

NewSieveEvent

Figure 6.3: Classes of the example of the sieve of Eratosthenes.

74 CHAPTER 6. THE STL++ COORDINATION LANGUAGE

1 // Class PrimeBlop dec larat ion
2 class PrimeBlop : public Blop f
3 public :

4 PrimeBlop () ;
5 ~PrimeBlop () ;
6 void s t a r t () ;

7 g ;
8

9 // s tar t () method implementation
10 void PrimeBlop : : s t a r t () f
11 Blop : : s t a r t () ; // I n i t i a l i z e blop
12 createAgent (Source) ; // Create source agent
13 stopMe () ; // Wait for every ent i ty
14 g // to stop , and terminate

Figure 6.4: A blop class and the re-implementation of its start method for the

problem of the Sieve of Eratosthenes.

6.3 Processes

In STL++, ECM processes are named agents, because they are intended at

supporting the implementation of autonomous agents. Agent classes inherit from

the base class Agent and have to re-implement the start()method. Agents can

then be created dynamically by blops, through events or by other agents.

In order to create an agent, the macro createAgentmust be used, indicating

the name of the corresponding agent class. No reference is given back; there is

no identi�cation mechanism between agents: agents only communicate through

their ports.

In the start method, an agent is initialized with Agent::start(). As de-

�ned in the ECM model, to communicate, agents dynamically create ports of

prede�ned types through instanciation of a port C++-template class and call

communication methods on them.

In order to terminate, an agent has to call the method stopMe, which ter-

minates the agent with its ports and data. The pending connections remain as

long as they are bound on the other side. A connection that is free on one side

can be re-connected to other ports (see section 6.5). In that case, the matching

mechanism will consider free connections in priority to other ports.

Regarding the implementation, an Agent object is embedded in a light-weight

process (thread), which is in charge of creating an instance of the agent class

and launching the start method.

In �gures 6.5 and 6.6 can respectively be found the declaration of the agent

classes Source and Sieve, and the re-implementation of their start methods.

Although several notions are explained in the next sections, we brie
y explain

the start methods of these two classes.

After initialization, the source agent creates three ports: outP (line 18) for

feeding the pipeline with integers, inP (line 19) for sampling found primes, and

terminationP (line 20) for getting the number of primes found, thus entering

the termination phase. An event of class NewSieveEvent is created (line 22) and

attached to outP (line 23) in order to create the �rst sieve agent of the pipeline.

6.3. PROCESSES 75

1 class Source : public Agent f
2 public :
3 Source () ;

4 ~Source () ;
5 void s t a r t () ;
6 private :

7 KK outPort<int> �outP ;
8 KK inPort<int> � inP , � terminationP ;

9 int nextNumber , numberOfPrimes ;
10 void arch ive (int) ;

11 g ;
12

13 void Source : : s t a r t () f
14 Agent : : s t a r t () ; // I n i t i a l i z e source agent
15 numberOfPrimes = 1;

16 nextNumber = 2;
17 // Create ports :
18 outP = new KK outPort<int>(this , nV("INTEGERS") , 1 , INF) ;

19 inP = new KK inPort<int>(this , nV("PRIMES") , INF , INF) ;
20 terminationP = new KK inPort<int>(this , nV("PRIMES NBR") , 1 , INF) ;

21 // This event creates the f i r s t element of the p ipe l ine :
22 NewSieveEvent � e = new NewSieveEvent () ;

23 outP�>attachEvent (e) ;
24 outP�>put (nextNumber++); // I n i t i a l i z a t i o n of the
25 outP�>put (numberOfPrimes) ; // f i r s t s ieve
26 while (nextNumber < INT LIMIT) f // Main loop
27 outP�>put (nextNumber++); // Feed the p ipe l ine with int
28 g
29 outP�>put (�1) ; // Post termination msg
30 for (numberOfPrimes = terminationP�>get () ; // Enter termination
31 numberOfPrimes > 0; �� numberOfPrimes) f
32 arch ive (inP�>get ()) ; // Archive the re su l t s
33 g
34 stopMe () ; // Terminate
35 g

Figure 6.5: Declaration of the Source agent class and the implementation of its

start method for the problem of the Sieve of Eratosthenes.

Values are then transmitted in order to initialize the �rst sieve agent (lines 24

and 25). The main loop (lines 26 to 28) feeds the pipeline with integers. When

INT LIMIT integers have been produced, a termination message is posted on port

outP (line 29). This allows to sample the primes on port inP (lines 30 to 33)

and to terminate (line 34).

The sieve agent creates three ports: inP (line 18) for getting the owned

prime, the actual number of primes and the integers to �lter, primeP (line 19)

for transmitting the prime to the source agent, and outP for forwarding integers

that cannot be divided (line 20). The sieve �rst gets its prime (line 21) and

the actual number of primes (line 22), and transmits its prime to the source

agent (line 23). Then an event of class NewSieveEvent is created (line 24) and

attached to outP (line 25) so that a new sieve agent can be created when a new

prime is found and posted on this port. The main loop tries to �lter incoming

integers (lines 27 to 35): if a number is not divisible by the prime (line 28), it is

forwarded in the pipeline (line 29). After a termination message has been read,

the loop ends. If the sieve is the last in the pipeline (line 36), the termination

port terminationP is created and used for posting the number of primes to the

76 CHAPTER 6. THE STL++ COORDINATION LANGUAGE

1 class Sieve : public Agent f
2 public :
3 Sieve () ;

4 ~ Sieve () ;
5 void s t a r t () ;
6 private :

7 KK inPort<int> � inP ;
8 KK outPort<int> �primeP , � outP , � terminationP ;

9 int nextNumber , myPrime, numberOfPrimes ;
10 bool l a s t ;

11 void stopMe () ;
12 g ;
13

14 void Sieve : : s t a r t () f
15 Agent : : s t a r t () ; // I n i t i a l i z e s ieve agent
16 l a s t = true ;
17 // Create ports :
18 inP = new KK inPort<int>(this , nV("INTEGERS") , 1 , INF) ;

19 primeP = new KK outPort<int>(this , nV("PRIMES") , 1 , INF) ;
20 outP = new KK outPort<int>(this , nV("INTEGERS") , 1 , INF) ;

21 myPrime = inP�>get () ; // Get my prime number
22 numberOfPrimes = inP�>get () ; // Get the actual number of primes
23 primeP�>put (myPrime) ; // Tel l source agent
24 NewSieveEvent � e = new NewSieveEvent () ; // Create Event
25 outP�>attachEvent (e) ; // And attach i t to outP
26 // Main loop (as long as no termination msg)
27 for (nextNumber = inP�>get () ; nextNumber>0; nextNumber = inP�>get ())f
28 i f (nextNumber % myPrime != 0) f // I f nextNumber not d i v i s i b l e ,
29 outP�>put (nextNumber) ; // Post nextNumber on my outP port
30 i f (l a s t) f // I f I am the la s t in the p ipe l ine
31 outP�>put(++numberOfPrimes) ; // Indicate number of primes
32 l a s t = fa lse ; // I am not any more the l a s t
33 g
34 g
35 g
36 i f (l a s t) f // I f I am the la s t
37 terminationP = new KK outPort<int>(this , nV("PRIMES NBR") , 1 , INF) ;

38 terminationP�>put (numberOfPrimes) ; // Post nbr of primes to source
39 g
40 stopMe () ; // Terminate only i f primeP is connected
41 g // i . e . i f prime has been transmitted .

Figure 6.6: Declaration of the Sieve agent class and the implementation of its

start method for the problem of the Sieve of Eratosthenes.

source agent (lines 37 and 38). Finally the sieve agent terminates (line 40).

6.4 Ports and Connections

6.4.1 Port Features

In accordance with the ECM model, each port is endowed with one or several

names and a set of features. STL++ distinguishes Primary and Secondary

Features for ports.

Primary Features, which de�ne the main semantics of a port, and therefore

the basic port types, encompass:

� Communication structure: this feature captures the basic ECM commu-

nication paradigms, namely point-to-point stream, group and blackboard

6.4. PORTS AND CONNECTIONS 77

communication;

� Type of message synchronization: this feature gives to the connection the

usual semantics of message passing communication. The two possible se-

mantics are synchronous and asynchronous.

When an agent writes on a synchronous port, it blocks until the data items

have been read by a consumer process on the connection. If the port is

bound to multiple connections, it will block until the echoed data item has

been read on all connections. In the case that the port is not bound, the

agent is blocked until a connection is established and data items are read.

For asynchronous communication, the data items written on such a port

do not block the producing agent. Nothing can be said about whether

data have been read by a consumer process or not.

For asynchronous ports, there is no capacity limitations of ports and con-

nections (like STL does with the capacity feature). This means that an

agent writing on a non-connected port will not block and will be able to

continue to write on such a port; actually the data are stored in a bu�er

belonging to the port. As soon as a match with another port is achieved,

data in the bu�er will be forwarded to the new connection.

If the port is nevertheless bound to a connection when data items are writ-

ten on it, data will be stored in the connection bu�er (for KK-Stream and

Blackboard connections) or at the receiver side (for Group connections).

� Orientation: this feature de�nes the direction of the data
ow over a con-

nection; there are three possible values, namely in (in-
owing), out (out-

owing) and inout (bi-directional).

Secondary Features, which de�ne characteristics for speci�c types of ports,

are:

� Saturation: this feature, ranging from 1 to INF (in�nity) by integer values,

de�nes the number of connections a port can have. This is di�erent to the

STL semantics which de�nes the saturation as the number of ports that

can connect to the concerned port (through any number of connections).

The saturation feature has a speci�c semantics on blop ports. These ports

can be seen as having a double saturation, one for the connections inside

the blop and another for the connections outside it. The start values of

both saturations are equal to the value given at the creation of the port.

Note also that the STL++ blackboard ports have a saturation of 1, in

order to simplify their semantics.

� Lifetime: this feature, ranging from 1 to INF (in�nity) by integer values,

indicates the number of data units that can pass through a port before it

decays (it is not mandatory that the port is bound in order to increment

the passed lifetime).

78 CHAPTER 6. THE STL++ COORDINATION LANGUAGE

Port Type Communication Msg Synchronization Orientation

Blackboard blackboard asynchron inout

Group group asynchron inout

S-Stream stream synchron in or out

KK-Stream stream asynchron in or out

Table 6.7: Basic port types and values of their primary features.

� Data Type: this feature de�nes the type of data authorized to pass through

a port. Although every type is possible, the user should not use types

including pointers, but basic data types and composed types.

6.4.2 Creation and Destruction of Ports

In order to support dynamicity, STL++ gives facilities for port creation and

destruction.

In fact, ports can be created at runtime by blops and processes. Additionally,

events can make instances of ports. Examples of port creation can be found at

�gure 6.5 on lines 19 and 20, and at �gure 6.6 on lines 19 to 21.

Furthermore, ports can disappear in two ways: they can be destroyed by

their creator, or vanish when their lifetime is over. The death of ports has two

generic results. If the port is not bound (no connections at all), then all bu�ered

data items are lost. If it is bound to one or more connections, the death of a

bound port causes the connections to be freed at the corresponding side. Data

items that have been previously written on such a port have been echoed and

therefore stored on each connection. Section 6.4.3 explains the semantics of port

disappearance for each basic connection type.

6.4.3 Basic Port Types and their Connections

STL++ currently supports four basic port types, corresponding to the combi-

nations of the primary features as displayed in table 6.7. Further types could

have been proposed (for instance synchronous groups). But the proposal covers

our basic needs.

To ease the implementation, two base port classes for every port type have

been de�ned, one for agents and one for blops. Port classes are implemented as

template classes. The saturation and the lifetime features are used as constructor

arguments, the data type feature as the template argument. Moreover, a vector

of names must be passed as argument to the constructor of a port.

In this subsection, the semantics of the port types and their corresponding

connections are explained:

Blackboard Port Type

The resulting connection, as a result of the matching of ports of this type,

has a blackboard semantics. The number of participating ports is unlim-

ited. Messages are persistent objects which can be retrieved using a sym-

6.4. PORTS AND CONNECTIONS 79

bolic name. Moreover, messages are not ordered within the blackboard,

which is a multiset.

Blackboard connections are persistent: if all the ports involved in a black-

board connection disappear, the connection still persists in the blop space

with all the information it carries, so that new ports can later re-connect

to the blackboard and recover the pending information.

To access the blackboard, the following Linda-like primitives are provided:

put (non-blocking), get (blocking) and read (blocking).

At the moment, STL++ does not have an associative mechanism as

Linda. The storing of the data and the access to it is simply done us-

ing a string. This point should be enhanced.

Group Port Type

The resulting connection has a closed group semantics; this means that the

messages will be sent only to the members of the group. The number of

participating ports is unlimited. Each member of the group can multicast

asynchronously messages to every participant in the group.

The messages are stored at the receiver side. Thus, if a port in a group

disappears, then the sequence of information that has not been read is lost.

The primitives for accessing a group port are: get (blocking) and put

(non-blocking).

S-Stream Port Type

The semantics of a connection resulting from the matching of two S-Stream

ports has the semantics of a synchronous channel (like the S-Channels

de�ned in IWIM [Arb96]). In particular this connection is uni-directional.

It always results from the matching of contradictory oriented ports, namely

a source port (belonging to the producer agent) and a sink port (of the

consumer agent).

In contrast to other connections, this connection never contains data, due

to its synchronous nature. So the destruction of the producer or the con-

sumer never causes loss of data.

The primitives for accessing the port are get (blocking) and put (blocking).

KK-Stream Port Type

The semantics of a connection resulting from the matching of two KK-

Stream ports (K for keep) is analogous to the asynchronous KK-Channel

de�ned in IWIM [Arb96], with its semantics (see below) when a port dis-

appears from one end of the connection. As for S-Streams, this connection

always results from the matching of contradictory oriented ports.

If the connection is broken at its consuming port, the next new matching

port will consume all pending data. If the connection is broken at its

producing port, the consuming port will be able to continue to consume all

80 CHAPTER 6. THE STL++ COORDINATION LANGUAGE

Feature F Values Compatibility

Communication blackboard, stream, group P1.F = P2.F

Msg. Synchronization synchron, asynchron P1.F = P2.F

Orientation in, out, inout (P1.F = in and P2.F = out)

or (P1.F = P2.F = inout)

Saturation {1,2,...,INF} Always compatible

Data Type Type P1.F = P2.F

Lifetime {1,2,...,INF} Always compatible

Table 6.8: Compatibility for features F for two ports P1 and P2

data in the connection. If both ports are deleted, the connection disappears

with its data. The pending sides will be re-connected in priority.

The primitives for accessing the port are get (blocking) and put (non-

blocking).

STL++ provides also a getConnNbr method on a port, thanks to which it

is possible at any moment to ask a port for the number of connections to which

it is bound.

6.5 Port Matching

Communication between agents is realized through connections which are the

result of matched ports. In accordance with the ECM model, the matching

is realized as a relation between port signatures. It is important to see that

the matching relationship is not static but dynamic, because it depends on the

saturation feature which is determined at runtime, and on the actually available

free ports and connections.

Free connections, which result from the destruction of ports, are treated in

priority to other ports. This semantics is chosen in order to get the maximum

of pending data.

In order to match, ports must comply at name and type levels:

� Name level. Two ports match at name level if they share at least one

name. A port may have several names; in this case, each name belongs to

a di�erent connection;

� Type level. For two ports, values of the same feature must be compatible.

Table 6.8 gives an overview of the compatibility functions used by the

STL++ runtime system.

Furthermore, a port can only match, if it is not saturated.

Stream blop ports have a peculiarity concerning their direction feature. Ac-

tually, for the matching rules, such a port can be considered as being composed

of two sides: the inner and the outer sides. On the outside of a blop, an out-going

stream port is viewed as an \out"-port to which an \in"-port (for instance on

6.6. EVENTS 81

1

2

3

4

5

7

89

6

a) b)

Figure 6.9: Ports with multiple connections: a) stream b) group.

an agent) can connect; on the inner of the blop, it is considered as in \in"-port

to which an \out"-port can be bound. An in-going blop stream port has exactly

the reverse semantics.

By introducing several names for each port, STL++ allows a stream port to

be connected to several stream connections, and a group ports to be connected to

di�erent group connections (blackboard ports cannot have multiple connections).

Data written on such multiple connection ports are echoed on every connection.

For stream connections, 1:1, 1:n, n:1 and n:m communication patterns can

therefore be built. Likewise, several groups can be connected to a single port.

Figure 6.9 shows two examples: a) an output port is connected to two other

stream connections; b) a group port is connected to two group connections.

6.6 Events

Event classes inherit from Event; the launch()method, which de�nes the acting

of the event, must be re-implemented. Events are instantiated with a speci�c

lifetime which determines how many times they can be triggered.

Conditions on ports check the state of the port. They are veri�ed when data

ow through the port, or, in the case of the saturatedCond condition, when a

new connection is realized.

The de�ned conditions encompass (see table 6.10 for an overview):

UnboundCond

This condition returns true if the port is not connected at all, i.e. if

the port is not bound to at least one connection2. This condition can be

elegantly applied to the dynamical construction of pipe-lines. On writing

on an unbound port, a new agent can be created by an event; in turn, this

new agent has an in-going port that matches to the unbound port of its

creator. This scheme is applied to the sieve agent in �gure 6.6.

2STL de�nes this condition with another semantics; the condition is veri�ed if the port has

not connected to all its potential connections speci�ed by the saturation.

82 CHAPTER 6. THE STL++ COORDINATION LANGUAGE

Condition Explanation

UnboundCond Port not connected.

SaturatedCond Port saturated.

MsgHandledCond(int n) Port has handled n messages.

AccessedCond Port accessed.

PutAccessedCond Port accessed with put primitive.

GetAccessedCond Port accessed with get primitive.

TerminatedCond Port lifetime is over.

Table 6.10: Port conditions

SaturatedCond

Returns true if the port is saturated, thus if it is bound to all its po-

tential connections. This condition is useful to distribute connections on

several ports, in order to avoid bottle-necks. When a port has reached

its saturation, it is possible to create a new one in order to tackle future

connections.

MsgHandledCond(int n)

Returns true if n messages have passed through the port. This condition

can be used to control the
ow of data through a speci�c port. Initiatives

can be taken if speci�c thresholds are exceeded.

AccessedCond

Returns true whenever the port has been accessed by a primitive.

PutAccessedCond

Returns true whenever the port has been accessed by the put primitive.

GetAccessedCond

Returns true whenever the port has been accessed by the get primitive.

TerminatedCond

Returns true whenever the lifetime is over. This condition is very useful to

indicate when a port should disappear. Consequent actions can be engaged

in order to react to this situation, for instance by creating a new port.

Figure 6.11 shows the declaration of an event class and the implementation of

its constructor and launchmethod. The constructor uses the unbound condition

with a lifetime of 1 (line 13). The acting of this event, which is used in our sieve

example, creates a new sieve agent (line 17). In �gure 6.6 can be seen how an

event is created (line 24) and attached to the outP port (line 25).

6.7 A Tutorial Example

This section is devoted to a practical introduction of STL++ that illustrates

the use of the coordination language. This is achieved by presenting a simple

6.7. A TUTORIAL EXAMPLE 83

1 // Def in i t ion
2

3 class NewSieveEvent : public Event f
4 public :
5 NewSieveEvent () ;
6 ~NewSieveEvent () ;

7 void launch () ;
8 g ;
9

10 // Implementation
11

12 NewSieveEvent : : NewSieveEvent () // Event creation
13 : Event (new UnboundCond () , 1) f
14 g
15

16 void NewSieveEvent : : launch () f // Acting of the event
17 createAgent (Sieve) ;
18 g

Figure 6.11: Declaration of the NewSieveEvent event class and the implemen-

tation of its constructor and its launch method for the problem of the Sieve of

Eratosthenes.

tutorial program, the classical Dijkstra's problem of the Restaurant of Dining

Philosophers. Even if this example program does not belong to our target ap-

plications, it helps understanding the mechanisms of STL++. Furthermore, in

order to allow a comparison with STL++, appendix C exposes implementa-

tions of the same example in Linda, Gamma and Manifold, as proposed in

[ACH98].

6.7.1 The Restaurant of Dining Philosophers

We brie
y recall how the problem of the Restaurant of Dining Philosophers

works.

The restaurant is composed of one table on which philosophers can have a

meal. Around the table a �xed number of seats is disposed. Between each seat

there is exactly one fork. In order to eat the noodles that are on the middle of

the table, a philosopher must pick up two forks, one on the left and the other

on the right. When he has �nished eating, he puts down both forks, and thinks

until he is hungry again.

6.7.2 General Description of the Implementation

We give in �gure 6.12 a graphical representation of our solution in STL++ to

the problem presented. Five participants to the meal are represented.

A restaurant blop creates a waiter agent that is in charge of running the

restaurant. This waiter is responsible for organizing a place for each newly ar-

rived philosopher. In order to simplify, he creates a starting number of philoso-

phers indicated at its creation. After creating them, he decides to collect the

money that every client paid for eating; then, he stops in order to close the

restaurant.

84 CHAPTER 6. THE STL++ COORDINATION LANGUAGE

Meal Blackboard

Fork
Blackboard

table_port

Waiter

Rest_B

PhilPhil

Phil

meal_port

left_port right_port

PhilPhil

"1" "1"

"2"

"2"

"3"

"3""4"

"4"

"0"

"0"

Fork
Blackboard

Fork
Blackboard

Fork
Blackboard

Fork
Blackboard

"MealBB" "MealBB"

"MealBB"

"MealBB"

"MealBB"
"MealBB"

Figure 6.12: Dining philosophers implemented with STL++.

To show how STL++ constructs are used, the communication means of

the example are intentionally enhanced. Concretely, two types of private black-

boards appear as a result of matching ports. Firstly, a \meal blackboard" con-

nects the waiter and all philosophers. If there are n philosophers, this blackboard

is the repository of n � 1 tickets used to avoid deadlocks and so to permit the

philosophers to pickup their forks. Furthermore this blackboard is the mean to

pay. Secondly, a \fork blackboard" is created between each neighbor pair in or-

der to contain a unique fork that is shared by both concerned philosophers. Note

that it would have also been possible to use a solution through a single black-

board for controlling the whole interactions. But this would not have exposed

the use of several connection means.

Our application encompasses the following classes: Rest B, the restaurant

blop class; Waiter, the waiter agent class; Phil, the philosopher agent class; and

OpenPhilWorld B, the world blop class. Their inheritance hierarchy is showed

in �gure 6.13. The next paragraphs explain each class in the application, except

OpenPhilWorld B that simply creates the restaurant blop.

6.7.3 The Restaurant Blop and the Waiter Agent

The Restaurant Blop Rest B encompasses every activity in the restaurant. Fig-

ure 6.14 shows the class declaration and the implementation of the start()

method. The blop creates a Waiter agent (line 11) indicating it the number of

6.7. A TUTORIAL EXAMPLE 85

WorldBlop

ThreadObj

STLpp

Entity
Blop

Agent

OpenPhilWorld_B

Rest_B

Waiter

Phil

Figure 6.13: Classes of the dining philosophers program.

philosophers; after that, the blop waits until every entity has terminated in itself

(line 12).

1 class Rest B : public Blop f
2 public :
3 Rest B () ;
4 ~Rest B () ;

5 void s t a r t () ;
6 g ;
7

8 void Rest B : : s t a r t () f
9 Blop : : s t a r t () ;

10 int nbrOfPhil = 5;
11 createAgent (Waiter , & nbrOfPhil) ;

12 stopMe () ;
13 g

Figure 6.14: The Rest B class declaration and the implementation of its start()

method for the problem of the Dining Philosophers.

As already said, the Waiter agent (see �gure 6.15) is responsible to run the

restaurant. After calling Agent::start in its start method, the waiter creates

a table port port of type BB Port with the name "MealBB" and an in�nite

lifetime (line 18); this port will be used to collect the money. Then the waiter

creates the philosophers of class Phil (line 22). Finally he accumulates the

money through its table port port (lines 25 to 29) and stops (line 30).

6.7.4 The Philosophers

The Phil class implements the philosophers (see �gure 6.16). At its creation,

a philosopher agent is initialized by two integers indicating its right and its

left. After calling Agent::start() for initializing, its start method creates a

meal port port of BB Port type with the name "MealBB" (line 23). Apart from

the �rst created philosopher, every client puts on this port a meal-ticket used to

avoid dead-locks (lines 26 to 29). n�1 tickets are thus available at the beginning.

The philosopher creates two other BB Port ports named right port (line 24)

and left port (line 25): they are respective accesses to a blackboard which will

be the repository of a single fork (each agent puts on its left one fork, see line

30). These two ports are created using the left and right integers as names. In

this way, they only match their respective neighbor port.

After this initialization phase, the philosopher calls the dining method (line

86 CHAPTER 6. THE STL++ COORDINATION LANGUAGE

1 class Waiter : public Agent f
2 public :
3 Waiter (int) ;

4 ~Waiter () ;
5 void s t a r t () ;
6 private :

7 BB Port<int>� t ab l e po r t ;
8 int new creat ions ;

9 int phi l nbr ;
10 int tota l income ;

11 bool continue p () ;
12 void r e s t () ;
13 g ;
14

15 void Waiter : : s t a r t () f
16 Agent : : s t a r t () ;
17 int income ;
18 t ab l e po r t = new BB Port<int>(this , nV("MealBB") , INF) ;

19 int i , j ;
20 for (i =0; i != nbrOfPhil ; i ++) f
21 j = (i +1)%nbrOfPhil ;
22 createAgent (Phil , & i , & j) ; // Create the phi losophers
23 g
24 // Termination : take the whole money
25 income = tab l e po r t�>get ("money") ;

26 while (income) f
27 tota l income += income ;

28 income = tab l e po r t�>get ("money") ;
29 g
30 stopMe () ;
31 g

Figure 6.15: The Waiter class declaration and the implementation of its start()

method for the problem of the Dining Philosophers.

31), entering a cycle (lines 36 to 39) in which he takes a meal ticket (getMealticket

method), picks up its forks (getForks), eats (eat), puts the forks (putForks)

and the ticket (putMealticket) back, and thinks (think). When he is satis�ed,

he exits the loop in order to leave the restaurant (stopMe at line 32). All the

methods called in the cycle are explained below.

Getting a ticket (getMealticket) is realized through the table port port

bound to the blackboard on which the tickets are stored (line 43). If all tickets

are used, the agent asking for a ticket will be blocked until one is available.

In order to take the forks (getForks), the philosopher gets them on its

left port (line 46) and right port (line 47) ports. After having eaten, he

puts the forks back (putForks) on their respective blackboard (lines 50 and 51)

and posts the ticket on its meal port port (line 56 in putMealticket). Agents

waiting for a fork on the respective connection will be unblocked.

The stopMe method of Phil is re-implemented in order to integrate the

payment of the meal. In fact, the philosopher puts money on its meal port

port (lines 60) and, �nally, calls its parent method Agent::stopMe() in order

to terminate (line 61).

6.7. A TUTORIAL EXAMPLE 87

1 class Phil : public Agent f
2 public :

3 Phil (int , int) ;
4 ~Phil () ;
5 void s t a r t () ;

6 protected :
7 int id , l i v i n g , myLeft , myRight , aTicket , rFork , lFork ;

8 BB Port<int> �meal port , � r i gh t po r t , � l e f t p o r t ;
9 void getForks () ;

10 void putForks () ;

11 void getMeal t i cket () ;
12 void putMealt icket () ;

13 void r e s t () ;
14 void eat () ;

15 void think () ;
16 int hungry p () ;
17 void dining () ;

18 void stopMe () ;
19 g ;
20

21 void Phil : : s t a r t () f
22 Agent : : s t a r t () ;

23 meal port = new BB Port<int>(this , nV("MealBB") , INF) ;
24 r i gh t po r t = new BB Port<int>(this , nV(i n t 2 i n t s t r (myRight)) , INF) ;

25 l e f t p o r t = new BB Port<int>(this , nV(i n t 2 i n t s t r (myLeft)) , INF) ;
26 i f (myRight) f // I f I 'm not the f i r s t agent
27 meal port�>put ("Meal t i cket " , aTicket) ;
28 aTicket = 0;
29 g
30 l e f t p o r t�>put (" fork " , 1) ; // Put my fork on the l e f t side
31 dining () ; // Enter dining phase
32 stopMe () ; // Terminate
33 g
34 void Phil : : dining () f
35 while (hungry p ()) f
36 getMeal t i cket () ; getForks () ;

37 eat () ;
38 putForks () ; putMealt icket () ;

39 think () ;
40 g
41 g
42 void Phil : : getMeal t i cket () f
43 aTicket = meal port�>get ("Meal t i cket ") ;

44 g
45 void Phil : : getForks () f
46 lFork = l e f t p o r t �>get (" fork ") ;
47 rFork = r i gh t po r t�>get (" fork ") ;
48 g
49 void Phil : : putForks () f
50 r i gh t po r t�>put (" fork " , rFork) ;

51 l e f t p o r t�>put (" fork " , lFork) ;
52 rFork = 0;
53 lFork = 0;

54 g
55 void Phil : : putMealt icket () f
56 meal port�>put ("Meal t i cket " , aTicket) ;
57 aTicket = 0;

58 g
59 void Phil : : stopMe () f
60 meal port�>put ("money" , 1) ; // Pay
61 Agent : : stopMe () ; // And d e f i n i t e l l y ca l l termination
62 g

Figure 6.16: The Phil class declaration and the implementation of its start,

dining, getMealticket, getForks, putForks, putMealticket, and stopMe

methods for the problem of the Dining Philosophers.

88 CHAPTER 6. THE STL++ COORDINATION LANGUAGE

Thread Communication
Library Pt-PVM

Communication Library
PVM

Thread Library
POSIX

STL++ Library

Figure 6.17: Overview of the implementation layers of STL++.

6.8 Implementation of a Prototype

6.8.1 Introduction

An implementation of a prototype of STL++ has been realized. It is a prototype

in the sense that it has not been tested by a large set of users and applications,

and that the implementation should be enhanced in order to improve the per-

formances. This section sketches out the main characteristics of the realization.

The choice of the underlying platform was very important in the design of the

implementation. Because our prototype was aimed at supporting the implemen-

tation of MASs on distributed architectures, a cluster of networked workstations

has been opted as a hardware architecture. The ease of �nding and taking

pro�t from such kinds of resources was an additional reason. Concerning the

underlying software architecture, we needed a communication platform allowing

asynchronous communication over a cluster of workstations and a support for

multithreading. Multithreading has the strong advantage of o�ering eÆcient

communication for tightly-coupled threads within a same address space. Both

characteristics are precisely key elements of the communication library Pt-pvm

[KHS96] [Kro97] that has been developed at the PAI Group of the University of

Fribourg. Pt-pvm has also been used to implement STL, thus showing that such

an implementation is possible. For these reasons and in a desire of continuity in

the research, our choice was naturally motivated for Pt-pvm. Concerning the

target object-oriented language, our choice was C++ [Str97] because it allows

an easy integration of Pt-pvm thanks its C interface and it produces eÆcient

code.

Section 6.8.2 discusses the use of Pt-pvm. Our integration of concurrency

and object-orientation is explained in section 6.8.3. The core implementation is

presented from sections 6.8.4 to 6.8.8.

6.8.2 Pt-pvm

Pt-pvm, which is based on PVM [Sun90] [GBJ+94] and the POSIX thread li-

brary [Pos95] (see �gure 6.17), is a library providing message passing and process

management facilities at thread and process level for a cluster of workstations.

6.8. IMPLEMENTATION OF A PROTOTYPE 89

>

>>

>

>

>

>>

>

>

>

>>

>

CPU

PE

CPU

CPU

PE
PE

>
TID

TID
TID

TID
TID

Heavy-weight process

> PT-PVM User Thread
light-weight process

CPU

Figure 6.18: Pt-pvm programming abstractions.

Pt-pvm possesses three basic abstractions (see �gure 6.18):

� A parallel virtual machine o�ered by PVM, which includes several CPUs.

� One or more process environments (PE) that run on each CPU; a PE

represents a heavy-weight process.

� One or more Pt-pvm threads that run on each PE. As threads are denoted

with an id TID, they can be identi�ed by a triple (CPU; PE; T ID).

A Pt-pvm application is started with a speci�c number of CPUs and PEs

running on these CPUs. As soon as a function has been declared as a thread,

it can be spawn in three manners: (i) it can be explicitly launched on the same

PE; (ii) it can be explicitly spawn on a speci�c CPU , where a PE in that CPU

is chosen in a round-robin fashion; (iii) it can be spawn transparently on the

network, letting the system choose the PE and CPU . Each thread runs in a

thread environment, which contains information about its father, its identity and

local parameters.

Pt-pvm has a mixed approach: both light-weight and heavy-weight processes

can be started at runtime. Processes of both categories can also communicate

with one another through the Pt-pvm communication primitives.

In order to communicate, Pt-pvm provides message-passing facilities sim-

ilar to PVM. Processes are identi�ed using a Correspondent, which is a tuple

(PE; TID). Synchronous and asynchronous modes are supported.

6.8.3 Concurrency and Object-orientation Integration

One of the key design issues in the implementation of STL++ is the integration

of concurrency and object-orientation, supporting simple active objects that have

90 CHAPTER 6. THE STL++ COORDINATION LANGUAGE

their own activity. Concurrent object-orientation is not only o�ered by STL++,

but it is also used for implementing the di�erent mechanisms underlying the

implementation, like for supporting the matching of ports.

As there exist many approaches to concurrent object-orientation (for a re-

view see for instance or [BGL98]), we precise our view. As both passive and

active objects are available, STL++ has an heterogeneous approach. No inter-

nal object concurrency is supported: our active objects have a unique thread of

execution. These characteristics are true for STL++ and the underlying active

objects implementing STL++. Concerning request scheduling, an explicit ac-

ceptance of messages is realized: by reading explicitly on ports (case of STL++)

or by receiving explicitly messages through Pt-pvm primitives.

As Pt-pvm creates new threads or processes by spawning functions with a

speci�c pro�le, a simple scheme to render objects active has been chosen. Each

active object class in the implementation inherits from ThreadObj, which sup-

ports basic facilities for thread activation like the Pt-pvm correspondent and

thread environment. Two pure virtual methods must then be re-implemented:

start and stopMe. An appropriate spawning function (say f) is de�ned for

launching active objects of a class c: it creates an instance o of c and calls

its start method, which implements the acting of the object. Therefore, in

order to create an active object, one has to use the spawning Pt-pvm primi-

tive csBaseSpawn that launches the function f . An application using STL++

calls the macros defineBlop and defineAgent on classes respectively inherit-

ing from Blop and Agent. The purpose of these macros is precisely to de�ne

spawning functions f for blops and agents. The creation macros createBlop

and createAgent call csBaseSpawn on spawning functions. Note that, in the

underlying implementation, active objects always communicate with one another

using Pt-pvm facilities.

6.8.4 Blops and Agents

The Blop class inherits from ThreadObj. Using Pt-pvm's csBaseSpawn, a wrap-

ping spawning function of a blop is launched as a light-weight process transpar-

ently over the cluster within one PE. Thus, for the time being, a user does not

have to indicate a CPU on which to launch the new process: it is chosen non-

deterministically in the pool available. A blop locally creates two other active

objects as threads: a PortManager object (see section 6.8.5) that is in charge

of managing every blop port, and a Matcher that implements the matching of

ports (see section 6.8.6) and setup connections (see section 6.8.7).

The WorldBlop class is similar to Blop with the di�erence that it does not

de�ne a PortManager object, because it cannot have ports.

The agent class also inherits from ThreadObj. However, in opposite to a

blop, a wrapping spawning function of an agent is launched as a light-weight

process and always locally, i.e. in the same PE as the invoker. An active

PortManager object (see 6.8.5) is also created locally in order to manage the

agent ports.

6.8. IMPLEMENTATION OF A PROTOTYPE 91

6.8.5 Ports and Port Managers

Port classes are implemented as passive template classes. For each entity (blop or

agent), a PortManager active object is in charge of regulating the communication

of the corresponding ports. The whole communication between an entity (i.e.

also its ports) and its port-manager is realized through Pt-pvmmessage-passing.

At its creation, a port announces itself to the port-manager, which in turn

creates a proxy port (of class PM Port) representing the announced port. When

a message is posted on a port, it is automatically forwarded to the port-manager.

This last one further forwards a copy of the message to all existing connections,

or, if a port is unbound, stores the message in the FIFO bu�er of the proxy port,

which will be emptied by sending every message to a future new connection. By

requiring a data item, a port sends a require message to the port-manager and

blocks on a Pt-pvm receive primitive. The port-manager checks if a message

exist. If this is the case, it sends the message back to the concerned port;

otherwise, the port-manager stores the demand and waits for another incoming

Pt-pvm message (e.g. new connection). When �nally a value is available, it is

sent back to the originally asking entity which will be unblocked.

When a port is deleted, its destructor method sends a corresponding message

to the port-manager, so that the latter can inform the matcher, and handle

concerned connections and remaining messages.

The management of blop ports has a speciality in its implementation, because

the port-manager creates a pair of proxy ports for each blop port. This is due to

the gateway role of such ports. Actually, a blop port has an internal view and

an external view. Each proxy port of the pair is announced correspondingly to

the matchers of the actual blop and of the father blop of the actual blop.

6.8.6 Matching

The matching between the ports of a same blop can be realized in two generic

ways. In both cases, the needed messages are only exchanged between the entities

of the concerned blop. In a decentralized matching, the testing of the matching

and the decision to match are done for a port by its port-manager. This can be

done by using a broadcast of the port signature to every other port-manager of

the blop and applying a resultant protocol for deciding the participating ports

in a connection.

Decentralized matching has the disadvantage of the high number of necessary

messages (complexity of O(n2) for n port-managers). A centralized matching has

been therefore adopted in our implementation, using a so-calledmatcher for each

blop. A matcher is an underlying active object that has the task of checking

possible matching compatibilities between port signatures in a speci�c blop. As

explained above in section 6.8.5, a port-manager has received an appropriate

message announcing the creation of a new port. The port-manager has sent

to the matcher the announcement of this new port, asking to register it in

its structure (de�ning a new proxy port of type M Port) and test for possible

matching. The matcher searches �rst for announced ports with an identical

92 CHAPTER 6. THE STL++ COORDINATION LANGUAGE

add
port

Blop B1

A2

Blop B2

 new
port

A1

add port

ad
d

po
rt

new
 port

add port

 new
port

Portmanager

Matcher Pt-Pvm communication

Agent

Figure 6.19: Implementation of the matching mechanism of STL++.

name and tests then the compliance between ports by applying the compatibility

functions described in table 6.8 of section 6.5. With this scheme, decentralized

matching has a message complexity of O(n).

The whole mechanisms for the matching of STL++ are sketched in �gure

6.19.

6.8.7 Connection Setup

Once a matcher has identi�ed compliant ports, it has to setup a corresponding

connection and send to the concerned port-managers useful information. Three

generic schemes are possible.

For blackboard connections, the matcher launches an active object of class

BBC, which implements a blackboard. It then sends to each concerned port-

manager the Pt-pvm correspondent of the blackboard. The blackboard will

store data and reply to port-managers' requests.

Installing group connections has a similar scheme. An active object of class

GroupC is started and its correspondent sent to the participating port-managers.

Furthermore, the matcher indicates to the group connection the Pt-pvm corre-

6.9. DISCUSSION 93

spondents of each concerned port-manager. A group connection receives then

messages of members of the group and automatically forwards them to every

participant.

For streams, a similar approach as for the blackboard and group connections

could have been chosen, by charging a new active object of storing and forwarding

data to requesting port-managers. However, a di�erent scheme has been adapted

for eÆciency concerns: messages are sent directly to the port-managers of the

consumers and bu�ers are handled on that side. This way reduces importantly

the number of Pt-pvm messages but has the disadvantage of the implementation

complexity in what concerns the handling of bu�ers. This is especially true when

a port is destroyed and the data bu�ered in the resulting freed connection has

to remain at disposal, so that new ports matching to a free connection really

receive bu�erized data.

6.8.8 Events

The implementation of events follows a simple scheme. The constructor of the

class Event requires a reference on a Condition object. Each condition object

implements the pure virtual method test. This method is called each time a get,

read or put access is done to the port, or, for the SaturatedCond condition, when

a connection is established. Launching an event simply calls the re-implemented

launch method.

6.9 Discussion

In this chapter, we have presented STL++ as an instance of the ECM coordi-

nation model oriented towards the implementation of MASs. We discuss in the

following paragraphs STL++ as a coordination language and its use for MASs.

6.9.1 STL++ as a Coordination Language

ECM along with STL++ its instantiation show similarities with several coordi-

nation models of the data-driven and process-oriented families. In this section,

we accentuate general di�erences between ECM/STL++ and the main repre-

sentatives of each class of coordination models and languages.

Though ECM and STL++ share many characteristics with IWIM [Arb96]

and Manifold [AHS93], they di�er in several points:

� Blops are not coordinators like IWIM managers. Connections are not

established explicitly by the blop (or by another agent), i.e. there is no

language construct to bind ports in order to establish a connection: the

establishment of connections is done implicitly, resulting from a matching

mechanism between compatible ports within the same blop; the matching

depends on the types and the states of the concerned ports. The main

characteristics of blops is to encapsulate objects, thus forming a separate

94 CHAPTER 6. THE STL++ COORDINATION LANGUAGE

matching name-space for enclosed entities and an encapsulation mechanism

for events.

� ECM/STL++ generalizes connection types, namely stream, blackboard

or group, and does not restrict to channels. This is the reason why we

consider ECM as a hybrid model.

� In ECM/STL++, events are not signals broadcast in the environment,

but objects that realize an action in a blop. Events are attached to ports

with conditions on their state that determine when they are to be launched.

They can create agents or blops, and their action area is limited to a blop.

ECM together with STL++ di�er in the following points from Linda [CG89]:

� Like several further developments of the Linda model, ECM/STL++

uses hierarchical multiple spaces [Gel89], in contrast to the single
at tuple

space of the original Linda. But it has to be stressed that a blop is not a

shared dataspace as a tuple space, but an abstraction and encapsulation

mechanism of several agents that serves as a separate name space.

� In ECM/STL++ agents get started either through an event in a blop,

or automatically upon initialization of a blop, or through a creation op-

eration by another agent; Linda uses a single mechanism: eval(). The

termination of an agent results in the loss of all its enclosed data and ports;

it may as well result in the loss of pending data in the case of unbound

connections. In Linda, a tuple replaces the terminated process.

� In ECM/STL++ agents do not run in a medium which is used to transfer

data. Every communication is realized through connections established by

the matching of ports. Furthermore, these connections are private means:

only the engaged agents have access to them.

� Blackboard connections allow for generative communication between the

participating agents. For the time being, a string is used to introduce and

retrieve data. Neither tuples, nor templates, nor pattern matching are

supported for retrieving data. Furthermore, blackboards are typed in the

sense that only one type of data can be stored. There is also no kind of

active tuples.

6.9.2 STL++ for MASs

Some characteristics that make STL++ adequate for implementing objective

coordination in MASs are the following:

� Blops enable a grouping mechanism and the construction of a structured

set of di�erent environments, each of which is a closed private coordination

space with communication interfaces to other environments.

6.9. DISCUSSION 95

� Agents are implemented as black boxes. In this way, a basic operational

autonomy is ensured, because an agent owns exclusive control over its

internal state and behavior (it acts pro-actively), and it can de�ne by itself

its ports. Furthermore, the internal structure of an agent is not accessible

by other entities: an agent is seen from external views as a delineated

entity presenting clear interfaces.

� Sensing and acting capacities of agents are implemented with ports. Thus

agents can perceive and act through di�erent means by virtue of the pos-

sibility of creating several instantiations of port types. A port perceives

speci�c data: this is enforced with the data type feature of ports.

As communication is only realized anonymously, we comply more with

our target, because agents only act according to what they have sensed

through their ports.

� Peer-to-peer, group and blackboard communication means allow to cover

basic agent communication needs. Furthermore, ensuring a matching mech-

anism that is not centralized by a coordinator agent respects more the

autonomy of the agents and the decentralized nature of MASs.

� As agents and environments may evolve over time, dynamicity is an im-

portant point in MASs. This has led to design STL++ so as to support

dynamic blop and agent creation and termination, blop reorganization,

new port creation and destruction, thus yielding to dynamic communica-

tion topologies.

STL++, however, has two important disadvantages. Firstly, in order to let

agents migrate from one blop to the other, one has to integrate in its application

intra-blops connections and adequate specialized agent creators; this is not nec-

essarily a natural way to do it. Indeed, it would be very advantageous to give

explicitly to the agents the ability to move from one blop to other. Secondly,

our implementation is badly portable.

These two considerations motivated us to start the design and development

of a new ECM instance, namely Agent&Co. This new coordination language,

which is still an ongoing project, slightly extends ECM in order to support

mobility. Furthermore, the language is implemented in Java [GJS96] over an

object request broker architecture [OMG97b] in order to enhance portability.

Agent&Co is the subject of the next chapter.

96 CHAPTER 6. THE STL++ COORDINATION LANGUAGE

Chapter 7

The Agent&Co

Coordination Language

7.1 Introduction

The main motivations for the design of a new ECM instance was the desire of

studying agent mobility in the context of ECM and experimenting an integra-

tion of an ECM-grounded coordination language in an object request broker

architecture [OMG97b] in order to enhance portability. For that aim, a new

coordination language named Agent&Co has been designed; it has been im-

plemented in the context of a diploma thesis [Doi99] as a library, like STL++.

This chapter gives a general description of this new language binding, trying

to show speci�c characteristics di�erentiating Agent&Co from STL++. Note

that this project is still underway, and has therefore to be enhanced from the

experience that will be acquired with testing concrete applications. For these

reasons, we review Agent&Co on a general ground, skipping details.

Sections 7.2 to 7.6 review the instanciations of each ECM construct, sticking

to the essential. Section 7.7 discusses choices in a realized implementation.

7.2 Blops

As the general ECM semantics asks for, an Agent&Co blop has the roles

of encapsulation of other objects and of a separate name space, allowing the

matching of ports and the creation of connections inside a blop.

But how can we provide agents with migration capacity? Mobility o�ers

indeed agents the ability of moving from one space to the other. The chosen

way for supporting mobility is then directly dependent from the semantics of the

underlying logical localities, like the use of access rights for accessing contained

data or the identi�cation of such localities. The integration of mobility for ECM

can therefore at least be done in two ways. In both cases, the unit of locality is

97

98 CHAPTER 7. THE AGENT&CO COORDINATION LANGUAGE

naturally the blop.

A �rst way, more respectful of the whole philosophy of ECM, would give the

agents the ability to move themselves by calling a move operation on a speci�c

own port. This move operation would post the actual agent state on the con-

cerned port. A specialized creation agent would then receive this state through

a connection (in the same or in another blop) and re-create the arrived agent.

Such a scheme has been implemented in STL++ for a simulation of mobile

collective robotics (see chapter 8). This solution, however, has two disadvan-

tages. Firstly, it does not really integrate mobility in the coordination language,

because specialized agents have to be de�ned. Secondly, it introduces an uncon-

trolled cloning mechanism in case an agent port is bound to several connections.

For those reasons another mobility integration scheme has been adopted.

Indeed, the second integration possibility introduces a naming mechanism for

blops. If an agent wants to move to another blop, it calls an own move method

towards another identi�ed blop, where the agent will migrate and continue its

activity. Section 7.3 explains this mechanism in more details. It is important to

see that only blops are named; agents obviously remain unidenti�able.

The identi�cation of blops is done using a mechanism similar to �le names,

by indicating absolutely or relatively the hierarchy of blops. For instance, taking

the con�guration of �gure 7.2, one can identify a blop by "/B1/B3". Note that

blop identi�cations can also be exchanged between agents through connections.

Another speciality of Agent&Co is the creation of a blop blackboard for

each blop. This blackboard, which is untyped, is by default available for each

agent inside the blop. Furthermore, the introduction of a blop identi�cation

mechanism allows external agents to post data into another blop blackboard by

indicating the name of the respective blackboard's blop.

7.3 Agents

Like in STL++, ECM processes in Agent&Co are named agents, because

they are intended at supporting their implementation. They can be created by

blops, other agents, and events.

In Agent&Co, we de�ne a novelty concerning message management. A

FIFO arrival list for KK-Streams and group connections is introduced in order

to keep track of the order in which messages have arrived. Each time a message

has arrived in such a connection, a reference to the respective connected port is

introduced in this FIFO list. An agent has thus the possibility to consult this

list in order to decide which port will be accessed. When a message has been

read, the reference to the port is removed from the list. But this list always

remains an optional way to read data on ports.

If we permit agents to move from one blop to the other, we must ask ourselves

under which conditions an agent can migrate, and how this is realized? At any

moment, any agent port may be bound to connections. Thus, an agent has to

disconnect itself from any connection before it migrates from one blop to the

other. If this condition is ful�lled, an agent can call a move method indicating

7.4. PORTS AND CONNECTIONS 99

its target blop, where it is re-initialized and restarted. For the re-initialization,

a reinit method is called. This method, which has been re-implemented by the

agent class, typically re-creates new ports.

7.4 Ports and Connections

Agent&Co de�nes four port features. The �rst two features de�ne the basic

port classes. The other features are used as arguments in the ports constructors.

Supported port features encompass:

� Communication structure, which captures the basic ECM communication

paradigms;

� Orientation, de�ning the direction of the data
ow;

� Saturation, de�ning the number of connections a port can have;

� Data type, de�ning the type of data authorized to pass through a port.

The basic types of ports encompass the following:

� Unidirectional KK-Stream ports; the connection resulting from their con-

nection results in a KK-Stream.

� Blackboard ports. The resulting connection has a similar semantics to the

semantics of the STL++'s blackboards. The connection is persistent when

all corresponding ports disappear.

� Group ports, with the usual closed group semantics.

Every communication is understood to be asynchronous. Thus, no syn-

chronous streams are supported.

At their creation, ports are assigned names, which are only used for the

matching mechanism. Blop ports are particular in this respect, because there

exist two types of names: some are available for the matching at the outside of

the blop, and others at the inside.

7.5 Matching

The matching rules follow directly the basic matching conditions of ECM, with

the particularity of double names for blop ports (see above). Table 7.1 indicates

the compatibility functions between the features.

7.6 Events

Events are similar to STL++ events. A launch method de�nes the acting of the

event. Furthermore, an event is created with a speci�c lifetime, which is decre-

mented each time the event is launched. For each existing condition, a port class

100 CHAPTER 7. THE AGENT&CO COORDINATION LANGUAGE

Feature F Values Compatibility

Communication blackboard, stream, group P1.F = P2.F

Orientation in, out, inout (P1.F = in and P2.F = out)

or (P1.F = P2.F = inout)

Saturation {1,2,...,INF} Always compatible

Data Type Type P1.F = P2.F

Table 7.1: Compatibility for features F for two ports P1 and P2

has a speci�c method that attaches an event to that port. Supported conditions

encompass the STL++ AccessedCond, PutAccessedCond, GetAccessedCond and

UnboundCond.

7.7 Implementation

A prototype implementation of Agent&Co has been realized as a framework

of Java classes [GJS96]. It is based on the ORBacus object request broker

[OOC99]. In this section, two design issues of the implementation are brie
y

discussed.

Blops are hosted on so-called blop servers. A set of blop servers is started

over the physical nodes and communicate through the ORB. A name server

is also launched in order to support the logical naming structure of the blops.

Actually, the identi�cation tree is realized thanks to the CORBA CosNaming

service [OMG97a]. As each blop is related to a speci�c naming context, a path

for a blop is obtained by adding the naming context of this blop to its parent's

naming context. Figure 7.2 sketches these design issues.

Agent&Co agents are implemented as Java threads. The support of the

migration mechanism uses a speci�c scheme. Before to move, an agent object is

�rst translated into an array of bytes and then received by the target blop, which

will restore the arrived object. The translation into an array of bytes uses Java's

serialization. It is the task of the source blop to serialize the migrating object.

At reception, the new agent is actualized to its new context and re-initialized; a

new thread is then created and started.

Further details on the implementation can be found in [Doi99].

7.7. IMPLEMENTATION 101

ORB

Blop ServerName
Server

Host Machine Host Machine

Blop Server

Migration

Blop B3Blop B2

Blop B1

Figure 7.2: The ORB integration of Agent&Co.

102 CHAPTER 7. THE AGENT&CO COORDINATION LANGUAGE

Part III

Case Studies in STL++

103

Chapter 8

Collective Robotics

Simulation

8.1 Introduction

In section 2.5, our speci�c class of MASs has been introduced. We have also

described a generic model belonging to this class (section 2.5.1) and presented a

peculiar application of this model (section 2.5.2). In this chapter, the design and

the implementation of this application with ECM/STL++ is presented. Figure

8.12, at the end of this chapter, summarizes the whole process from the model

to the implementation.

In the Environment, which is a torus grid, every cell has four neighbors. By

applying a four connectivity, the implementation is facilitated, and this does

not fundamentally vary the functionality from a more complex scheme such as

an eight connectivity. The agents that roam on this environment are named

SimRobots, because they simulate the robots. They comply the agent model

introduced in �gure 2.6 of section 2.5: the agents sense the environment through

their sensors and act upon their perception at once.

To take advantage of distributed systems, the Environment is split into N

sub-environments, each being encapsulated in a blop, as depicted in �gure 8.1,

thus providing an independent functioning between sub-environments (and hence

between agents roaming in di�erent sub-environments). Note that blops have

to be arranged so as to preserve the topology of the sub-environments they

implement.

8.2 Global Structure

The world blop RoboticSimulationWorld, which is the world blop, is composed

of an init agent, in charge of the global initialization of the system, and a set

of N pre-de�ned blops, each encapsulating and handling a sub-environment. On

105

106 CHAPTER 8. COLLECTIVE ROBOTICS SIMULATION

Blop 1 Blop 2

W E
S

N
W E

S

N
W E

S

N
W E

S

N

W E
S

N
W E

S

N
W E

S

N
W E

S

N

W E
S

N
W E

S

N
W E

S

N
W E

S

N

W E
S

N
W E

S

N
W E

S

N
W E

S

N

Blop 3 Blop 4

W

N

S

E W

N

S

E

W

N

S

EW

N

S

E

Figure 8.1: Environment split up among 4 blops.

�gure 8.2 can be found the declaration of the world class and the implementation

of its constructor.

Figure 8.11, at the end of this chapter, gives a graphical overview of the

organization within a sub-environment blop in the world blop. Note that on this

�gure, only one sub-environment blop is represented in order to avoid cluttering

the picture. In the case of an application with multiple sub-environment blops,

there should be some connections between the init agent and all the blops, as

well as some connections between north ports of top blops with south ports of

bottom blops and east ports of east blops with west ports of west blops; they

have been intentionally dropped.

1 class RoboticSimulationWorld : public WorldBlop f
2 public :
3 RoboticSimulationWorld () ;

4 ~RoboticSimulationWorld () ;
5 g ;
6 RoboticSimulationWorld : : RoboticSimulationWorld () : WorldBlop () f
7 int sx = SIZE X , sy = SIZE Y ;
8 int se = NBE SUBENV, no = NBE OBJECTS, na = NBE AGENTS;

9 for (int i =0; i<se ; i ++) f
10 // create subenv with basic topo log i e s (n , s , w, e)
11 createBlop (SubEnv B,& se ,& topo [i ,0] ,& topo [i ,1] ,& topo [i ,2] ,& topo [i , 3]) ;

12 g
13 createAgent (i n i t , & se , & sx , & sy , & no , & na) ;

14 stopMe () ;
15 g

Figure 8.2: The RoboticSimulationWorld world class declaration and the im-

plementation of its constructor.

8.3. INIT AGENT 107

RoboticSimulationWorldWorldBlop

ThreadObj

NewSimRobot_EvtEvent

STLpp

Entity SubEnv_B

init

initSimRobot

taxi

simRobot

Blop

subEnvAgent

Figure 8.3: Robotic Simulation class hierarchy.

Figure 8.3 shows the class hierarchy of the implementation. In the next

sections, we explain one by one the implementation classes.

8.3 init Agent

The init agent (see class de�nition in �gure 8.4) has four static ports for every

blop to be initialized: three of type KK outPort (init Nb Agts P, cre SimRbs P

and cre SubEnv P) and one of type KK inPort (eot P).

The role of the init agent is threefold: i) create through its init Nb Agts P

and cre SimRbs P ports the initial agents within every blop; ii) set up through

its cre SubEnv P port the sub-environment (size, number of objects and position

of the objects on the cells) of every blop; iii) collect the result of an experiment,

signal the end of an experiment, and properly shutdown the system through the

eot P port.

1 class i n i t : public Agent f
2 public :

3 i n i t (int , int , int , int , int) ;
4 ~ in i t () ;
5 void s t a r t () ;

6 private :
7 int s i z e x env , s i z e y env ;

8 int nbr ob j e c t s , nbr agents ;
9 KK outPort<In i t In i tAgent> � init Nb Agts P ;

10 KK outPort<RbState> � cre SimRbs P ;
11 KK outPort<InitSubEnv> �cre SubEnv P ;
12 KK inPort<int> � eot P ;

13 g ;

Figure 8.4: The init class declaration.

8.4 Sub-environment Blops

Figure 8.5 shows the declaration of a sub-environment class (SubEnv B) and the

implementation of its start method, both in conformance with the application

108 CHAPTER 8. COLLECTIVE ROBOTICS SIMULATION

1 class SubEnv B : public Blop f
2 public :
3 SubEnv B(int , int , int , int , int) ;

4 ~SubEnv B () ;
5 void s t a r t () ;

6 private :
7 char� se pos , north , south , west , east ; // For port names
8 KK Blop inPort<RbState> � i SimRobots P ;

9 KK Blop inPort<InitSubEnv> � i SubEnv P ;
10 KK Blop inPort<In i t In i tAgent> � i NbrAgts P ;

11 KK Blop outPort<int> � eot P ;
12 KK Blop inPort<RbState> � north i P ;
13 KK Blop outPort<RbState> �north o P ;

14 KK Blop inPort<RbState> � south i P ;
15 KK Blop outPort<RbState> � south o P ;

16 KK Blop inPort<RbState> �west i P ;
17 KK Blop outPort<RbState> �west o P ;

18 KK Blop inPort<RbState> � ea s t i P ;
19 KK Blop outPort<RbState> � east o P ;
20 g ;
21

22 void SubEnv B : : s t a r t () f
23 Blop : : s t a r t () ;
24

25 i SimRobots P =

26 new KK Blop inPort<RbState>(this ,
27 nV(catStr ("INIT AGENTS" , se pos)) ,

28 1, INF) ;
29 i SubEnv P =

30 new KK Blop inPort<InitSubEnv>(this ,
31 nV(catStr ("INIT SUBENV" , se pos)) ,
32 1, INF) ;

33 i NbrAgts P =
34 new KK Blop inPort<In i t In i tAgent>(this ,

35 nV(catStr ("NB AGTS" , se pos)) ,
36 1, INF) ;

37 eot P =
38 new KK Blop outPort<int>(this ,
39 nV(catStr ("END OF TASK" , se pos)) ,

40 1 , INF) ;
41 north i P = new KK Blop inPort<RbState>(this , nV(north) , 1 , INF) ;

42 north o P = new KK Blop outPort<RbState>(this , nV(north) , 1 , INF) ;
43 south i P = new KK Blop inPort<RbState>(this , nV(south) , 1 , INF) ;
44 south o P = new KK Blop outPort<RbState>(this , nV(south) , 1 , INF) ;

45 west i P = new KK Blop inPort<RbState>(this , nV(west) , 1 , INF) ;
46 west o P = new KK Blop outPort<RbState>(this , nV(west) , 1 , INF) ;

47 ea s t i P = new KK Blop inPort<RbState>(this , nV(east) , 1 , INF) ;
48 east o P = new KK Blop outPort<RbState>(this , nV(east) , 1 , INF) ;

49

50 createAgent (initSimRobot) ;
51 createAgent (subEnv) ;

52 createAgent (tax i) ;
53 g

Figure 8.5: The SubEnv class declaration and the implementation of its start

method.

8.5. INITSIMROBOTAGENT, NEWSIMROBOT EVT EVENT 109

depicted in �gure 8.11.

In a sub-environment, several agents are created. They can be distributed in

two categories: agents that are purpose-built for a distributed implementation of

the multi-agent application (they enable a distributed implementation), namely

initAgent and taxi, and agents that are actually peculiar to the multi-agent

application, viz. subEnv and simRobot agents.

Each sub-environment blop has twelve ports: four KK-Stream out-
owing

direction ports (north o P, south o P, west o P, and east o P) and four KK-

Stream in-
owing direction ports (north i P, south i P, west i P, and east i P),

which are all gateway ports enabling agent migration across blops; three in-

owing KK-Stream ports, namely i NbrAgts P, i SimRobots P and i SubEnv P

used for the creation of the initial SimRobot agents (actually realized in the

initSimRobot agent) and for an appropriate setup of the sub-environment (achieved

in the subEnv agent); and an out-
owing KK-Stream port (eot P) used to for-

ward to the init agent the result of an experiment and to indicate the end of

an experiment.

8.5 initSimRobotAgent, NewSimRobot Evt Event

The initSimRobot agent (see �gure 8.6) is responsible for the creation of the

SimRobot agents. It has �ve ports: nb Agts P (in-
owing KK-Stream port),

newArrival P (in-
owing KK-Stream port), location o P and location i P

(out-
owing and in-
owing KK-Stream ports), and init P (out-
owing KK-

Stream port).

1 class initSimRobot : public Agent f
2 public :
3 initSimRobot () ;

4 ~ initSimRobot () ;
5 void s t a r t () ;

6 private :
7 KK inPort<RbState> �newArrival P ;
8 KK outPort<RbState> � i n i t P ;

9 KK inPort<In i t In i tAgent> �nb Agts P ;
10 KK outPort<int> � l o ca t i on o P ;

11 KK inPort<int> � l o ca t i o n i P ;
12 g ;

Figure 8.6: The initSimRobot class declaration.

At the outset of the experiment, the initSimRobot agent through its nb Agts P

port will be informed by the init agent on the number of agents to be created in

the present blop. The initSimRobot agent will then loop on its newArrival P

port so as to receive starting information of the agents to be created. As soon

as a value comes to this port, the NewSimRobot Evt event (see �gure 8.7), which

has been attached to newArrival P with the AccessCond condition, is triggered

and creates a new SimRobot agent. In the meantime, the initSimRobot agent

draws randomly for every SimRobot a starting position. The location i P and

location o P ports enable the initSimRobot agent to communicate with the

110 CHAPTER 8. COLLECTIVE ROBOTICS SIMULATION

subEnv agent, so as to ensure that no more than one SimRobot agent can reside

on an empty cell. The initSimRobot agent will then write on its init port some

values for the SimRobot agent just created. The latter, through its creation P

port will read the information that was previously written on the init P port of

the initSimRobot agent. Values that are transmitted feature for instance the

position of the SimRobot agent and its state.

1 class NewSimRobot Evt : public Event f
2 public :
3 NewSimRobot Evt () ;

4 ~NewSimRobot Evt () ;
5 void launch () ;

6 g ;
7

8 NewSimRobot Evt : : NewSimRobot Evt ()
9 : Event (new AccessedCond () , INF) f

10 g
11

12 void NewSimRobot Evt : : launch () f
13 createAgent (simRobot) ;
14 g

Figure 8.7: The NewSimRobot Evt class declaration, and the implementation of

its constructor and launch method.

Note that the newArrival P port is connected to all in-
owing direction

ports of the blop within which it resides, thus enabling to deal with migrating

SimRobot agents across blops in the course of an experiment, by the same event

mechanisms as described above. The location i P and location o P ports are

very useful at this point, because the initAgent agent can already check with

the subEnv agent whether the position to which the SimRobot agent intends to

move is permitted or not. In case it is not, the initAgent agent will have to

draw randomly a new position in the neighborhood of the position where the

agent intended to go.

8.6 SimRobot Agent

This agent (see �gure 8.8) has three ports: req ans P of type BB Port, creation P

of type KK inPort, and taxi P a KK outPort port. As already stated, this agent

reads on its creation P port some values (its position and its state). All

req ans P ports of the agents are connected to a blackboard, through which

agents sense their environment (perception) and act (action) into it, by perform-

ing get/put operations with appropriate messages. The type of action an agent

can perform depends on the type of control algorithm implemented within the

agent (see the architecture of an agent on �gure 2.6). The taxi P port is used

to communicate dynamically with the taxi agent in case of migration: the po-

sition and state of the agent are indeed copied to the taxi agent. The decision

of migrating is always taken by the subEnv agent.

8.7. SUBENV AGENT 111

1 class simRobot : public Agent f
2 public :
3 simRobot () ;

4 ~ simRobot () ;
5 void s t a r t () ;
6 private :

7 KK inPort<RbState> � creat ion P ;
8 BB Port<TemplateMsgFromAgent> � req ans P ;

9 KK outPort<RbState> � taxi P ;
10 int id ;

11 int o f f s e t ;
12 f loat alpha ;
13 int carry ing ;

14 long rand walk seed ;
15 long rand pick up seed ;

16 char myName[1 0] ;
17 g ;

Figure 8.8: The SimRobot class declaration.

8.7 subEnv Agent

The subEnv agent (see �gure 8.9) handles the access to the sub-environment

and is in charge of keeping data consistency. It is also responsible for migrating

SimRobot agents, which will cross the border of a sub-environment.

1 class subEnv : public Agent f
2 public :
3 subEnv () ;
4 ~subEnv () ;

5 void s t a r t () ;
6 private :

7 KK inPort<InitSubEnv> � i n i t P ;
8 KK outPort<RbState> � to tax i P ;

9 BB Port<TemplateMsgFromAgent> � in out P ;
10 KK outPort<int> � l o ca t i on o P ;
11 KK inPort<int> � l o c a t i o n i P ;

12 KK outPort<int> � eot P ;
13 g ;

Figure 8.9: The subEnv class declaration.

It has an in out P port (of type BB Port) connected to the blackboard and

a KK outPort port to taxi P connected to the taxi agent. Once initialized

through its init P KK inPort port, the subEnv agent builds the sub-environment.

By performing get/put operations with appropriate messages, the subEnv agent

will process the requests of the SimRobot agents (e.g. number of objects on a

given cell, move to next cell) and reply to their requests (e.g. x objects on a

given cell, move allowed and registered). When the move of a SimRobot agent

leads to cross the border (cell located in another blop), the subEnv agent will

�rst inform the SimRobot agent that it has to migrate, then inform the taxi

agent that a SimRobot agent has to be migrated (the direction the agent has to

take will be transmitted, so that the taxi agent can know which port to write

to). The location i P and location o P ports are used to communicate to the

initAgent agent further to its request on the position of an SimRobot agent

112 CHAPTER 8. COLLECTIVE ROBOTICS SIMULATION

with regard to other SimRobots' and objects' positions.

8.8 taxi Agent

The taxi agent (see �gure 8.10) is responsible for migrating agents across blops.

It has four static direction ports (of type KK outPort), which are connected

to the four out-
owing direction ports of the blop within which it stands. When

this agent receives on its static KK inPort port requ P the direction towards

where an agent has to migrate, it will dynamically create a KK inPort port

con SimRbs P in order to establish with the appropriate SimRobot agent a com-

munication, by means of which it will collect all the useful information of the

SimRobot agent (intended position plus state). These values will then be written

on the port corresponding to the direction to take and will be transferred to the

newArrival P port of the initAgent agent of the concerned blop inducing the

dynamic creation of a new SimRobot agent in the blop, thus materializing the

migration.

1 class tax i : public Agent f
2 public :
3 tax i () ;

4 ~ tax i () ;
5 void s t a r t () ;

6 private :
7 KK inPort<RbState> � requ P ;
8 KK inPort<RbState> � con SimRbs P ;

9 KK outPort<RbState> � tNorth P ;
10 KK outPort<RbState> � tSouth P ;

11 KK outPort<RbState> � tWest P ;
12 KK outPort<RbState> � tEast P ;
13 g ;

Figure 8.10: The taxi class declaration.

8.8. TAXI AGENT 113

in
it

_
N

b
A

g
ts

_
P

in
it

c
re

_
S

im
R

b
s

_
P

c
re

_
S

u
b

E
n

v
_

P

e
o

t_
P

B
lo

p
 S

u
b

E
n

v
_

B

s
o

u
th

_
i_

P

w
e

s
t_

i_
P

n
o

rt
h

_
i_

P

e
a

s
t_

i_
P

i_
S

u
b

E
n

v
_

P

i_
S

im
R

o
b

o
ts

_
P

c
re

a
ti

o
n

re
q

-a
n

s

n
o

rt
h

_
o

_
P

w
e

s
t_

o
_

P

s
o

u
th

_
o

_
P

e
a

s
t_

o
_

P

ta
x

i

tS
o

u
th

_
P

re
q

u
_

P

tW
e

s
t_

P

c
o

n
_

S
im

R
b

s
_

P
tN

o
rt

h
_

P

tE
a

s
t_

P

s
im

R
o

b
o

t

c
re

a
ti

o
n

_
P

ta
x

i_
P

re
q

_
a

n
s

_
P

e
o

t_
P

i_
N

b
rA

g
ts

_
P

M
e

ta
-b

lo
p

 R
o

b
o

ti
c

S
im

u
la

ti
o

n
W

o
rl

d

B
la

ck
b

o
a

rd

in
it

S
im

R
o

b
o

t

in
it

_
P

n
ew

A
rr

iv
a

l_
P

n
b

_
A

g
ts

_
P

s
u

b
E

n
v

to
_

ta
x

i_
P

in
_

o
u

t_
P

in
it

_
P e
o

t_
P

lo
c

a
ti

o
n

_
i/

o
_

P

lo
c

a
ti

o
n

_
i/

o
_

P

Figure 8.11: init agent and a single sub-environment blop: solid and dotted

lines are introduced just for a purpose of visualization.

114 CHAPTER 8. COLLECTIVE ROBOTICS SIMULATION

Senso
rs

Effe
ctors

Senso
rs

Effe
ctors

Senso
rs

Effe
ctors

R
o
b
o
t
i
c
S
i
m
u
l
a
t
i
o
n
W
o
r
l
d

W
o
r
l
d
B
l
o
p

T
h
r
e
a
d
O
b
j

N
e
w
S
i
m
R
o
b
o
t
_
E
v
t

E
v
e
n
t

S
T
L
p
p

E
n
t
i
t
y

S
u
b
E
n
v
_
B

i
n
i
t

i
n
i
t
S
i
m
R
o
b
o
t

t
a
x
i

s
i
m
R
o
b
o
t

B
l
o
p

s
u
b
E
n
v

A
g
e
n
t

B
lo

p
 1

B
lo

p
 2

W
E

SN

W
E

SN

W
E

SN

W
E

SN

W
E

SN

W
E

SN

W
E

SN

W
E

SN

W
E

SN

W
E

SN

W
E

SN

W
E

SN

W
E

SN

W
E

SN

W
E

SN

W
E

SN

B
lo

p
 3

B
lo

p
 4

W

N S

E
W

N S

E

W

N S

E
W

N S

E

M
O

D
E

L
IN

G
D

E
S

IG
N

IN
G

IM
P

L
E

M
E

N
T

IN
G

Figure 8.12: Collective robotics simulation: from the model to the implementa-

tion.

Chapter 9

Trading System Simulation

9.1 Introduction

STL++ has primarily been designed for supporting the implementation of

MASs comprising simulated embodied agents. However, the coordination lan-

guage may also be used to implement other classes of MASs. For that reason,

we show in this chapter how STL++ can be used for implementing a simulation

of a trading system [SCK+99] [SCH99].

Indeed, the numerous activities that take place within a trading system are

typically distributed and can be modeled by a MAS. Agent-based electronic

commerce is therefore becoming one of the most important application domains

for MASs [NRS+98] [NS98] [MGM99]. Concrete solutions encompass several

agent-based frameworks like Kasbah [CM96] or FishMarket [RANSP97].

The research in coordination models and languages has also proposed some

speci�c scenarios for implementing electronic commerce applications; see for

instance a proposal based on the PageSpace platform [CKR+97] and another

one using IWIM and Manifold [PA98b].

Our goal is not to achieve full automation of a trading system. This work

rather concentrates on simulating the automation of such a system. Further-

more, our aim is neither to focus on the control algorithms of the di�erent

agents, nor on the negotiation techniques (see e.g. [GM98]) that are undertaken

by the agents in order to process a transaction, but rather to concentrate on

the basic coordination mechanisms (the objective coordination) that come into

play in the interactions between agents, for which STL++ is precisely suitable.

Thus, in this implementation, agents are endowed with a very basic autonomy

in the sense that they can make decisions on their own, without the intervention

of the user. More sophisticated autonomy-based control algorithms and smart

negotiation techniques could be tackled in a further stage.

Figure 9.7, at the end of this chapter, gives a scaled down graphical overview

of the organization of the agents that compose our trading system, as well as their

interactions. To avoid cluttering the graph, port names (on which the matching

115

116 CHAPTER 9. TRADING SYSTEM SIMULATION

TradeWorldWorldBlop

ThreadObj

NewBrokerAss_EvtEvent

STLpp

Entity TradeSystem_B

PrivateCustomer

CompanyCustomer

TradeMemberCompany_B

Secretary

TradeManager

BrokerAssistant

Broker

Blop

CustomerWorkerAgent

Figure 9.1: Trading System class hierarchy.

is based) have been intentionally omitted. Figure 9.1 shows the class hierarchy

of the implementation discussed in this chapter. We explain the di�erent classes

in the following sections.

9.2 The TradeWorld Blop

The TradeWorld blop (see �gure 9.2) con�nes every activity in the trading simu-

lation. Several Trade System Blops (TSB) are accessible by customers (company

or private customers), who are authorized members of a trading system that rep-

resent end-user agents.

Company or Private Customers are either members of a TradeMemberCompany B

blop (CompanyCustomer agent), or act on their own (PrivateCustomer agent).

They create queries to buy or sell goods. These queries, written by the customer

on his query P port (of KK outPort type), are transmitted to a Trading System

Blop.

1 class TradeWorld : public WorldBlop f
2 public :
3 TradeWorld () ;

4 ~TradeWorld () ;
5 g ;
6

7 TradeWorld : : TradeWorld () : WorldBlop () f
8 createBlop (TradeSystem B) ;

9 createBlop (TradeMemberCompany B) ;
10 createAgent (PrivateCustomer) ;

11 // . . . fur ther creat ions
12 stopMe () ;

13 g

Figure 9.2: The TradeWorld class declaration and the implementation of its

constructor.

9.3. THE BROKERS AND THE BROKER ASSISTANTS 117

9.3 The Brokers and the Broker Assistants

In a TSB (of type TradeSystem B) reside Broker agents (see �gure 9.3), each of

whom is devoted to serve a particular customer, by handling customer queries

committed to him. A pair of ports on the TSB, namely name query gate P

and name res gate P (name being off1 or off2 in �gure 9.7), serves as gates

for each customer and his respective broker. Every query is then posted by the

broker to his trade P port (of BB Port type), e.g., sell 100 securities at 1000

CHF and therefore published in the Trade Unit Blackboard.

1 class Broker : public Worker f
2 public :
3 Broker (char �) ;
4 ~Broker () ;

5 void s t a r t () ;
6 private :

7 char� repr name ;
8 Query q ;
9 TradeUnit tu ;

10 NewBrokerAss Evt � evt ;
11 KK inPort<Query> �query P ;

12 BB Port<TradeUnit> � trade P ;
13 TradeUnit make TradeUnit (Query �) ;
14 g ;
15

16 void Broker : : s t a r t () f
17 Agent : : s t a r t () ;
18 query P =

19 new KK inPort<Query>(this , nV(catStr (" query " , repr name)) , 1 , INF) ;
20 trade P = new BB Port<TradeUnit>(this , nV(" trade ") , INF) ;
21 while (continue p ()) f
22 q = query P�>get () ;
23 evt =

24 new NewBrokerAss Evt (repr name , q . customer id , q . t r an sac t i on id) ;
25 trade P�>attachEvent (evt) ;
26 tu = make TradeUnit(&q) ;
27 trade P�>put ("query " , tu) ;
28 g
29 stopMe () ;
30 g

Figure 9.3: The Broker class declaration and the implementation of its start

method.

On the trade P port is bound the event NewBrokerAss Evt (see �gure 9.4)

with the condition PutAccessedCond; the e�ect of the posting is that the event

NewBrokerAss Evt is triggered. The role of this event is to dynamically create a

BrokerAssistant agent that will be in charge of ful�lling the speci�c query, by

means of a dynamic connection with another broker assistant interested in an

(almost) symmetric query (e.g., buy 50 securities at 1000 CHF). This is possible

on the basis of the transmitted information by the Trade Manager.

118 CHAPTER 9. TRADING SYSTEM SIMULATION

1 class NewBrokerAss Evt : public Event f
2 public :
3 NewBrokerAss Evt (char � , Customer id , int) ;

4 ~NewBrokerAss Evt () ;
5 void launch () ;
6 private :

7 char� repr name ;
8 Customer id cu s t id ;

9 int t rans no ;
10 g ;
11

12 NewBrokerAss Evt : : NewBrokerAss Evt (char� name, Customer id cid , int no)
13 : Event (new AccessedCond () , 1) f
14 repr name = name;
15 cu s t id = cid ;

16 t rans no = no ;
17 g
18

19 void NewBrokerAss Evt : : launch () f
20 createAgent (BrokerAss i s tant , & repr name , & cus t id , & trans no) ;

21 g

Figure 9.4: The NewBrokerAss Evt class declaration and the implementation of

its constructor and its launch method.

9.4 The Trade Manager

All queries are supervised by the TradeManager agent (see �gure 9.5); he knows

who issued which query (through an identi�cation contained in the query). For

each new arrived query, the Trade Manager checks whether a possible matching

between proposals can take place (e.g. case of a broker who wants to buy secu-

rities of type A and another broker who wants to sell securities of type A). If

a kind of matching can somehow be issued between two Broker Assistants, the

Trade Manager puts on the Trade Unit Blackboard two appropriate messages for

each involved Broker Assistant. The information transmitted contains among

others a speci�c transaction id.

1 class TradeManager : public Worker f
2 public :
3 TradeManager () ;
4 ~TradeManager () ;

5 void s t a r t () ;
6 private :

7 int counter ;
8 BB Port<TradeUnit> � trade P ;

9 TradeTable t r ade tab l e ;
10 bool try to match (TradeUnit � , TradeUnit � , TradeUnit �) ;
11 bool trade (TradeUnit � , TradeUnitList � , TradeUnit � , TradeUnit �) ;
12 g ;

Figure 9.5: The TradeManager class declaration.

9.5. TRANSACTIONS 119

9.5 Transactions

A newly created BrokerAssistant agent (see �gure 9.6) has �rst to read from his

trade P port (of type BB Port) in order to be informed of a speci�c transaction.

In virtue of this information, he dynamically publishes two KK Ports using the

transaction id as port name (trade partner i P and trade partner o P ports).

A new double connection is then established between these two partners. Both

involved Broker Assistants exchange useful information in order to make their

query successful (this is precisely where negotiation techniques appear).

1 class BrokerAss i s tant : public Worker f
2 public :
3 BrokerAss i s tant (char � , Customer id , int) ;

4 ~ BrokerAss i s tant () ;
5 void s t a r t () ;

6 private :
7 char� repr name ;
8 Customer id customer id ;

9 int t r an sac t i on id ;
10 Result answ ;

11 TradeUnit tu ;
12 KK outPort<Result> � r e su l t P ; // For transmit t ing re su l t s
13 BB Port<TradeUnit> � trade P ; // Trade BB
14 KK outPort<int> � t rade partner o P ; // To communicate . . .
15 KK inPort<int> � t r ade pa r tne r i P ; // . . . with trade partner
16 Result make Answer (TradeUnit � , Customer id) ;
17 void t e s t t e rmina t i on (TradeUnit �) ;
18 void a r ch iv e r e s u l t (Result �) ;
19 g ;
20

21 void BrokerAss i s tant : : s t a r t () f
22 Agent : : s t a r t () ;

23 trade P = new BB Port<TradeUnit>(this , nV(" trade ") , INF) ;
24 while (continue p ()) f
25 // Get Trade Unit from the BB
26 char� myKey = catStr (i n t 2 i n t s t r (t r an sac t i on id) ,
27 i n t 2 i n t s t r (customer id)) ;

28 tu = trade P�>get (myKey) ;
29 // Exchange information with the trade partner
30 t rade partner o P =
31 new KK outPort<int>(this , nV(i n t 2 i n t s t r (tu . t r ade id)) , 1 , INF) ;
32 t r ade pa r tne r i P =

33 new KK inPort<int>(this , nV(i n t 2 i n t s t r (tu . t r ade id)) , 1 , INF) ;
34 . . . // Negotiate
35 // Put re su l t on re su l t port
36 answ = make Answer(&tu , pa r tne r id) ;

37 a r ch i v e r e s u l t (&answ) ;
38 // Terminate i f everyth ing sold
39 t e s t t e rmina t i on (&tu) ;

40 g
41 stopMe () ;

42 g

Figure 9.6: The BrokerAssistant class declaration and the implementation of

its start method.

When a successful transaction (the result of the agreement of two Bro-

ker Assistants) is issued, both Broker Assistants inform their committed cus-

tomers by transmitting appropriate information on their result P port (of type

KK outPort), and then terminate. On customer side, results about processed

120 CHAPTER 9. TRADING SYSTEM SIMULATION

queries can be collected either directly or through a Secretary Agent (see �g-

ure 9.7). At regular intervals, not ful�lled queries are eliminated by the Trade

Manager; all involved entities are kept posted.

Trade Member Company Blop

Secretary

Broker

Trade Unit Blackboard

Trade
Manager

Trading System Blop
(TSB)

Private
Customer

query_gate_P

Transaction
Results

Blackboard

result_gate_P

query_P

result_P

query_Presult_P

off1_query_gate_P off1_res_gate_P off2_query_gate_poff2_res_gate_P

trade_P

query_P

trade_P

TradeWorld

Broker
Assistant

result_P

trade_P

trade_partner_o_P

trade_partner_i_P

NewBrokerAss_Evt

trade_P

Broker
Assistant

result_P

trade_partner_o_P

trade_partner_i_P query_P

trade_P

BrokerBroker
Assistant

trade_P

result_P

Company
Customer

result_P

query_P

Figure 9.7: Trading System with STL++.

Chapter 10

Conclusion

The present thesis has focused on the use of coordination models and languages

in the �eld of multi-agent systems. More precisely, it has thoroughly described

a general coordination model named ECM and its instance STL++ in order

to support the design and the implementation of simulated embodied agents'

systems.

In chapter 2, we have �rst described what are autonomous agents and multi-

agent systems, and we have maintained an explicit integration of the interaction

setup in the modeling of a multi-agent system and have proposed to distinguish

between objective and subjective coordination as the management of objective

and subjective dependencies in a multi-agent system. Then, after having intro-

duced embodied simulated autonomous agents systems, our target class of sys-

tems, we have proposed a speci�c approach to the implementation of multi-agent

systems whose main bene�t is an explicit integration of the objective coordina-

tion dimension in the design and implementation of a multi-agent system. To

that aim, we have sustained the use of coordination models and languages (from

the �elds of concurrent and distributed computing, programming languages and

software engineering) in order to support the design and the implementation of

multi-agent systems. Hence, in chapter 3, we have proceeded with the review

of existing coordination models and languages on the basis of an established

taxonomy that classi�es models as data-driven or process-oriented. We have,

furthermore, presented several hybrid models, some of them being also used for

multi-agent systems. Finally, we have analyzed the prerequisites which we have

required for a coordination model and for a language to be used for our target

class of multi-agent systems.

In chapter 4, we have presented the ECM model of coordination. Its main

bene�ts, in regard to our requirements exposed in chapter 3, are the following:

� Thanks to blops, ECM allows a grouping mechanism that permits the

encapsulation of a set of agents, local communication within the created

space, and hierarchical structuring means for an environment.

� ECM processes support the realization of a basic autonomy, because they

121

122 CHAPTER 10. CONCLUSION

are conceived as blackboxes, which also permits a pro-active behavior.

Process data is private and, therefore, not accessible to other entities.

� Sensing and e�ecting on the environment are supported thanks to anony-

mous communication through ports.

� Basic communication paradigms are supported (stream, group and black-

board). Furthermore the setup of the communication means is ensured in

a decentralized manner thanks to the implicit matching mechanism.

In the subsequent chapters we have presented the three existing ECM in-

stances. In chapter 5, we have reviewed STL which is a separate language to be

used in conjunction with a computation language realizing the coordinated pro-

cesses. STL is intended at the implementation of multi-threaded applications

in the context of network-based concurrent computing. STL showed important

potentials for the implementation of multi-agent systems. This was the reason

for the abstraction of STL's basic ideas towards a general coordination model

(ECM) and the de�nition of a new coordination language, STL++. STL++

has the following bene�ts:

� It enhances dynamicity, enabling dynamic blop as well as agent creation

and termination, and dynamic port creation and deletion, thus allowing

reorganization of the connection patterns.

� It has a single language approach in order to facilitate dynamicity and to

help uniformity in the programming.

� It is conceived in an object-oriented way, because every ECM abstraction

has a corresponding class, and the operations on these abstractions are

class methods.

� The semantics of each ECM construct is clearly speci�ed, especially in what

concerns port matching, deleted ports and consequent freed connections.

The use of STL++ has been illustrated by a classical tutorial example

slightly modi�ed. Furthermore, the core interfaces are explained in appendix

A. Two main disadvantages of STL++ are its bad portability and its lack

of agent migration mechanism between blops. This has led to the de�nition

of a new prototype ECM instance named Agent&Co presented in chapter 7.

This coordination language has been realized as a Java mapping over an object

request broker architecture.

Two case studies in STL++ have been explained in chapters 8 and 9. The

former has shown the implementation of a generic model for simulated embodied

agent systems. The latter has discussed another class of multi-agent systems by

presenting the implementation of a trading system simulation.

The work presented in this thesis can be improved in several ways. We report

a few of them:

Several enhancements of ECM and STL++ are possible such as:

123

� For the moment, data in blackboards is accessed using a string. A real

associative access as in Linda should be introduced.

� Programmable �lters over the ports would enhance the implementation of

sensors and e�ectors. Furthermore, an agent should be able to inquire the

state of a port in order to react to speci�c con�gurations, and possibly to

change this state (for instance by modifying the port names).

� The semantics of the group communication should be generalized towards

open groups.

� It would be worth to study the introduction of a broadcast mechanism. In

any case, this broadcast should be contextualized in the own blop or in a

�xed depth in the blop hierarchy.

� One common problem of process-oriented languages is the lack of aggregate

operations on ports; this is also the case in ECM/STL++. In order to cope

this weakness, the study of aggregate read and get should be undertaken.

The semantics of ECM and of STL++ have been presented in a semi-formal

way, describing verbally each abstraction and the operations on it. It would

be useful to de�ne a theoretical framework in order to formalize ECM and its

instances. This would facilitate new implementations and give means to compare

the di�erent ECM instances.

A graphical programming environment leading the development of an appli-

cation could facilitate an implementation. Actually, as we have seen through the

examples presented in this thesis, several basic con�gurations can be depicted.

Hence, a graphical environment could produce code skeletons that should be

specialized by the programmer.

The object-oriented integration of ECM through STL++ could be further

investigated. In particular, it would be useful to study to which extent the inher-

itance anomaly [MY93] [McH94] is present in STL++. Furthermore, in order to

support general purpose implementations, one could de�ne several organization

patterns in form of classes that could be reused by specialization.

The work undertaken withAgent&Co should be continued in order to study

openness and mobility. Indeed, we consider that the mobility capacity of agents

and the handling of resulting problems (such as security issues) are of the most

promising research directions.

Finally, software engineering of MASs is one of the greatest challenges in

actual MAS research. The few existing methodology proposals are not complete

and have to be enhanced on the basis of acquired experience. As proposed in

this thesis, we consider the analysis of existing dependencies and the design and

implementation of their management (the coordination) as key elements. We

thus propose to complete our basic methodology in order to cope with a larger

set of applications.

One possible emphasis in the engineering of MASs is the identi�cation of

laws ruling a MAS. We recognize at least two families of laws: i) communica-

tion laws, that regulate every communication event (e.g. �lters, enhancement

124 CHAPTER 10. CONCLUSION

of exchanged messages, observation); ii) environment laws, that cope with the

organization of the environment (e.g. data organization, consequences of data

density, physical constraints such as bandwidth or memory, load balancement,

time dependencies). The liability of theses laws may be strong or weak, cou-

pling them with penalties that limit access rights, increase control or constraint

lifetimes. A coordination model should then be designed in such a way that it

can express such laws. This may be done similarly to reactive blackboards using

broadcasted events that indicate state changes, and de�ning laws that simply

capture these events and react appropriately.

Appendix A

Core STL++ Interfaces

The present appendix is devoted to the core interface of STL++. The class

hierarchy can be found in �gure 6.2. World, blop and agent classes are �rst

presented. Then come the port template classes, and the event and condition

classes. Finally, macros and miscellaneous functions of STL++ are exposed.

A.1 World Class

class WorldBlop

Implements the world blop encompassing every other entity in an STL++

application.

WorldBlop()

Creates a world blop. Note that no creation macro is necessary for

the world blop creation.

void stopMe()

Waits for every other activity in the world blop to stop, and termi-

nates.

A.2 Blop Class

class Blop

Blop()

Creates a blop. In order to create an instance of a class inheriting

from Blop, the macro createBlop must be called (see section A.7).

If the creator of a blop b is another blop f , then b is created inside

f ; if the creator of b is an agent or an event, b is created inside their

parent blop.

125

126 APPENDIX A. CORE STL++ INTERFACES

virtual void start() = 0

Pure virtual method that must be re-implemented. De�nes the act-

ing of the blop, which can create blops, ports, events and agents. This

method is automatically called by the blop creation macro createBlop.

void stopMe()

Waits for every other activity in the blop to stop, and terminates.

A.3 Agent Class

class Agent

Agent()

Creates an agent. In order to create an instance of a class inheriting

from Agent, the macro createAgent must be called (see A.7). If the

creator of an agent a is a blop f , then a is created inside f ; if the

creator of a is another agent or an event, a is created inside their

parent blop.

virtual void start() = 0

Pure virtual method that must be re-implemented. De�nes the act-

ing of the blop, which can create blops, ports, events and agents.

This method is automatically called by the agent creation macro

createAgent.

void stopMe()

Stops the thread of execution and terminates.

A.4 Port Template Classes

All port classes are template classes with one template argument DataT indicat-

ing the type of the data that can
ow through a port. For each basic type of

ports, two classes have been de�ned, one for agents and the other one for blops;

however one exception exist, namely there are no blop blackboard ports. Blop

and agent ports di�erentiate themselves in their �rst actual parameter of their

constructor; it indicates the creator of the port by a pointer on a Blop or an

Agent object. In practice, the pointer this is passed as argument by the creator.

For all port classes, if a data item is posted on a port that is not connected,

it is bu�erized until a connection is made available; when the port is connected,

all bu�erized data items are automatically forwarded to the connection.

All ports are descendants of the Port class. This class has basic member

functions for testing the state of the port and attaching an event to it:

template<class DataT> class Port

int getConnNbr()

Gets the number of connections a port is bound to.

A.4. PORT TEMPLATE CLASSES 127

bool live p()

Returns true if the lifetime of the port has passed, else returns false.

void attachEvent(Event *e)

Attach the event e to the port.

A.4.1 KK-Stream Ports

Apart from the �rst argument indicating the creator (blop or agent), the con-

structors of all KK-Stream ports have identical formal parameters. theNames is

a vector of char* indicating the names of the port; satF de�nes the saturation;

and lifetF indicates the lifetime of the port.

template<class DataT> class KK inPort

KK_inPort(Agent *a, VectorOfNames *theNames, int satF,

int lifetF)

Creates an in-going KK-Stream port belonging to an agent a.

DataT get()

Returns a data item of type DataT if it is available in the port. If

no data item is present or if the port is not connected, the method

blocks until one data item is available; it then returns the data item.

template<class DataT> class KK outPort

KK_outPort(Agent *a, VectorOfNames *theNames, int satF,

int lifetF)

Creates an outgoing KK-Stream port belonging to an agent a.

void put(DataT putMessage)

Posts a data item of type DataT on the port. The method is non-

blocking.

template<class DataT> class KK Blop inPort

KK_Blop_inPort(Blop *b, VectorOfNames *theNames, int satF,

int lifetF)

Creates an in-going KK-Stream port belonging to a blop b. No get

method is available, because blop ports only serve as gateways be-

tween the inside and the outside of a blop.

template<class DataT> class KK Blop outPort

KK_Blop_outPort(Blop *b, VectorOfNames *theNames, int satF,

int lifetF)

Creates an outgoing KK-Stream port belonging to a blop b. No put

method is available, because blop ports only serve as gateways be-

tween the inside and the outside of a blop.

128 APPENDIX A. CORE STL++ INTERFACES

A.4.2 S-Stream Ports

Apart from the �rst argument indicating the creator (blop or agent), the con-

structors of all S-Stream ports have identical formal parameters. theNames is a

vector of char* indicating the names of the port; satF de�nes the saturation;

and lifetF indicates the lifetime of the port.

template<class DataT> class S inPort

S_inPort(Agent *a, VectorOfNames *theNames, int satF,

int lifetF)

Creates an in-going S-Stream port belonging to an agent a.

DataT get()

Returns a data item of type DataT if it is available in the port. If

no data item is present or if the port is not connected, the method

blocks until one data item is available; it then returns the data item.

template<class DataT> class S outPort

S_outPort(Agent *a, VectorOfNames *theNames, int satF,

int lifetF)

Creates an outgoing S-Stream port belonging to an agent a.

void put(DataT putMessage)

Posts a data item of type DataT on the port. The method blocks until

the data item has been read by another agent.

template<class DataT> class S Blop inPort

S_Blop_inPort(Blop *b, VectorOfNames *theNames, int satF,

int lifetF)

Creates an in-going S-Stream port belonging to a blop b. No get

method is available, because blop ports only serve as gateways be-

tween the inside and the outside of a blop.

template<class DataT> class S Blop outPort

S_Blop_outPort(Blop *b, VectorOfNames *theNames, int satF,

int lifetF)

Creates an outgoing S-Stream port belonging to a blop b. No put

method is available, because blop ports only serve as gateways be-

tween the inside and the outside of a blop.

A.4. PORT TEMPLATE CLASSES 129

A.4.3 Blackboard Ports

Blackboard ports, which can only be created by agents, have a �xed saturation of

one; this means that a port can be connected only to one blackboard connection.

template<class DataT> class BB Port

BB Port(Agent *a, VectorOfNames *theNames, int lifetF)

Creates an blackboard port belonging to an agent a, with the names

of the vector theNames and a lifetime set to lifetF.

DataT get(char* key)

Returns a data item of type DataT that matches the key key. If several

matching are possible, one data item is chosen nondeterministically.

If no matching is possible or if the port is not connected, the method

blocks until one matching data item is found; it then returns the data

item.

void put(char* key, DataT putMessage)

Posts a data item of type DataT with the key key. The method is

non-blocking.

A.4.4 Group Ports

Apart from the �rst argument indicating the creator (blop or agent), the con-

structors of all group ports have identical formal parameters. theNames is a

vector of char* indicating the names of the port; satF is the saturation; and

lifetF indicates the lifetime of the port.

template<class DataT> class Group Port

Group_Port(Agent *a, VectorOfNames *theNames, int satF,

int lifetF)

Creates a group port belonging to an agent a.

DataT get()

Returns a data item of type DataT if it is available in the port. If

no data item is present or if the port is not connected, the method

blocks until one data item is available; it then returns the data item.

void put(DataT i)

Posts a data item i of type DataT on the port. The data item is

forwarded to every member of the group. The method is non-blocking.

template<class DataT> class Group Blop Port

Group_Blop_Port(Blop *b, VectorOfNames *theNames, int satF,

int lifetF)

Creates a group port belonging to a blop b. Neither get nor put

methods are available, because blop ports only serve as gateways be-

tween the inside and the outside of a blop.

130 APPENDIX A. CORE STL++ INTERFACES

A.5 Event Class

class Event

Event(Condition *c, int lifetime)

Creates an event object with lifetime lifetime. The lifetime is decre-

mented each time the event is launched. A pointer c to a condition

object indicates under which condition (see section A.6) the event is

triggered.

virtual void launch() = 0

Virtual method that must be re-implemented. De�nes the acting of

the event.

int live p()

Returns true if the lifetime has passed; otherwise false.

A.6 Condition Classes

Condition objects are used in event constructors (see section A.5). All condition

constructors have no arguments, with the exception of the MsgHandledCond

class.

class UnboundCond

UnboundCond()

Creates a condition object that is ful�lled if the port is not connected

at all.

class SaturatedCond

SaturatedCond()

Creates a condition object that is ful�lled if the port is bound to all

its potential connections.

class MsgHandledCond

MsgHandledCond(int n)

Creates a condition object that is ful�lled if n messages have passed

through the port.

class AccessedCond

AccessedCond()

Creates a condition object that is ful�lled whenever the port has been

accessed by a primitive.

A.7. MACROS AND MISCELLANEOUS FUNCTIONS 131

class PutAccessedCond

PutAccessedCond()

Creates a condition object that is ful�lled whenever the port has been

accessed by the put primitive.

class GetAccessedCond

GetAccessedCond()

Creates a condition object that is ful�lled whenever the port has been

accessed by the get primitive.

class TerminatedCond

TerminatedCond()

Creates a condition object that is ful�lled whenever the port lifetime

is over.

A.7 Macros and Miscellaneous Functions

declareRunnable(class name)

Macro that declares a blop or an agent of class class name as runnable.

defineBlop(class name, par types ...)

Macro that declares class class name with parameters of types par types

as a blop class.

defineAgent(class name, par types ...)

Macro that declares the class class namewith parameters of types par types

as an agent class.

createBlop(class name, par list ...)

Macro that creates a blop of class class name with parameters par list.

If the creator is a blop f , the new blop is created inside f ; if the creator

is an agent or an event, the new blop is created in the blop of the creator.

The macro creates an instance of the class and launches its start method.

createAgent(class name, par list ...)

Macro that creates an agent of class class namewith parameters par list.

If the creator is a blop f , the new agent is created inside f ; if the creator

is an agent or an event, the new agent is created in the blop of the creator.

The macro creates an instance of the class and launches the startmethod.

void STLppInit()

Initializes the STL++ system.

void STLppTerminate()

Waits for the world blop to terminate and shuts down the STL++ system.

132 APPENDIX A. CORE STL++ INTERFACES

VectorOfNames* nV(char *n, ...)

Creates a vector of names of type VectorOfNames from the list of names

given in the parameter list of type char*. VectorOfNames is identical

to vector<char*>, vector being de�ned in the C++ Standard Template

Library [Str97].

Appendix B

STL Code Example

In order to allow a comparison with STL++, this appendix exposes the im-

plementation in STL of the sieve of Eratosthenes, as proposed in [Kro97]. The

realization, which follows an analogous organization as �gure 6.1, has two parts:

a computation part (�gure B.1), and an implementation part (�gure B.2). Fur-

ther details can be found in the cited reference.

1 void s i eve (THREAD ENV � p , P2P in in , P2P out out , prim) f
2 const int tag = 2;

3 IntTempl t , n ;
4 Msg Prime(p) , Number(n) ; /� The messages to rece ive �/
5

6 in . get (tag , Prime) ; /� Get our prime �/
7 prim . put (tag , Prime) ; /� Tell source process �/
8 in . get (tag , Number) ; /� Get a number from pipe l ine �/
9

10 while (n % p == 0) f /� Sieve un t i l a new candidate �/
11 in . get (tag , Number) ; /� is found �/
12 g
13 Msg Div (n) ; /� A new candidate �/
14 out . put (tag , Div) ; /� forward i t in p ipe l ine �/
15

16 while (1) f /� Do your usual work , s ieve �/
17 in . get (tag , Number) ; /� Get candidate �/
18 i f (n % p != 0) f
19 out . put (tag , Number) ; /� Forward i t �/
20 g
21 g
22 g

Figure B.1: Sieve of Eratosthenes in STL: computation part.

133

134 APPENDIX B. STL CODE EXAMPLE

1 blop world f
2 process source (out , prim) f // Source process
3 P2P�>out<"SOURCE">; // Output port
4 P2P<�out<"PRIM">; // Input port
5 func source ; // Thread entry point
6 g
7 process s i eve p (in , out , prim) f
8 P2P<�in<"SOURCE">; // The de f in i t i on
9 P2P�>prim<"PRIM">; // of the f i l t e r

10 P2P�>out<"SOURCE">; // process
11 func s i eve ;
12 g
13 create process s i eve p s ; // I n i t i a l f i l t e r process
14 event new sieve () f
15 create process s i eve p n ; // New f i l t e r process
16 when unbound(n . out) // Re�i n s t a l l event
17 then new sieve () ;
18 g
19 when unboud(s . out) then new sieve () ; // Attach event to
20 create process source q ; // out port of s
21 g

Figure B.2: Sieve of Eratosthenes in STL: coordination part.

Appendix C

Linda, Gamma and

Manifold Code Examples

In order to allow a comparison with STL++, this appendix presents imple-

mentations in Linda (�gure C.1), Gamma (�gure C.2) and Manifold (�gure

C.3) of the Restaurant of Dining Philosophers (see section 6.7) as presented in

[ACH98]. Further details can be found in the cited reference.

1 #define TRUE 1
2

3 phi losopher (int i) f
4 while (TRUE) f
5 think () ;
6 in ("meal t i cke t ") ;

7 in (" fork " , i) ;
8 in (" fork " , (i +1)%5);
9 eat () ;

10 out (" fork " , i) ;
11 out (" fork " , (i +1)%5);

12 out ("meal t i cke t ") ;
13 g
14 g
15

16 rea l main () f
17 int i ;
18 for (i =0; i <5; i ++) f
19 out (" fork " , i) ;
20 eval (ph i losopher (i)) ;
21 i f (i<4)

22 out ("meal t i cke t ") ;
23 g
24 g

Figure C.1: The Restaurant of Dining Philosophers in Linda.

135

136APPENDIXC. LINDA,GAMMAANDMANIFOLDCODEEXAMPLES

1 (" fork " , i) , (" fork " , j) �> (" eat " , i) <= j=(i +1)%5

2 (" eat " , i) �> (" fork " , i) , (" fork " , (i +1)%5) <= true

Figure C.2: The Restaurant of Dining Philosophers in Gamma.

1 #define WAIT (preemptal l , terminated (s e l f))

2

3 event request , done .
4 manner Eat (process , process , process) import .

5 manner Think (process) import .
6 manner GetTicket () import .

7 manner ReturnTicket () import .
8

9 export Fork () f
10 begin : while true do f
11 begin : WAIT.

12

13 request .� phi l & � ready .� phi l : f
14 save � .
15 begin : (r a i s e (ready) , WAIT) .
16 done . ph i l : .

17 g .
18 g .
19 g
20

21 export Philosopher () f
22 event ready .
23

24 begin : while true do f
25 begin : Think (s e l f) ;

26 GetTicket () ;
27 (r a i s e (request , ready) , WAIT) .
28

29 ready .� l f o rk & ready .� r fork : Eat (s e l f , l f o rk , r fork) .
30

31 end : r a i s e (done) ;
32 ReturnTicket () .

33 g .
34 g

Figure C.3: The Restaurant of Dining Philosophers in Manifold.

Bibliography

[ACH98] F. Arbab, P. Ciancarini, and C. Hankin. Coordination Languages for

parallel Programming. Parallel Computing, 24(7):989{1004, 1998.

[ACP93] J.-M. Andreoli, P. Ciancarini, and R. Pareschi. Interaction Abstract

Machines. In P. Wegner G. Agha and A. Yonezawa, editors, Research

Directions in Concurrent Object Oriented Programming. MIT Press,

Cambridge Mass., 1993.

[Agh86] G. Agha. ACTORS: A Model of Concurrent Computation in Dis-

tributed Systems. MIT Press, 1986.

[AHS93] F. Arbab, I. Herman, and P. Spilling. An Overview of Manifold and

its Implementation. Concurrency: Practice and Experience, 5(1):23{

70, February 1993.

[Arb95] F. Arbab. Coordination of Massively Concurrent Activities. Techni-

cal report, CWI, Computer Science Department, Amsterdam, The

Netherlands, 1995. CS-R9565.

[Arb96] F. Arbab. The IWIM Model for Coordination of Concurrent Activi-

ties. In P. Ciancarini and C. Hankin, editors, Proceedings of the First

International Conference on Coordination Models, Languages and

Applications, number 1061 in LNCS. Springer Verlag, April 1996.

[Arb98] F. Arbab. What Do You Mean, Coordination? Bulletin of the Dutch

Association for Theoretical Computer Science (NTVI), 3 1998.

[AWY93] G. Agha, P. Wegner, and A. Yonezawa. Research Directions in Con-

current Object Oriented Programming. MIT Press, Cambridge Mass.,

1993.

[BA96] P. Bouvry and F. Arbab. Visifold: A Visual Environment for a Co-

ordination Language. In Proceedings of the First International Con-

ference on Coordination Models, Languages and Application, 1061 in

LNCS, pages 403{406. Springer Verlag, April 1996.

[Ban96] M. Banville. Sonia: an Adaptation of Linda for Coordination of

Activities in Organizations. In P. Ciancarini and C. Hankin, editors,

137

138 BIBLIOGRAPHY

Proceedings of the First International Conference on Coordination

Models, Languages and Applications (Coordination'96), number 1061

in LNCS. Springer Verlag, April 1996.

[BAP92] M. Bourgois, J.M. Andreoli, and R. Pareschi. Extending Objects

with Rules, Composition and Concurrency: the LO Experience.

Technical report, European Computer Industry Research Centre,

Munich, Germany, 1992.

[BB92] G. Berry and G. Boudol. The Chemical Abstract Machine. Theoret-

ical Computer Science, 96:217{248, 1992.

[Bee95] R.D. Beer. A dynamical systems perspective on agent-environment

interaction. Arti�cial Intelligence, 72:173{215, 1995.

[BGL98] J.-P. Briot, R. Guerraoui, and K.-P. Lohr. Concurrency and Distri-

bution in Object-Oriented Programming. ACM Computing Surveys,

30(3):291{329, September 1998.

[BHD94] R. Beckers, O.E. Holland, and J.L. Deneubourg. From local actions

to global tasks: stigmergy and collective robotics. In R.A. Brooks

and P. Maes, editors, Fourth Workshop on Arti�cial Life, Boston,

MA, USA, 1994. MIT Press.

[BJ99] A. Brogi and J.-M. Jacquet. On the Exprissiveness of Coordination

Models. In P. Ciancarini and Alexander L. Wolf, editors, Proceedings

of the Third International Conference on Coordination Models, Lan-

guages and Applications (Coordination'99), volume 1594 of Lecture

Notes in Computer Science, pages 134{149, Amsterdam, Nether-

lands, April 1999. Springer Verlag.

[BK96a] J.A. Bergstra and P. Klint. The Discret Time ToolBus - a software

coordination architecture, 1996.

[BK96b] J.A. Bergstra and P. Klint. The ToolBus Coordination Architec-

ture. In P. Ciancarini and C. Hankin, editors, Proceedings of the First

International Conference on Coordination Models, Languages and

Applications, number 1061 in LNCS. Springer Verlag, April 1996.

[BM90] J.P. Banâtre and Le M�etayer. The Gamma Model and its discipline

of Programming. Science of Computer Programming, 15:55{77, 1990.

[BM92] S. Bussmann and J. Muller. A Negotiation Framework for Co-

operating Agents. In S. M. Deen, editor, Proceedings of CKBS-SIG,

pages 1{17. Dake Centre, University of Keele, 1992.

[BM93] J.P. Banâtre and D. Le M�etayer. Programming by Multiset Trans-

formation. Communications of the ACM, 36(1):98{111, 1993.

BIBLIOGRAPHY 139

[BOV99] C. Bryce, M. Oriol, and J. Vitek. A Coordination Model for Agents

Based on Secure Spaces. In P. Ciancarini and Alexander L. Wolf,

editors, Proceedings of the Third International Conference on Co-

ordination Models, Languages and Applications (Coordination'99),

volume 1594 of Lecture Notes in Computer Science, Amsterdam,

Netherlands, April 1999. Springer Verlag.

[Bra97] J. Bradshaw. Software Agents. The MIT Press, 1997.

[Bri89] J.-P. Briot. Actalk: a Testbed for Classifying and Designing Actor

Languages in the Smalltalk-80 Environment. In Proceedings of the

European Conference on Object-Oriented Programming, pages 109{

129, Cambridge, UK, 1989. Cambridge University Press.

[Bri98] J.-P. Briot. Agents and Concurrent Objects. IEEE Concurrency,

pages 74{81, October-December 1998.

[Bro86] R.A. Brooks. A robust layered control system for a mobile robot.

IEEE Robotics and Automation, RA(2):pp. 14{23, 1986.

[Bro94] R.A. Brooks. Intelligence Without Reason. In L. Steels and R.

Brooks, editor, The arti�cial life route to arti�cial intelligence.

Building Embodied, Situated Agents, pages 25{81. Lawrence Erl-

baum, Hillsdale, NJ, USA, 1994.

[BST89] H. Bal, J. Steiner, and A. Tanenbaum. Programming Languages for

Distributed Computing Systems. ACM Computing Surveys, 21:261{

322, 1989.

[BT96] P. Becheiraz and D. Thalmann. A Model of Nonverbal Communica-

tion and Interpersonal Relationship between Virtual Actors. In Pro-

ceedings of Computer Animation'96. IEEE Computer Society Press,

June 1996.

[Buf97] M. Bu�o. Contextual Coordination: a Coordination Model for Dis-

tributed Object Systems. PhD thesis, University of Geneva, 1997.

[Bur96] B. Burmeister. Models and Methodology for Agent-Oriented Anal-

ysis and Design. In K. Fisher, editor, Working Notes of the KI'96

Workshop on Agent-Oriented Programming and Distributed Systems.

DFKI, 1996. DFKI Document D-96-06.

[CA94] C. Callsen and G. Agha. Open Heterogeneous Computing in Ac-

torSpace. Journal of Parallel and Distributed Computing, pages 289{

300, 1994.

[CCR96] S. Castellani, P. Ciancarini, and D. Rossi. The ShaPE of ShaDe: a

coordination system. Technical report, Lab. for Computer Science,

1996. UBLCS-96-5.

140 BIBLIOGRAPHY

[CDS96] F. Chantemargue, T. Dagae�, and M. Schumacher. Coop�eration

implicite et antagonisme dans les syst�emes multi-agents. In Research

Days of IIUF, University of Fribourg, Fribourg, Switzerland, October

1996.

[CDSH96] F. Chantemargue, T. Dagae�, M. Schumacher, and B. Hirsbrunner.

Coop�eration implicite et performance. In Proceedings of the Sixth

symposium on Cognitive Sciences (ARC), Villeneuve d'Ascq, France,

December 10-12 1996.

[CDSH98] F. Chantemargue, T. Dagae�, M. Schumacher, and B. Hirsbrun-

ner. Autonomous Agents and Cooperation: Application to Collective

Robotics. Technical Report Internal Note 98-03, Computer Science

Department, University of Fribourg, Fribourg, Switzerland, Febru-

ary 1998.

[CFGK95] N. Carriero, E. Freeman, D. Gelernter, and D. Kaminsky. Adaptive

Parallelism and Piranha. IEEE Computer, 28(1), January 1995.

[CG89] N. Carriero and D. Gelernter. Linda in Context. Communications

of the ACM, 32(4):444{458, 1989.

[CG92a] N. Carriero and D. Gelernter. Coordination Languages and Their

Signi�cance. Communications of the ACM, 35(2):97{107, February

1992.

[CG92b] N. Carriero and D. Gelernter. How to Write Parallel Programs, A

First Course. MIT Press, 1992.

[CG98] K. Carley and L. Gasser. Computational Organisation Theory.

In G. Weiss and S. Sen, editors, Multi-Agent Systems - A Mod-

ern Approach to Distributed Arti�cial Intelligence, pages 299{330.

AAAI/MIT Press, 1998.

[CGZ95] N. Carriero, D. Gelernter, and L. Zuck. Bauhaus Linda. In P. Cian-

carini, O. Nierstrasz, and A. Yonezawa, editors, Object-Based Models

and Languages for Concurrent Systems, volume 924 of Lecture Notes

in Computer Science, Berlin, 1995. Springer Verlag.

[CH99] F. Chantemargue and B. Hirsbrunner. A collective robotics appli-

cation based on emergence and self-organization. In Proceedings

of Fifth International Conference for Young Computer Scientists

(ICYCS'99), Nanjing, China, August 17-20 1999. To appear.

[Cia91] P. Ciancarini. PoliS: A Programming Model for Multiple Tuple

Spaces. In Sixth International Workshop on Software Speci�cation

and Design, Como, Italy, October 1991.

BIBLIOGRAPHY 141

[Cia99] P. Ciancarini. Coordination Languages. First AgentLink Euro-

pean Agent Systems Summer School (EASSS'99), July 1999. URL:

http://www.agentlink.org/easss99.

[CJY95] P. Ciancarini, K. Jensen, and D. Yankelewich. On the Operational

Semantics of a Coordination Language. In P. Ciancarini, O. Nier-

strasz, and A. Yonezawa, editors, Object-Based Models and Lan-

guages for Concurrent Systems, volume 924 of Lecture Notes in Com-

puter Science, Berlin, 1995. Springer Verlag.

[CKR+97] P. Ciancarini, A. Knoche, D. Rossi, R. Tolksdorf, and F. Vitali.

Coordinating Java agents for Financial Applications on the WWW.

In Proceedings of the Second International Conference and Exhibition

on The Practical Application of Intelligent Agents and Multi-Agents,

PAAM '97, 1997.

[CKS+98] F. Chantemargue, O. Krone, M. Schumacher, T. Dagae�, and

B. Hirsbrunner. Autonomous Agents: from Concepts to Implemen-

tation. In Proceedings of the Fourteenth European Meeting on Cyber-

netics and Systems Research (EMCSR'98), volume 2, pages 731{736,

Vienna, Austria, April 14-17 1998.

[CKTV96] P. Ciancarini, A. Knoche, R. Tolksdorf, and Fabio Vitali. PageS-

pace: An Architecture to Coordinate Distributed Applications on

the Web. In Proceedings of the Fifth International World Wide Web

Conference, volume 28 of Computer Networks and ISDN Systems,

1996.

[CLC99a] F. Chantemargue, P. Lerena, and M. Courant. Autonomy-based

multi-agent systems: statistical issues. In Proceedings of Third World

Multiconference on Systemics, Cybernetics and Informatics (SCI'99)

Fifth International Conference on Information Systems Analysis and

Synthesis (ISAS'99), Orlando, Florida, USA, July 31 - August 4

1999. To appear.

[CLC99b] F. Chantemargue, P. Lerena, and M. Courant. Con
icts in a sim-

ple autonomy-based multi-agent system. In Proceedings of AAAI'99

workshop on Agents' con
icts, Orlando, Florida, USA, July 18{19

1999. To appear.

[CLZ98] G. Cabri, L. Leonardi, and F. Zambonelli. Reactive Tuple Spaces

for Mobile Agents. Number 1477 in LNCS, Stuttgart, Germany,

September 1998. Springer Verlag.

[CM96] A. Chavez and P. Maes. Kasbah: An Agent Marketplace for Buying

and Selling Goods. In Proceedings of the First International Con-

ference on the Practical Application of Intelligent Agents and Multi-

Agent Technology, London, UK, April 1996. Lawrence Erlbaum.

142 BIBLIOGRAPHY

[CNT98] P. Ciancarini, O. Nierstratz, and R. Tolksdorf. A Case Study in

Coordination: Conference Management through the Internet, 1998.

Electronic Note.

[COZ99a] P. Ciancarini, A. Omicini, and F. Zambonelli. Coordination Models

for Multi-Agent Systems. AgentLink News, 3:3{6, July 1999.

[COZ99b] P. Ciancarini, A. Omicini, and F. Zambonelli. Multiagent engineer-

ing: the coordination viewpoint. In J. R. Nicholas and Y. Lesp�erance,

editors, Proceedings of the 6th International Workshop on Agent

Theories, Architectures, and Languages (ATAL'99), pages 327{333,

Orlando (FL), July 15{17 1999.

[CR98] P. Ciancarini and D. Rossi. Coordinating distributed applets with

Shade/Java. In Proceedings ACM Symposium on Applied Computing

(SAC '98) Special Track on Coordination Models, Languages and

Applications, Atlanta, GA, U.S.A., Feb. 27 { March 1 1998. ACM,

ACM Press.

[DC97] T. Dagae� and F. Chantemargue. Distributing Agents. In Swiss

Workshop on Collaborative and Distributed Systems, Lausanne,

Switzerland, May 2 1997.

[DCH97] T. Dagae�, F. Chantemargue, and B. Hirsbrunner. Emergence-based

Cooperation in a Multi-Agent System. In Proceedings of the Second

European Conference on Cognitive Science (ECCS'97), pages 91{96,

Manchester, U.K., April 9-11 1997.

[Den87] D. C. Dennett. The Intentional Stance. The MIT Press, 1987.

[dJ97] E. de Jong. Software Architecture for Large Control Systems: A

Case Study Description. In D. Garlan and D. Le Metayer, editors,

Proceedings of the Second International Conference on Coordination

Models, Languages and Applications (Coordination'97), number 1282

in LNCS, pages 150{156. Springer Verlag, September 1997.

[DNO97] E. Denti, A. Natali, and A. Omicini. Programmable Coordination

Media. In D. Garlan and D. Le Metayer, editors, Proceedings of the

Second International Conference on Coordination Models, Languages

and Applications (Coordination'97), number 1282 in LNCS, pages

274{288. Springer Verlag, September 1997.

[DNOV96] E. Denti, A. Natali, A. Omicini, and M. Venuti. An Extensible

Framework for the Development of Coordinated Applications. In

P. Ciancarini and C. Hankin, editors, Proceedings of the First In-

ternational Conference on Coordination Models, Languages and Ap-

plications (Coordination'96), number 1061 in LNCS, pages 305{320.

Springer Verlag, April 1996.

BIBLIOGRAPHY 143

[Doi99] I. Doitchinov. Agent&Co. Master's thesis, Computer Science De-

partment, University of Fribourg, September 1999.

[Dur96] E. Durfee. Planning in Distributed Arti�cial Intelligence. In

G. O'Hare and N. Jennings, editors, Foundations of Distributed Ar-

ti�cial Intelligence, pages 231{245. Wiley & Sons, 1996.

[ECJS94] E. A. Edmonds, L. Candy, R. Jones, and B. Sou�. Support for

Collaborative Design: Agents and Emergence. Communication of

the ACM, 37:41{47, July 1994.

[EL99] C.T.H. Everaars and B. Lisser. Coordination of a Parallel Propo-

sition Solver. In P. Ciancarini and Alexander L. Wolf, editors,

Proceedings of the Third International Conference on Coordination

Models, Languages and Applications (Coordination'99), volume 1594

of Lecture Notes in Computer Science, pages 275{290, Amsterdam,

Netherlands, April 1999. Springer Verlag.

[Eme90] E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen,

editor, Handbook of Theoretical Computer Science, pages 996{1072.

Elsevier, 1990.

[FA95] S. Fr�lund and G. Agha. A Language Framework for Multi-Object

Coordination. In P. Ciancarini, O. Nierstrasz, and A. Yonezawa, ed-

itors, Object-Based Models and Languages for Concurrent Systems,

volume 924 of Lecture Notes in Computer Science, Bologna, Italy,

July 1995. Springer Verlag.

[Fer95] I. A. Ferguson. Integrated Control and Co-ordinated Behavior - A

Case for Agent Models. In Intelligent Agents, LNAI, pages 203{218.

Springer Verlag, 1995.

[FFMM94] T. Finin, R. Fritzon, D. McKay, and R. McEntire. KQML as an

Agent Communication Language. In Proceedings of the 3rd Inter-

national Conference on Information and Knowledge Management

(CIKM). ACM Press, 1994.

[FG96] S. Franklin and A. Graesser. Is it an Agent or just a Program? A

Taxonomy for Autonomous Agents. In J.P. Muller, M.J. Wooldridge,

and N.R. Jennings, editors, Proceedings of ECAI'96 Workshop

(ATAL). Intelligent Agents III. Agent Theories, Architectures, and

Languages, number 1193 in LNAI, pages 21{35, August 1996.

[FIP99a] FIPA, Foundation for Intelligent Physical Agents. Agent Communi-

cation Language, Speci�cation 2, 1999. www.�pa.org.

[FIP99b] FIPA, Foundation for Intelligent Physical Agents. FIPA Speci�ca-

tions, 1999. URL: www.�pa.org.

144 BIBLIOGRAPHY

[Fis94] M. Fisher. A Survey of Concurrent MetateM - the Language and its

Applications. In D.M. Gabbay and H.J. Ohlbach, editors, Temporal

Logic - Proceedings of the First International Conference, number

827 in LNAI, pages 480{505. Springer-Verlag, 1994.

[Fis97] M. Fisher. Implementing BDI Systems by Direct Execution. In

Proceedings of the 15th International Joint Conference on Arti�cial

Intelligence, 1997.

[FK97] B. Freisleben and T. Kielmann. Coordination Patterns for Paral-

lel Computing. In Proceedings of the Second International Confer-

ence on Coordination Models, Languages and Applications, LNCS.

Springer Verlag, September 1997.

[FMN88] E. Feigenbaum, P. McCorduck, and H. P. Nii. The Rise of the Ex-

pert Company: How Visionary Companies are Using Arti�cial In-

telligence to Achieve Higher Productivity and Pro�ts. Times Books,

1988.

[FMS+97] M. Fisher, J. Mller, M. Schroeder, G. Staniford, and G. Wagner.

Methodological Foundations for Agent-Based Systems. Knowledge

Engineering Review, 12:323{329, 1997.

[For90] S. Forrest. Emergent Computation: Self-organizing, Collective and

Cooperative Phenomena in Natural and Arti�cial Computing Net-

works. Physica D, 42, 1990.

[GB92] L. Gasser and J. Briot. Object-based concurrent programming and

DAI. In N.M. Avouris and L. Gasser, editors, Distributed Arti�cial

Intelligence: Theory and Praxis, pages 81{108. Kluwer Academic

Press, 1992.

[GB99] Z. Guessoum and J.-P. Briot. From Active Objects to Autonomous

Agents. IEEE Concurrency, pages 68{76, July-September 1999.

[GBJ+94] A. Geist, A. Bueguelin, W. Jiang, R. Manchek, and V.S. Sun-

deram. PVM: Parallel Virtual Machine: A Users' Guide and Tu-

torial for Networked Parallel Computing. MIT Press, Cambridge,

Massachusetts, 1994.

[Gel85] D. Gelernter. Generative Communication in Linda. ACM Transac-

tions on Programming Languages and Systems, 7(1):80{112, 1985.

[Gel89] D. Gelernter. Mulitiple Tuple Spaces in Linda. In E. Odijk, M. Rem,

and J.Syre, editors, Proceedings of the Conference on Parallel Archi-

tectures and Languages Europe (PARLE 89), volume 365 of Lecture

Notes in Computer Science, pages 20{27, Berlin, 1989. Springer Ver-

lag.

BIBLIOGRAPHY 145

[Gir87] J.-Y. Girad. Linear Logic. Theoretical Computer Science, 50:1{102,

1987.

[GJS96] J. Gosling, B. Joy, and G. Steele. The Java Language Speci�cation.

1.0 edition, August 1996.

[Gla96] N. Glaser. Contribution to Knowledge Modelling in a Multi-Agent

Framework (the CoMoMAS Approach). PhD thesis, L'Universit�e

Henri Poincar�e, Nancy I, France, November 1996.

[GLS94] W. Gropp, E. Lusk, and A. Skjellu. Using MPI: Portable Paral-

lel Programming with the Message Passing Interface. MIT Press,

Cambridge, 1994.

[GM98] R. Guttman and P. Maes. Cooperative vs. Competitive Multi-Agent

Negotiations in Retail Electronic Commerce. In Proceedings of the

Second International Workshop on Cooperative Information Agents

(CIA'98)., July 1998.

[GNSP94] Y. Gutfreund, J. Nicol, R. Sasnett, and V. Phuah. WWWinda: An

Orchestration Service for WWW Browsers and Accessories. In Pro-

ceedings of the Second International World Wide Web Conference,

Chicago, IL, USA, December 1994.

[GR95] M. P. George� and A. S. Rao. The Semantics of Intention Mainte-

nance for Rational Agents. In Proceedings of the International Joint

Conference on Arti�cial Intelligence (IJCAI), number 1202 in LNAI,

pages 704{710, 1995.

[Gru93] T.R. Gruber. A Translation Approach to Portable Ontology Speci-

�cations. Knowledge Acquisition, 5:119{220, 1993.

[GSM+95] K.J. Goldman, B. Swaminathan, T.P. McCartney, M.D. Anderson,

and R. Sethuraman. The Programmer's Playground: I/O Abstrac-

tions for User-Con�gurable Distributed Applications. IEEE Trans-

actions on Software Engineering, 21(9):735{746, 1995.

[HAK94] B. Hirsbrunner, M. Aguilar, and O. Krone. CoLa: A Coordina-

tion Language for Massive Parallelism. In Proceedings of the ACM

Symposium on Principles of Distributed Computing (PODC), Los

Angeles, California, August 14{17 1994.

[Hew77] C. Hewitt. Viewing Control Structures as Patterns of passing Mes-

sages. Journal of Arti�cial Intelligence, 8(3):323{364, 1977.

[Hol96] A.A. Holzbacher. A Software Environment for Concurrent Coordi-

nated Programming. In P. Ciancarini and C. Hankin, editors, Pro-

ceedings of the First International Conference on Coordination Mod-

els, Languages and Applications, number 1061 in LNCS. Springer

Verlag, April 1996.

146 BIBLIOGRAPHY

[HOY+99] F. Hattori, T. Ohguro, M. Yokoo, S. Matsubara, and S. Yoshida. So-

cialware: Multiagent Systems for Supporting Network Communities.

Communication of the ACM, 42(3):55{61, March 1999.

[HPS97] A. A. Holzbacher, M. Peerin, and M. Sudholt. Modeling Railway

Control Systems Using Graph Grammars: A Case Study. In D. Gar-

lan and D. Le Metayer, editors, Proceedings of the Second Interna-

tional Conference on Coordination Models, Languages and Appli-

cations (Coordination'97), number 1282 in LNCS, pages 172{186.

Springer Verlag, September 1997.

[HR88] B. Hayes-Roth. A Blackboard Architecture for Control. In Alan H.

Bond and Les Gasser, editors, Readings in Distributed Arti�cial In-

telligence. Morgan Kaufmann Pub. Inc., San Mateo, California, 1988.

[HR95] B. Hayes-Roth. An Architecture for Adaptive Intelligent Systems.

Arti�cial Intelligence: Special Issue on Agents and Interactivity,

72:329{365, 1995.

[HS98] M. Huhns and M. P. Singh. Readings in Agents. Morgan Kaufmann

Publishers, 1998.

[HSM94] H. Haugeneder, D. Steiner, and F.G. McCabe. IMAGINE: A Frame-

work for building Multi-agent Systems. In S. M. Deen, editor, Pro-

ceeding of the 1994 International Working Conference on Cooperat-

ing Knowledge Based Systems (CKBS-94), pages 31{64, 1994.

[Hup96] S. C. Hupfer. Turingware: An Integrated Approach to Collabora-

tive Computing. PhD thesis, Faculty of the Graduate School, Yale

University, Yale, USA, December 1996.

[IGG98] C.A. Iglesias, M. Garijo, and J.C. Gonzalez. A Survey of Agent-

Oriented Methodologies. In J. P. Muller, M. P. Singh, and A. S.

Rao, editors, Intelligent Agents V. Proceedings of Fifth Interna-

tional Workshop on Agent Theories, Architectures, and Languages

(ATAL'98), number 1555 in LNAI, pages 317{330, Paris, France,

July 1998. Springer Verlag.

[IGGV97] C. A. Iglesias, M. Garijo, J. Gonzales, and J. R. Velasco. Analy-

sis and Design of Multiagent Systems using MAS-CommonKADS.

In M. P. Singh, A. Rao, and M. J. Wooldridge, editors, Intelli-

gent Agents IV. Proceedings of the Fourth International Workshop

on Agent Theories, Architectures, and Languages (ATAL'97), num-

ber 1365 in LNAI, pages 313{327, Providence, Rhode Island, USA,

July 1997. Springer Verlag.

[Jel90] R. Jellinghaus. Ei�el Linda: An Object Oriented Linda Dialect.

ACM Sigplan Notices, 25(12), December 1990.

BIBLIOGRAPHY 147

[Jen94] K.K. Jensen. Towards a Multiple Tuple Space Model. PhD thesis,

Institute for Electronic Systems, Department of Mathematics and

Computer Science, Aalborg University, Aarborg, Denmark, 1994.

[Jen96] N.R. Jennings. Coordination Techniques for Distributed Arti�cial

Intelligence. In G.M.P. O'Hare and N.R. Jennings, editors, Founda-

tions of Distributed Arti�cial. John Wiley and Sons, 1996.

[JSW98] N. R. Jennings, K. Sycara, and M. Wooldridge. A Roadmap of Agent

Research and Development. Autonomous Agents and Multi-Agent

Systems, 1:7{38, 1998.

[KB98] D. G. Kafura and J.-P. Briot. Actors & Agents. IEEE Concurrency,

pages 24{29, April-June 1998.

[KCD+98] O. Krone, F. Chantemargue, T. Dagae�, M. Schumacher, and

B. Hirsbrunner. Coordinating Autonomous Entities. In Proceedings

of the ACM Symposium on Applied Computing (SAC'98). Special

Track on Coordination, Languages and Applications, pages 149{158,

Atlanta, Georgia, USA, February 27 - March 1 1998.

[KCDS98] O. Krone, F. Chantemargue, T. Dagae�, and M. Schumacher. Co-

ordinating Autonomous Entities with STL. The Applied Computing

Review, Special issue on Coordination Models Languages and Appli-

cations, 1998.

[KGR96] D. Kinny, M. George�, and A. Rao. A Methodology and Modelling

Technique for Systems of BDI Agents. In Proceedings of the 7th

European Workshop on Modelling Autonomous Agents in a Multi-

Agent World, MAAMAW'96, number 1038 in LNAI. Springer Verlag,

1996.

[KHS96] O. Krone, B. Hirsbrunner, and V.S. Sunderam. PT-PVM+: A

Portable Platform for Multithreaded Coordination Languages. Cal-

culateurs Parall�eles, 8(2):167{182, 1996.

[Kie97] T. Kielmann. Objective Linda: A Coordination Model for Object-

Oriented Parallel Programming. PhD thesis, Dept. of Electrical Engi-

neering and Computer Science, University of Siegen, Germany, 1997.

[KL90] D. G. Kafura and K. H. Lee. ACT++: building a concurrent C++

with Actors. Journal of Object-Oriented Programming, 3, 1990.

[Kle97] M. Klein. Coordination Science: Challenges and Directions. In

W. Conen and G. Neumann, editors, Coordination Technology for

Collaborative Applications, number 1364 in LNCS, pages 161{176.

Springer Verlag, 1997.

148 BIBLIOGRAPHY

[KML93] D. G. Kafura, M. Mukherji, and G. Lavender. ACT++: A Class

Library for Concurrent Programming in C++ Using Actors. Journal

of Object-Oriented Programming, 6(6):47{55, October 1993.

[KR78] B.W. Kernighan and D.M. Ritchie. The C Programming Language.

Prentice-Hall, Englewood Cli�s N.J., 1978.

[Kro97] O. Krone. STL and Pt-PVM: Concepts and Tools for Coordination

of Multi-threaded Applications. PhD thesis, University of Fribourg,

1997.

[LBDL99] C. Langton, R. Burkhart, M. Daniels, and A. Lan-

caster. The swarm simulation system, 1999. URL:

http://www.santafe.edu/projects/swarm/.

[LF97] Y. Labrou and T. Finin. A proposal for a New KQML Speci�ca-

tion. Technical report, Computer Science and Electrical Engineering

Department, University of Maryland, Baltimore County, Baltimore,

Md., USA, 1997. Technical Report TR-CS-97-03.

[LFP99] Y. Labrou, T. Finin, and Y. Peng. Agent Communication Lan-

guages: the Current Landscape. IEEE Intelligent Systems, pages

45{52, March/April 1999.

[Mae94] P. Maes. Agents that reduce Work and Information Overload. Com-

munication of the ACM, 37:31{40, July 1994.

[Mae95] P. Maes. Arti�cial Life Meets Entertainment: Life like Autonomous

Agents. Communication of the ACM, 38:108{114, 1995.

[Mat95] M.J. Mataric. From Local Interactions to Collective Intelligence.

In L. Steels, editor, The Biology and Technology of Intelligent Au-

tonomous Agents, pages 275{295. NATO ASI series, Hillsdale, NJ,

USA, 1995.

[MC94a] T.W. Malone and K. Crowston. The Interdisciplinary Study of Co-

ordination. ACM Computing Surveys, 26(1):87{119, March 1994.

[MC94b] F.G. McCabe and K.L. Clark. April - agent process interaction lan-

guage. In M. Wooldridge and N.R. Jennings, editors, Intelligent

Agents. Proceedings of First International Workshop on Agent Theo-

ries, Architectures, and Languages (ATAL'94), number 890 in LNAI.

Springer Verlag, August 1994.

[McH94] C. McHale. Synchronisation in Concurrent Object-oriented Lan-

guages: Expressive Power, Genericity and Inheritance. PhD the-

sis, Department of Computer Science, Trinity College, University of

Dublin, Dublin, Ireland, October 1994.

BIBLIOGRAPHY 149

[MDK96] J. Magee, N. Dulay, and J. Kramer. Structured Parallel and Dis-

tributed Programs. IEEE Software Enginering Journal, pages 73{82,

March 1996.

[Mey98] J.-J. C. Meyer. Agent Languages and Their Relationship to Other

Programming Paradigms. In J. P. Muller, M. P. Singh, and A. S.

Rao, editors, Intelligent Agents V. Proceedings of the Fifth Interna-

tional Workshop on Agent Theories, Architectures, and Languages

(ATAL'98), number 1555 in LNAI, pages 309{316, Paris, France,

July 1998. Springer Verlag.

[MGM99] P. Maes, T. H. Guttman, and A. G. Moukas. Agents That Buy and

Sell. Communication of the ACM, 42(3):81{91, March 1999.

[Mic99] O. Michel. The khepera simulator, 1999. URL:

http://diwww.ep
.ch/lami/team/michel/khep-sim/index.html.

[ML94] N.H. Minsky and J. Leichter. Law-Governed Linda as a Coordina-

tion Model. In Proceedings of the ECCOP Workshop on Models and

Languages for Coordination of Parallelism and Distribution, volume

924 of LNCS, Berlin, 1994. Springer Verlag.

[MM95] A. Martinoli and F. Mondada. Collective and Cooperative Group

Behaviours: Biologically Inspired Experiments in Robotics. In Pro-

ceedings of the Fourth Symposium on Experimental Robotics ISER-

95, Stanford, USA, June 30- July 2 1995.

[MNK93] J. Magee, N.Dulay, and J. Kramer. Structuring parallel and dis-

tributed programs. Software Engineering Journal, pages 73{82,

March 1993.

[Mul96] J.P. Muller. The Design of Intelligent Agents: A Layered Approach.

Number 1177 in Lecture Notes in Arti�cial Intelligence. Springer-

Verlag, 1996.

[MY93] S. Matsuoka and A. Yonezawa. Analysis of Inheritance Anomaly in

Object-Oriented Concurrent Programming Languages. In G. Agha,

P. Wegner, and A. Yonezawa, editors, Research Directions in Con-

current Object Oriented Programming, pages 107{150. MIT Press,

Cambridge Mass., 1993.

[NLJ97] H.S. Nwana, L. Lee, and N.R. Jennings. Co-ordination in Multi-

Agent Systems. In H. S. Nwana and N. Azarmi, editors, Software

Agents and Soft Computing, number 1198 in LNAI. Springer Verlag,

1997.

[NN99] H. S. Nwana and D. T. Ndumu. A Perspective on Software Agents

Research. The Knowledge Engineering Review, January 1999.

150 BIBLIOGRAPHY

[NRS+98] H. S. Nwana, J. Rosenschein, T. Sandholm, C. Sierra, P. Maes, and

R. Guttmann. Agent-Mediated Electronic Commerce: Issues, Chal-

lenges and some Viewpoints. In Proceedings of the Second Interna-

tional Conference on Autonomous Agents (Agent'98), pages 189{196,

Minneapolis, St. Paul, USA, May 9-13 1998. ACM Press.

[NS98] P. Noriega and C. Sierra. Agent Mediated Electronic Commerce.

Proceedings of the International Workshop on Agent mediated Elec-

tronic Trading (AMET'98). Number 1571 in LNAI. Springer Verlag,

Minneapolis, MN, USA, May 1998.

[Nwa96] H.S. Nwana. Software Agents: an Overview. Knowledge Engineering

Review, 11(3):205{244, 1996.

[Oli97] P. A. Olivier. Debugging Distributed Applications Using a Coor-

dination Architecture. In Proceedings of the Second International

Conference on Coordination Models, Languages and Applications,

LNCS. Springer Verlag, September 1997.

[OMG97a] OMG, Object Management Group. CORBA Services: Common Ob-

ject Services Speci�cation. Technical Report OMG, 1997. Available

at URL: http://www.omg.org.

[OMG97b] OMG, Object Management Group. Object Request Broker Ar-

chitecture 2.0. Technical Report OMG, 1997. Available at URL:

http://www.omg.org.

[Omi95] A. Omicini. Agent Coordination and Control through Logic The-

ories. In Topics in Arti�cial Intelligence. Proceedings of Fourth

Congress of the Italian Association for Arti�cial Intelligence, num-

ber 992 in LNAI, pages 439{450, Firenze, Italy, October 11-13 1995.

Springer Verlag.

[OOC99] OOC (Object Oriented Concepts, Inc). ORBacus Object Request

Broker, 1999. URL: www.ooc.com.

[Oss99] S. Ossowski. Co-ordination in Arti�cial Agent Societies. Social

Structure and Its Implications for Autonomous Problem-Solving

Agents. Number 1202 in LNAI. Springer Verlag, 1999.

[OZ98] A. Omicini and F. Zambonelli. TuCSoN: a Coordination Model for

Mobile Agents. In Proceedings of the First Workshop on Innovative

Internet Information Systems, pages 183{190, Pisa, Italy, June 1998.

[OZ99] A. Omicini and F. Zambonelli. Tuple Centres for the Coordination

of Internet Agents. In Proceedings of Fourteen ACM Symposium on

Applied Computing (SAC'99). Special Track on Coordination, Lan-

guages and Applications, pages 183{190, San Antonio, Texas, USA,

February 28 - March 2 1999. ACM Press.

BIBLIOGRAPHY 151

[PA97a] G. A. Papadopoulos and F. Arbab. Control-Driven Coordination

Programming in Shared Dataspace. In P. Ciancarini and Alexan-

der L. Wolf, editors, Proceedings of the Fourth International Confer-

ence on Parallel Computing Technologies (PaCT-97), volume 1277

of Lecture Notes in Computer Science, pages 247{261, Yaroslavl,

Russia, 8-12 September 1997. Springer Verlag.

[PA97b] G. A. Papadopoulos and F. Arbab. Coordination of Distributed and

Parallel Activities in the IWIM Model. International Journal of High

Speed Computing, 9(2):127{160, 1997.

[PA98a] G. A. Papadopoulos and F. Arbab. Modelling Activities in In-

formation Systems using the Coordination Language Manifold. In

Proceedings of Thirteenth ACM Symposium on Applied Computing

(SAC'98), pages 185{193. ACM Press, March 1998.

[PA98b] G. A. Papadopoulos and F. Arbab. Modelling Electronic Commerce

Activities Using Control-Driven Coordination. In Proceedings of the

Ninth International Workshop on Database and Expert Systems Ap-

plications, Workshop on Coordination Technologies for Information

Systems (CTIS'98), pages 583{588, Vienna, Austria, 26-28 August

1998. IEEE Computer Society Press.

[PA98c] G.A. Papadopoulos and F. Arbab. Coordination Models and Lan-

guages. In M. Zelkowitz, editor, Advances in Computers, The Engi-

neering of Large Systems, volume 46. Academic Press, August 1998.

[Pap98] G. A. Papadopoulos. Distributed and Parallel Systems Engineering

in MANIFOLD. Parallel Computing, 24(7):1107{1135, 1998.

[Pfe96] R. Pfeifer. Building Fungus Eaters: Design Principles of Autonomous

Agents. In Maes, Mataric, Meyer, Pollack, and Wilson, editors,

Proceedings of the Fourth International Conference on Simulation of

Adaptive Behavior, volume 4 From Animals to Animats, Cambridge,

MA, 1996. MIT Press/Bradford Books.

[Pos95] POSIX System Application Program Interface: Threads Extention

[C Language] POSIX 1003.4a Draft 8, 1995. Available from the

IEEE Standards Department.

[RANSP97] J. A. Rodriguez-Aguilar, P. Noriega, C. Sierra, and J. Padget.

Fm96.5 a java-based electronic auction house. In Proceedings of

the Second International Conference on The Practical Application

of Intelligent Agents and Multi-Agent Technology (PAAM'97), 1997.

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and V. Lorensen.

Object-Oriented Modeling and Design. Prentice-Hall, 1991.

152 BIBLIOGRAPHY

[RC90] G.C. Roman and H.C. Cunningham. Mixed Programming

Metaphors in a Shared Dataspace Model of Concurrency. IEEE

Transactions on Software Engineering, 16(12):1361{1373, 1990.

[Ros85] S. J. Rosenschein. Formal Theories of Knowledge in AI and Robotics.

Technical report, SRI International, Menlo Park, CA, 1985. Techni-

cal Report 362.

[RV99] D. Rossi and F. Vitali. Internet-Based Coordination Environments

and Document-Based Applications. In P. Ciancarini and Alexan-

der L. Wolf, editors, Proceedings of the Third International Confer-

ence on Coordination Models, Languages and Applications (Coordi-

nation'99), volume 1594 of Lecture Notes in Computer Science, pages

259{274, Amsterdam, Netherlands, April 1999. Springer Verlag.

[RW97] A. Rawston and A. Wood. Bonita: A Set of Tuple Space prim-

itives for Distributed Coordination. In R. H. Sprague Jr., editor,

Proceedings of the 30th Hawaii International Conference on System

Sciences, volume 1, Wailea, Hawaii, 1997. IEEE. Minitrack on Co-

ordination Languages, Systems and Applications.

[SCH99] M. Schumacher, F. Chantemargue, and B. Hirsbrunner. The STL++

Coordination Language: a Base for Implementing Distributed Multi-

Agent Applications. In P. Ciancarini and Alexander L. Wolf, editors,

Proceedings of the Third International Conference on Coordination

Models and Languages, volume 1594 of Lecture Notes in Computer

Science, Amsterdam, The Netherlands, April 26{28 1999. Springer

Verlag.

[SCK+99] M. Schumacher, F. Chantemargue, O. Krone, S. Schubiger, and

B. Hirsbrunner. The STL++ Coordination Language: Application

to Simulating the Automation of a Trading System. In Proceedings of

the First International Conference on Enterprise Information Sys-

tems, ICEIS'99, Setubal, Portugal, March 27{30 1999.

[SCKH98] M. Schumacher, F. Chantemargue, O. Krone, and B. Hirsbrun-

ner. STL++: A Coordination Language for Autonomy-based Multi-

Agent Systems. Technical report, Computer Science Department,

University of Fribourg, Fribourg, Switzerland, March 1998.

[Scu99] A. Scutell�a. Simulation of Conference Management Using an Event-

Driven Coordination Language. In P. Ciancarini and Alexander L.

Wolf, editors, Proceedings of the Third International Conference

on Coordination Models, Languages and Applications (Coordina-

tion'99), volume 1594 of Lecture Notes in Computer Science, pages

243{258, Amsterdam, Netherlands, April 1999. Springer Verlag.

[SDK+95] M. Shaw, R. DeLine, D.V. Klein, T.L. Ross, D. M. Young, and G. Ze-

lesnik. Abstractions for Software Architecture and Tools to Support

BIBLIOGRAPHY 153

Them. IEEE Transactions on Software Engineering, 21(4):314{335,

1995.

[Sea69] J. Searle. Speech Acts. Cambridge University Press, 1969.

[Sho93] Y. Shoham. Agent-Oriented Programming. Arti�cial Intelligence,

60 (1):51{92, 1993.

[Sho99] Y. Shoham. What we talk about when we talk about Software

Agents. IEEE Intelligent Systems, pages 28{31, March/April 1999.

[Sin98a] M. P. Singh. Agent Communication Languages: Rethinking the Prin-

ciples. IEEE Computer, pages 40{47, December 1998.

[Sin98b] M. P. Singh. Developing Formal Speci�cations to Coordinated Het-

erogeneous Autonomous Agents. In Proceedings of the Third In-

ternational Conference on Multi-Agent Systems (ICMAS-98), Paris,

France, July 1998.

[SKCH98] M. Schumacher, O. Krone, F. Chantemargue, and B. Hirsbrunner.

STL: Un mod�ele et language de coordination pour les syst�emes dis-

tribu�es. In Proceedings of Rencontres Francophones du Parall�elisme

des architectures et des syst�emes distribu�es, Strasbourg, France, June

9{12 1998.

[Slo99] A. Sloman. The sim agent toolkit, 1999. URL:

http://http://www.cs.bham.ac.uk/ axs/cog a�ect/sim agent.html.

[SP95] A. Sloman, , and R. Poli. A tool-kit for exploring agent designs.

In M. Wooldridge, J. P. Mueller, and M. Tambe, editors, Intelligent

Agents II. Proceedings of Second International Workshop on Agent

Theories, Architectures, and Languages (ATAL'95), number 1037 in

LNAI. Springer Verlag, August 1995.

[ST95] Y. Shoham and M. Tennenholtz. Social Laws for Arti�cial Agent

Societies: O�-line Design. Arti�cial Intelligence, 73, 1995.

[Ste94] L. Steels. The Arti�cial Life Roots of Arti�cial Intelligence. Arti�cial

Life, 1:75{100, 1994.

[Ste95] L. Steels. When are Robots Intelligent Autonomous Agents?

Robotics and Autonomous systems, 1995.

[Str97] B. Stroustroup. The C++ Programming Language. Third edition,

1997.

[Sun90] V.S. Sunderam. PVM: A framework for parallel distributed comput-

ing. Concurrency: Practice and Experience, 2(4):315{339, December

1990.

154 BIBLIOGRAPHY

[Sun98] Sun Microsystems, Inc. JavaSpaces TM Speci�cation, Revision 1.0,

March 1998.

[SvK97] S. Stuurman and J. van Katwijk. Evaluation of Software Architec-

tures for a Control System: A Case Study. In D. Garlan and D. Le

Metayer, editors, Proceedings of the Second International Confer-

ence on Coordination Models, Languages and Applications (Coordi-

nation'97), number 1282 in LNCS, pages 157{171. Springer Verlag,

September 1997.

[Tho93] S.R. Thomas. PLACA, an Agent Oriented Programming Language.

PhD thesis, Computer Science Department, Stanford University,

Stanford, 1993.

[Tol94] R. Tolksdorf. Coordination in Distributed Systems. PhD thesis, Tech-

nische Universitaet Berlin, 1994.

[Tol96] R. Tolksdorf. Coordinating Services in Open Distributed Systems

with LAURA. In Proceedings of the First International Conference

on Coordination Models, Languages and Application, 1061 in LNCS,

pages 386{402. Springer Verlag, April 1996.

[VA99] C. Varel and G. Agha. A Hierarchical Model for Coordination of Con-

current Activities. In P. Ciancarini and Alexander L. Wolf, editors,

Proceedings of the Third International Conference on Coordination

Models, Languages and Applications (Coordination'99), volume 1594

of Lecture Notes in Computer Science, pages 166{182, Amsterdam,

Netherlands, April 1999. Springer Verlag.

[vdGSW97] R. van der Goot, J. Schae�er, and G.V. Wilson. Safer tuple spaces.

In Proceedings of the 2nd International Conference on Coordination

Languages and Models (Coordination '97), number 1282 in LNCS.

Springer Verlag, September 1997.

[WDGL96] C.B. Weinstock, D.L. Doubleday, M.J. Gardner, and R. W. Li-

chota. Durra: A Structure Description Language for Developing

Distributed Applications. IEEE Software Enginering Journal, pages

83{94, March 1996.

[Weg90] P. Wegner. Concepts and Paradigms of Object-oriented Program-

ming. ACM OOPS Manager, 1, 1990.

[Wei98] G. Weiss. Multi-Agent Systems. The MIT Press, 1998.

[WJ95] M. Wooldridge and N.R. Jennings. Agent Theories, Architectures,

and Languages: a Survey. In M. Wooldridge and N.R. Jennings, ed-

itors, Intelligent Agents, number 890 in LNAI, pages 1{39. Springer

Verlag, 1995.

BIBLIOGRAPHY 155

[WJK99] M. Wooldridge, N. R. Jennings, and D. Kinny. A Methodology for

Agent-Oriented Analysis and Design. In Proceedings of Autonomous

Agents'99, 1999.

[WRR94] D. Weerasooriya, A. Rao, and K. Ramamohanarao. Design of a

Concurrent Agent-Oriented Language. In M. Wooldridge and N.R.

Jennings, editors, Intelligent Agents. Proceedings of First Interna-

tional Workshop on Agent Theories, Architectures, and Languages

(ATAL'94), number 890 in LNAI. Springer Verlag, August 1994.

[Zie97] T. Ziemke. Adaptive Behavior in Autonomous Agents. Autonomous

Agents, Adaptive Behaviors and Distributed Simulations' journal,

1997.

156 BIBLIOGRAPHY

Curriculum Vitae

1996-2000

Research Assistant, Parallelism and Arti�cial Intelligence Group, Com-

puter Science Department, University of Fribourg, Switzerland

1991-1995

Master of Science in Computer Science, University of Fribourg, Switzerland

1983-1990

High School, Fribourg, Switzerland

1977-1983

Elementary School, Villars-sur-Glâne and Fribourg, Switzerland

1971

Born in Bujumbura, Burundi

157

