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ABSTRACT 

Knowing the photovoltaic (PV) energy produced at a given 

time and a specific position is crucial to handle renewable 

energy. Nowadays, Machine Learning (ML) is broadly 

used to predict energy production and consumption, but 

existing datasets cover only some regions in each country, 

which impedes the deployment of such systems in 

production. This paper proposes a novel generalized geo-

localized methodology to predict photovoltaic production 

for the next hour and the next day at a given geographical 

point. This result is part of the deliveries of a Swiss 

Federal office of Energy (SFOE) project called Micro 

Storage Intelligent and Distributed (MSID). 

INTRODUCTION 

In an evolving renewable energy context, solar energy 

prediction is necessary to manage microgrid systems, such 

as potential shortages in bad weather. Indeed, to exploit a 

photovoltaic (PV) power plant, knowing the weather is an 

essential information (e.g., solar radiation and cloud cover 

to predict the energy production during the day for the next 

hour and the next day. Weather information includes many 

variables, such as solar radiation, ambient temperatures, 

and wind speed [1].  

 

Factors like bad weather, trees, mountains, and buildings’ 

shadows will reduce energy production because fewer 

radiations will reach solar panels. Large PV sites can 

exploit locally installed weather stations and collect this 

important weather information close to the solar panels; 

unfortunately, many stations are only sometimes available, 

and gathering consistent local weather data as that can be 

expensive and complicated. Moreover, some microgrid 

systems using PV power plant as the primary power source 

and installed in isolated locations require an optimally 

sized battery to handle weather inconsistencies [2].  

 

Nowadays, some PV power predictions are made using 

Machine Learning (ML) or deep-learning (DL) techniques 

such as Artificial Neural Networks (ANN) [3]. Often, 

these techniques are model-based, using weather 

information as input features and power production values 

as predicted output. Historical weather data and power 

production are mostly used to train and evaluate ML 

models. [5] 

 

To overcome weather inconsistencies and acquisition 

methods issues, we chose a scalable and integrated 

solution that exploits (1) historical PV power production 

and (2) historical and predicted weather data provided by 

meteoblue (www.meteoblue.com) [6], a platform able to 

deliver weather data from many given geographical points. 

Then for some of our microgrids, we compared the PV 

prediction of solar power at t+1h and t+24h generated by 

our ML models to actual measurements and actual power 

production (ground truth). 

 

We finally show how to exploit the ML models in the 

energy production system (MSID) using live geo-localized 

daily data like the data used to train the ML models. 

DATASET AND METHODOLOGY 

Dataset 
We used two datasets generated by equipment installed 

during a four-year SFOE project, in two pilot areas located 

in the swiss alps, more precisely in Valais. In this paper, 

we refer to both datasets using the name of the villages: 

Saillon and Nendaz. 

Saillon is a village on the south side of a mountain, which 

is more exposed to solar radiation. The PV system is 

placed on the roof of a local thermal station. Nendaz's PV 

system is located on our pilot site's roof. Nendaz is on the 

northern side of a mountain with less exposition to the sun. 

We installed a weather station of the company Davis 

Instrument to collect data that we use to compare to our 
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methodology results (see next Chapter). The dataset of this 

weather station in Saillon is composed of 45 days, where 

all days containing missing values have been dropped. 

 

We had to deal with multiple missing values using data 

from production. Indeed, several time ranges were lost, 

and the sensors sometimes generated faulty values. For 

example, a sensor wrongly returned the cumulative power 

of the different microinverters instead of the three phases 

retrieved. Therefore, we decided to extract the most 

extended time range available without missing values for 

the first pilot site, Saillon, i.e., the data from mid-May 

2020 to October 2020. The second site of Nendaz contains 

data from mid-August 2021 to November 2021. 

 

We then created the first hourly output class based on the 

theoretical maximum photovoltaic production curve 

(PVmax) using the European PVGIS data for each pilot site 

in the dataset. [7] 

 

PVmax represents the maximum daily from sunrise to 

sunset, calculated on the values from 2005 to 2020. To 

generate the target for our training set, we used different 

information for each site: 

• GPS position of the solar panels 

(positionGPSsite), 

• Installed PV power (𝑝𝑢𝑖𝑠𝑠𝑎𝑛𝑐𝑒𝑃𝑉𝑠𝑖𝑡𝑒), 

• Panel inclination (𝑖𝑛𝑐𝑙𝑖𝑛𝑎𝑖𝑠𝑜𝑛𝑃𝑉𝑠𝑖𝑡𝑒), 

• The azimuth of the panels (𝑎𝑧𝑖𝑚𝑢𝑡𝑃𝑉𝑠𝑖𝑡𝑒). 

With this information, we generated a PV production 

curve (prodPVsite) for each hour between 2005 and 2020 

using the data from PVGIS structured as follows: 

 
[positionGPSsite, puissancePVsite, inclinaisonPVsite, azimutPVsite]. 

 

For each day of the year between 2005 and 2020, we 

generated the theoretical maximum PV production curve 

for each pilot site using the following equation: 

 

𝑃𝑉𝑚𝑎𝑥𝑠𝑖𝑡𝑒 = max
ℎ𝑜𝑢𝑟

(𝑝𝑟𝑜𝑑𝑃𝑉𝑠𝑖𝑡𝑒). 

For example, the maximum PV production for Saillon on 

the 30th of March at 13:00 is estimated by taking the 

maximum of the PV production curve (given by PVGIS 

data) of all available 30th of March at 13:00 between 2005 

and 2020. Finally, our full dataset will consist of the 

following:  

 

[t0, station name, feature, target, t0 + δ_T], 

where t0 is the prediction date, and δ_T is the time 

increment for which we want to predict the PV energy 

production. 

 

We also integrated a new weather dataset that depends on 

the location where the prediction will be made. For this 

purpose, we retrieved simulation data and weather 

predictions provided by meteoblue. 

Methodology  
We propose a decision-making method for the battery 

charge cycle for each pilot site: 

1. Generation of the PVmax curve, 

2. Retrieval of meteoblue simulation data, 

3. Retrieval of meteoblue prediction data, 

4. Generation of the target variable of our models 

(t+1 hour, and 24 steps of the following day) 

based on the meteoblue simulation data, 

5. Training of models with meteoblue prediction 

data, 

6. Incorporation of the models into an API for PV 

prediction and battery charge/discharge decision 

display (see Section Production implementation). 

 

Generation of the PVmax curve  

The generation of the PVmax curve is defined in the dataset 

section. 

 

Retrieval of meteoblue simulation data 

To generate our new target variable, we retrieved the 

simulation data at time t from meteoblue, composed of the 

sunshine, direct and diffuse radiation, and cloud cover. 

 

Retrieval of meteoblue prediction data 

We also retrieved t+n hour prediction data at time t. 

Indeed, the meteoblue models predict weather features 

every day at noon for the next day (one prediction per 

hour). 

 

Generation of the target variable of our models based 

on the meteoblue simulation data 

We retrieved from the meteoblue data a feature named 

Cloud Cover Total (with a value between 0 and 1, 0 being 

no clouds, 1 being a wholly covered sky). We calculated 

our new target variable as follows: 

 

𝑝𝑣𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) = 𝑃𝑉𝑚𝑎𝑥(𝑡) ∗ (1 − 0.75 ∗ 𝐶𝑙𝑜𝑢𝑑 𝐶𝑜𝑣𝑒𝑟 𝑇𝑜𝑡𝑎𝑙(𝑡)). 

The goal is to compute a realistic simulation of PV 

production for a pilot site (𝑝𝑣𝑡𝑎𝑟𝑔𝑒𝑡). If we have 0% of 

clouds, we produce the complete PVmax. If we have 100% 

of clouds, we produce 25%*PVmax. Between these two 

limits, we consider that the evolution of production is 

linear. The 25% power production for a total cloud cover 

is extracted from our internal knowledge and observation 

on many solar production sites. 

Training of models with meteoblue prediction data 

We have one ML model to predict PV production at t+1h 

and t+24h using the simulation data from meteoblue 

available at t, t-1h, and t-2h, the prediction data from 

meteoblue available at t+1h, and the computed PVmax at 

t+1h. 
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EXPERIMENTS AND RESULTS  

For both pilots’ sites, we calculated the Root Mean 

Squared Error (RMSE), Mean Absolute Error (MAE), and 

Mean Average Percentage Error (MAPE) metrics. This 

calculation is done for each day, from sunrise to sunset, 

using the actual PV measures as the ground-truth. 
 

Table 1: RMSE, MAE, MAPE for Saillon and Nendaz pilots’ 

sites for the PV prediction. 

Metric/Site Saillon Nendaz 

RMSE [Wh]. 470.4  820.9  

MAE [Wh] 217.2  473.1  

MAPE [%]  13.2  29.9  
 

Training of the ML models 

For the first experiment, ML models were trained for each 

pilot site using 84530 hourly weather data between the 1st 

of January 2008 and the 22nd of August 2017 and validated 

using 41635 hourly weather data between the 23rd of 

August 2017 and the 23rd of May 2022. Over a whole day, 

the average error is 217.2 Wh for Saillon and 473.1 Wh for 

Nendaz, as shown in Table 1. Figures 1 and 2 show that 

the average error in Wh on a production day is at most one-

third of the production. For Saillon, these results are 

encouraging and demonstrate a low model error.  

 

 
Figure 1: This Figure shows the 𝑝𝑣𝑡𝑎𝑟𝑔𝑒𝑡 variable, the PV 

prediction, the PV measurement, and the Cloud Cover Total 

curves calculated for sunny days for each pilot site. 

 

For Nendaz, the computed error for our ML model is 

higher and might be improved. Figure 1 shows our 

calculated target variable for each pilot site, the ML model 

predictions, and the actual PV measurements for sunny 

days. 

 

Our target curve closely follows the actual PV 

measurements for sunny days, as explained after that. For 

Saillon, the average 𝑝𝑣𝑡𝑎𝑟𝑔𝑒𝑡  for a sunny day is 3235.6 

Wh, and the MAE between the 𝑝𝑣𝑡𝑎𝑟𝑔𝑒𝑡  and the 

measurement is 409.9. For Nendez, the average 𝑝𝑣𝑡𝑎𝑟𝑔𝑒𝑡   

for a sunny day is 3154.9 Wh, and the MAE between the 

𝑝𝑣𝑡𝑎𝑟𝑔𝑒𝑡  and the measurement is 798.7 Wh.  

 

Our 𝑝𝑣𝑡𝑎𝑟𝑔𝑒𝑡 calculation is also validated for cloudy days: 

the average 𝑝𝑣𝑡𝑎𝑟𝑔𝑒𝑡  for a cloudy day is 1008.4 Wh, and 

the MAE between the 𝑝𝑣𝑡𝑎𝑟𝑔𝑒𝑡  and measurement is 306.8 

Wh for Saillon. Similarly, the average cloudy day of the 

𝑝𝑣𝑡𝑎𝑟𝑔𝑒𝑡  is 1569.7 Wh, and the MAE between the 𝑝𝑣𝑡𝑎𝑟𝑔𝑒𝑡  

and the measurement is 724.8 Wh for Nendaz. 

 

Figure 2 shows for each pilot site our calculated 𝑝𝑣𝑡𝑎𝑟𝑔𝑒𝑡 , 

ML model PV predictions, and the actual PV 

measurements for cloudy days. 

 

Figure 2: This Figure shows the 𝑝𝑣𝑡𝑎𝑟𝑔𝑒𝑡 variable, the PV 

prediction, the PV measurement, and the Cloud Cover Total 

curves calculated for cloudy days for each pilot site. 
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ML model’ prediction compared to weather 

station measurements 

We validated our 𝑝𝑣𝑡𝑎𝑟𝑔𝑒𝑡  using the solar radiation by 

computing the MAE.  

 

Table 2: MAE computed using Saillon 𝑝𝑣
𝑡𝑎𝑟𝑔𝑒𝑡

 and the weather 

station measurements for sunny and cloudy days. 

MAE [Wh]/Day Sunny Cloudy 

Best Day 389.08 268.80 

Worst day 1786.69 833.82 

 

Following our experiments, we determined a good weather 

day from a cloudy day by fixing the threshold of the mean 

Cloud Cover Total at 20 %. As shown in Figure 3, the best 

PV prediction for a sunny day has an MAE of 389.08 Wh 

and the worst PV prediction for a sunny day has an MAE 

of 1786.69 Wh. We notice that for the worst day of good 

weather, the Cloud Cover Total of this day is 0.0 % which 

means that this day should match the maximum PV 

production. However, this day has half the usual radiations 

of a sunny day, which indicates that the weather prediction 

is too optimistic for this day. 

 

 
Figure 3: This Figure shows the 𝑝𝑣𝑡𝑎𝑟𝑔𝑒𝑡 and the solar radiation 

curves for a good weather day. Left is the best day and right is 

the worst day. 

 

For a bad weather day, the best MAE is 268.80 Wh which 

is better than the best sunny day, and the worst 𝑝𝑣𝑡𝑎𝑟𝑔𝑒𝑡  

generated is 833.82 Wh (Figure 4).   

 

Overall, the MAE of the 𝑝𝑣𝑡𝑎𝑟𝑔𝑒𝑡  compared to the weather 

station measurement of solar radiation is 727.2 Wh. The 

results obtained considering the weather station are still 

relatively good and do not exceed the production tier. 

 

 
Figure 1: This Figure shows the 𝑝𝑣𝑡𝑎𝑟𝑔𝑒𝑡 and the solar radiation 

curves for a bad weather day. Left is the best day and right is the 

worst day. 

Production implementation  

We integrated the calculation of the algorithm previously 

explained in our Virtual Power Plant (VPP) information 

system (MSID) to visualize and interact with each 

distributed microstorage system and optimize the charging 

and discharging of batteries according to the prediction of 

photovoltaic production. This platform allows us to 

anticipate the production of the equipment and decide to 

change and discharge the battery at the optimal time. 

Figure 5 shows the result ‘ON [W] 3548’, which means 

3548 watts of PV should be produced in the next hour. 

 

 
Figure 5: This Figure is an extract from our Virtual Power 

Plant (VPP) visualization and integration platform, MSID. 

On our MSID platform, it is possible to use the value 

generated by the photovoltaic prediction algorithm to 

control the charge and discharge of the batteries. As shown 

in Figure 6, the user having a high level of permission, the 

distribution system operator (DSO), might create one or 

many algorithms to control batteries through the inverter 

and other flexible loads. 
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Figure 6: This figure illustrates the algorithm creation using 

our VPP visualization and integration platform, MSID. 

DISCUSSION 

During our experiments, we needed to develop a method 

to validate our dataset because of the bad quality of 

production data for many days due to the chosen inverter 

creating random outliers and sometimes dropping values 

to 0 during multiple hours. Therefore, we compared the 

data from the inverter with the data provided by the nearby 

weather station and meteoblue. The values were 

significantly different because the sensors created random 

errors by miscalculating the energy production. Based on 

these two errors, we concluded that the sensor might fail 

during data gathering.  

 

A fire made the weather station in Saillon inaccessible to 

compare the real-time data from the sensor with the 

station's data, therefore we computed the target value using 

weather data as an alternative to this poor-quality data. As 

we needed an easily reproducible method for a new site, 

we proceeded with a scalable and integrated solution based 

on meteoblue weather prediction to produce the pvtarget.  

 

Our proposed method had the lowest MAE compared to 

the on-site weather station’s historical data and validated 

our ML model for the pilot sites. The error obtained error 

is only a quarter of the daily production, which is 

encouraging according to our previously conducted 

experiences.  

CONCLUSION  

Our experiments achieved an MAE for Saillon of 217.1 

Wh and 473.1 Wh for Nendaz. The prediction models were 

trained using computed weather data provided by 

meteoblue. During this work, we created a generalized 

method to create the target value for each geolocalized 

point. For each point, we needed to create a specific ML 

model that needed to be adapted to match the features 

related to their solar panels for the new PV production site. 

The simulated weather combined with live weather 

forecast enables PV production prediction without using 

an on-site weather station. Current models are deployed 

and running on our VPP platform MSID, providing energy 

production prediction and helping the decision to charge 

the batteries, improving overall efficiency. The batteries 

are charged and discharged according to the predictions 

and parameters defined by the DSO on the visualization 

platform MSID. 

Following our experiments, future research endeavors 

should focus on the efficiency behavior of the batteries 

using the deployed ML models. This line of inquiry has the 

potential to significantly enhance the efficiency of battery 

charging and, ultimately, contribute to the overall 

advancement of sustainable energy systems.  
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