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We approach the problem of quantifying the degree of reliability of supervised deep learning
models used by clinicians for automatic multiple sclerosis lesion segmentation on MRI. In
particular, we quantify the correspondence of various uncertainty measures to the errors that a
deep learning model makes in overall segmentation or lesion detection. The evaluation is done
both on in- and out-of- domain datasets (40 and 99 patients respectively), and provides insights
about the measures that can point clinicians to potential errors of an automatic algorithm
regardless of the distributional shift.

Introduction
MRI plays an important role in diagnosing and monitoring multiple sclerosis (MS)1. White matter
lesions (WML) identified on T2 and FLAIR brain scans is a hallmark of the disease1-3. Over the
past years various deep learning (DL) algorithms have been developed to replace a
time-consuming skill-demanding procedure of manual WML annotation4. On the other hand,
WML segmentation with black-box DL models is not necessarily reliable, especially when tested
on out-of-domain data, e.g. different scanners, centres, patients, etc6-9. Thus, automatic
predictions should be verified and corrected by clinicians. In this work, we investigate different
voxel- and lesion-scale uncertainty measures as a method of pointing clinicians to potential
model errors in overall segmentation or lesion detection.



Methods
We evaluate six voxel-scale uncertainty measures6,9 and seven lesion-scale measures6-8(full list
in Figure 1). Uncertainty is estimated using deep ensembles5, where the base model is a 3D
U-net, which was previously used in uncertainty studies for the WML segmentation task6-9.
The absolute values of uncertainty are not necessarily meaningful, hence we should only rely on
the ranking of the uncertainties for different predictions. Error retention curves (RC) allow
quantifying the correspondence between an uncertainty measure and model errors while only
looking at the ranking of predictions in terms of uncertainty5,6. An RC for a single subject is built
by iteratively replacing a fraction of the most uncertain predictions (voxels or lesions) with the
ground truth, and recomputing model performance on this subject in terms of overall
segmentation or lesion detection (see Figure 2). As a segmentation quality measure at the voxel
scale the Dice similarity coefficient (DSC) is used; at the lesion scale the detection quality is
evaluated using the lesion positive predictive value (LPPV) (see Figure 2). Average across
subjects areas under respective RCs, i.e DSC-AUC or LPPV-AUC, quantify for the particular
dataset the correspondence between voxel or lesion uncertainty measures and errors made in
segmentation or lesion detection.
We employ a dataset provided by the Shifts project9. It contains FLAIR scans, which underwent
denoising, skull stripping, bias field correction and interpolation to 1 mm3 space, and their
manual WML annotations used as the ground truth. The Shifts dataset embraces four publicly
available and one private datasets acquired at six different medical centres with six different
scanner models (both 1.5T and 3T field strength). Training and validation sets contain data from
four different medical centres with 33 and 7 scans respectively. The Shifts dataset allows to
separate the RC analysis between in-domain (same centres as the training data) and
out-of-domain (two new centres) sets containing 40 and 99 subjects respectively.

Results and Discussion
Examples of uncertainty maps on voxel and lesion scales are shown in Figure 3. The resulting
voxel- and lesion-scale RCs computed separately for in- and out-of-domain data, as well as for
the whole dataset are shown in Figure 4. The respective areas under the RCs are ranked and
shown in Figure 5.
The entropy based measures (ExE and EoE) have the highest DSC-AUC on the shifted dataset,
indicating a superior ability in capturing model segmentation errors compared to other
voxel-scale measures. However ExE loses informativeness for the lesion detection, showing the
lowest LPPV-AUC. In principle, regions of high voxel uncertainty are often located on lesion
borders and should be related to lesion delineation more than detection (Figure 3). The
lesion-scale measure DDUtrueis not based on the voxel-scale uncertainty but computes the
disagreement in structural predictions between models in an ensemble. DDUtrue shows the
highest LPPV-AUC on both in- and out-of-domain data. Despite that, a visual examination of
voxel uncertainty maps sometimes shows non-zero uncertainties inside false negative (FN)
lesions, while lesion-scale uncertainties cannot be computed for FN lesions and, thus, cannot be
used for FN localisation (see Figure 3).
On the other hand, the ranking of the voxel-scale uncertainty measures in terms of DSC-AUC is
different for the in- and out-of-domain datasets. In particular, the DSC-AUC of the negated
confidence measure is the highest in the initial domain, but is one of the lowest in the shifted
domain. The ranking of the lesion uncertainty measures, however, does not change under the
distributional shift.



Conclusions
In this study, we promote the use of uncertainty measures to quantify the degree of reliability of
DL models for WML segmentation in MS. We compared different uncertainty measures both on
voxel and lesion scales on the in- and out-of-domain data, showing that lesion-scale uncertainty
measures in comparison to the voxel-scale ones yield a more consistent ranking of measures in
terms of capturing model errors. Additionally, we observe that the lesion uncertainty DDUtrue has
a superior ability to capture model errors related to lesion detection, what withholds for both in-
and out-of-domain. We believe that lesion-scale detection uncertainty is needed to support the
adoption of automatic DL-based methods for WML segmentation into the clinical practice. Our
study guides towards which uncertainty measures are more informative for pinpointing potential
errors in voxel- or lesion-scale predictions. It is yet important to verify in practice if the information
brought by the uncertainty maps can simplify or speed up a semi-automatic segmentation by
pointing clinicians to potential model errors.
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Figure 1
Definitions of voxel- and lesion- scale uncertainty measures estimated using deep ensembles
within this study.

Figure 2
Explanation of the retention curves (RC) construction for a single patient: DSC-RC for quantifying
the correspondence between voxel-scale uncertainty measures and errors in segmentation,
LPPV-RC on the lesion-scale for quantifying the correspondence between lesion-scale measures
and errors in lesion detection.



Figure 3
Examples of uncertainty maps on voxel and lesion scales for one patient.



Figure 4
Resulting average across patients DSC-RC and LPPV-RC obtained on different sets of data, i.e
in-domain and out-of-domain datasets separately and their joint set.

Figure 5
Resulting average across patients areas under the retention curves, i.e. DSC-AUC/LPPV-AUC,
measuring the correspondence between voxel-/lesion-scale uncertainty measures and model
errors in segmentation/lesion detection. AUCs computation performed on different sets of data:



in-domain and out-of-domain datasets separately and their joint set. Standard errors are
computed using bootstrapping with the sample size of 85% of the population size for 10,000
repetitions.


