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We approach the problem of quantifying the degree of reliability of supervised deep learning
models used by clinicians for automatic multiple sclerosis lesion segmentation on MRI. In
particular, we quantify the correspondence of various uncertainty measures to the errors that a
deep learning model makes in overall segmentation or lesion detection. The evaluation is done
both on in- and out-of- domain datasets (40 and 99 patients respectively), and provides insights
about the measures that can point clinicians to potential errors of an automatic algorithm
regardless of the distributional shift.

Introduction

MRI plays an important role in diagnosing and monitoring multiple sclerosis (MS)1. White matter
lesions (WML ) identified on T2 and FLAIR brain scans is a hallmark of the disease1-3. Over the
past years various deep learning (DL) algorithms have been developed to replace a
time-consuming skill-demanding procedure of manual WML annotation4. On the other hand,
WML segmentation with black-box DL models is not necessarily reliable, especially when tested
on out-of-domain data, e.g. different scanners, centres, patients, etcs-9. Thus, automatic
predictions should be verified and corrected by clinicians. In this work, we investigate different
voxel- and lesion-scale uncertainty measures as a method of pointing clinicians to potential
model errors in overall segmentation or lesion detection.



Methods

We evaluate six voxel-scale uncertainty measuress,9 and seven lesion-scale measurese-g(full list
in Figure 1). Uncertainty is estimated using deep ensembless, where the base model is a 3D
U-net, which was previously used in uncertainty studies for the WML segmentation taske-9.

The absolute values of uncertainty are not necessarily meaningful, hence we should only rely on
the ranking of the uncertainties for different predictions. Error retention curves (RC) allow
quantifying the correspondence between an uncertainty measure and model errors while only
looking at the ranking of predictions in terms of uncertaintys,6. An RC for a single subject is built
by iteratively replacing a fraction of the most uncertain predictions (voxels or lesions) with the
ground truth, and recomputing model performance on this subject in terms of overall
segmentation or lesion detection (see Figure 2). As a segmentation quality measure at the voxel
scale the Dice similarity coefficient (DSC) is used; at the lesion scale the detection quality is
evaluated using the lesion positive predictive value (LPPV) (see Figure 2). Average across
subjects areas under respective RCs, i.e DSC-AUC or LPPV-AUC, quantify for the particular
dataset the correspondence between voxel or lesion uncertainty measures and errors made in
segmentation or lesion detection.

We employ a dataset provided by the Shifts projecto. It contains FLAIR scans, which underwent
denoising, skull stripping, bias field correction and interpolation to 1 mms3 space, and their
manual WML annotations used as the ground truth. The Shifts dataset embraces four publicly
available and one private datasets acquired at six different medical centres with six different
scanner models (both 1.5T and 3T field strength). Training and validation sets contain data from
four different medical centres with 33 and 7 scans respectively. The Shifts dataset allows to
separate the RC analysis between in-domain (same centres as the training data) and
out-of-domain (two new centres) sets containing 40 and 99 subjects respectively.

Results and Discussion

Examples of uncertainty maps on voxel and lesion scales are shown in Figure 3. The resulting
voxel- and lesion-scale RCs computed separately for in- and out-of-domain data, as well as for
the whole dataset are shown in Figure 4. The respective areas under the RCs are ranked and
shown in Figure 5.

The entropy based measures (ExE and EoE) have the highest DSC-AUC on the shifted dataset,
indicating a superior ability in capturing model segmentation errors compared to other
voxel-scale measures. However ExE loses informativeness for the lesion detection, showing the
lowest LPPV-AUC. In principle, regions of high voxel uncertainty are often located on lesion
borders and should be related to lesion delineation more than detection (Figure 3). The
lesion-scale measure DDUtrueis not based on the voxel-scale uncertainty but computes the
disagreement in structural predictions between models in an ensemble. DDUtrue shows the
highest LPPV-AUC on both in- and out-of-domain data. Despite that, a visual examination of
voxel uncertainty maps sometimes shows non-zero uncertainties inside false negative (FN)
lesions, while lesion-scale uncertainties cannot be computed for FN lesions and, thus, cannot be
used for FN localisation (see Figure 3).

On the other hand, the ranking of the voxel-scale uncertainty measures in terms of DSC-AUC is
different for the in- and out-of-domain datasets. In particular, the DSC-AUC of the negated
confidence measure is the highest in the initial domain, but is one of the lowest in the shifted
domain. The ranking of the lesion uncertainty measures, however, does not change under the
distributional shift.



Conclusions

In this study, we promote the use of uncertainty measures to quantify the degree of reliability of
DL models for WML segmentation in MS. We compared different uncertainty measures both on
voxel and lesion scales on the in- and out-of-domain data, showing that lesion-scale uncertainty
measures in comparison to the voxel-scale ones yield a more consistent ranking of measures in
terms of capturing model errors. Additionally, we observe that the lesion uncertainty DDUtrue has
a superior ability to capture model errors related to lesion detection, what withholds for both in-
and out-of-domain. We believe that lesion-scale detection uncertainty is needed to support the
adoption of automatic DL-based methods for WML segmentation into the clinical practice. Our
study guides towards which uncertainty measures are more informative for pinpointing potential
errors in voxel- or lesion-scale predictions. It is yet important to verify in practice if the information
brought by the uncertainty maps can simplify or speed up a semi-automatic segmentation by
pointing clinicians to potential model errors.
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Figure 1

Definitions of voxel- and lesion- scale uncertainty measures estimated using deep ensembles

within this study.

Voxel-scale uncertainty measures

Uncertainty
measure

Abbreviation Formula

Lesion-scale uncertainty measures

Uncertainty measure

Total uncertainty

combines data + knowledge uncertainty

1 K 1 K
Entropy of expected = EoE - f;_:‘ P(ylog [E > Pk(y)]

y k= k=1

1 K
Negated confidence NC —argmaxy;ZPk(y)
k=1

Data uncertainty

inherent noise within the source data distribution

1 K
Expected entropy ExE X 2, X PYlog P(y)

k=1 y
Knowledge uncertainty

reflects the lack of knowledge by the model in certain regions of the input space

Mutual information Ml EoE - ExE

Expected pair-wise et [ $* p S log 2 )]_ExE
KL divergence EPKL "22;‘ E ygi bt

Reverse mutual
information

RMI EPKL - MI
Notations: P;(y) = P(y|x, 6,) - a predictive posterior of
the k" model in the ensemble of size K, y- vector of
model's outputs, X - vector of inputs, 8, - weights of the kth
model sampled from a posterior g(@).

Figure 2

Mean over the lesion ares

aggregation of the voxel-scale uncertainties over the predicted lesion area
1
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Detection disagreement uncertainty (DDUtrue)

disagreement between the structural predictions of models in an ensemble

1 K
DDU=1-— ) loU(Q,Q
KEO( )

Notations: U € RP*"*P _ any voxel-scale
uncertainty map (Exe, NC, EXE, MI, EPKL, RMI), Q -
lesion region predicted by an ensemble of models, Qk
- region of the same lesion predicted by the k" model
in ensemble (k = 1,2,...,K), i.e. a connected
component on the k™ model predicted binary mask
with the maximum intersection over union (loU) with
Q. The probability thresholds to obtain binary
segmentation masks and hence €, are tuned
separately for each model in the ensemble.

Explanation of the retention curves (RC) construction for a single patient: DSC-RC for quantifying
the correspondence between voxel-scale uncertainty measures and errors in segmentation,
LPPV-RC on the lesion-scale for quantifying the correspondence between lesion-scale measures

and errors in lesion detection.



Voxel-scale DSC-RC construction

Segmentation quality metric

Voxel-scale uncertainty map Dice similarity score:

2TP

DSC=—rrr,
2TP + FP+FN

where TP, FP, FN - number of true

positive, false positive and false

%0 o2 o4 o negative voxel predictions.

Algorithm:

1. Compute initial DSC (100% retention)

2. Select 7 fraction of the most uncertain
voxels on the predicted binary lesion
mask and replace them with the
ground truth. Hence, the TP, FP, FN
are updated.

3. Recompute DSC with updated
counts.

4. Plot a point DSC(1 — 7)

Increase 7 by 2.5¢ 73

untilz =1

Lesion-scale uncertainty map

Go to the next most

uncertain lesion

Lesion-scale LPPV-RC construction

Lesion detection quality metric
Lesion positive predictive value:

LTP

LPPV = ——,
LTP + LFP

where LTP, LFP - number of true positive
and false positive lesion predictions. A
predicted lesion is LTP if it's maximum across
the ground truth lesions intersection over union
is greater than 0.25. Otherwise a predicted
lesion is LFP.

Algorithm:

1.
2.

3.

4.
5.

Compute initial LPPV (100% retention)
Select the most uncertain connected
component, i.e. lesion, on the predicted
binary lesion mask and remove it if it is a
false positive lesion.

Recompute LPPV with the updated LFP
count.

. iterati
Save a point LPPV(1 — tferation

total lesion count
Interpolate saved LPPVs to a set of lesion
retention fractions common across all the
scans and plot.

Note: /deal and random RCs represent the best and the worst possible performance. Ideal RC is built by constructing and uncertainty map
where all the erroneous predictions have an uncertainty of 1 and correct predictions - 0. Random RC is built by using random uncertainty values.

Figure 3

Examples of uncertainty maps on voxel and lesion scales for one patient.
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Figure 4
Resulting average across patients DSC-RC and LPPV-RC obtained on different sets of data, i.e
in-domain and out-of-domain datasets separately and their joint set.
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Resulting average across patients areas under the retention curves, i.e. DSC-AUC/LPPV-AUC,
measuring the correspondence between voxel-/lesion-scale uncertainty measures and model
errors in segmentation/lesion detection. AUCs computation performed on different sets of data:



in-domain and out-of-domain datasets separately and their joint set. Standard errors are
computed using bootstrapping with the sample size of 85% of the population size for 10,000

repetitions.
IN-DOMAIN + OUT-DOMAIN IN-DOMAIN OUT-DOMAIN
Unc. meas. DSC-AUC Unc. meas. DSC-AUC Unc. meas. DSC-AUC
o Ideal 99.91 + 0.01 Ideal 99.93 + 0.01 Ideal 99.90 + 0.01
ExE 98.00 +0.18 NC 99.19 + 0.10 ExE 97.51 +0.23
EoE 97.99 +0.18 ExE 99.19 £ 0.10 EoE 97.51 +0.23
8 EPKL 97.87 £ 0.19 EoE 99.19 £ 0.10 EPKL 97.37 +0.24
§ RMI 97.83 £0.19 EPKL 99.11 + 0.11 RMI 97.32 £ 0.25
a NC 97.78 + 0.21 RMI 99.09 + 0.11 NC 97.21 +0.26
Mi 97.72 £ 0.20 Mi 99.07 +£0.12 MI 97.18 £ 0.25
Random 77.68 +0.82 Random 81.91 +1.80 Random 75.97 +0.83
Unc. meas. LPPV-AUC Unc. meas. LPPV-AUC Unc. meas. LPPV-AUC
Ideal 86.03 + 1.41 Ideal 87.32 + 2.31 Ideal 85.50 +1.78
' DDUme(x) |82.02:1.51 DDUtwe (x) | 83.39 +2.37 DDUtwe (x) | 81.46 = 1.91
Mean EoE 81.52 + 1.51 Mean EoE 82.75 +2.39 Mean EoE 81.01 £1.92
g Mean NC 81.38 + 1.52 Mean NC 82.66 + 2.39 Mean NC 80.85 +1.94
; Mean MI 80.74 +1.54 Mean Mi 82.10 +2.35 Mean Mi 80.17 +£1.98
E Mean EPKL 80.65 + 1.54 Mean EPKL 82.07 +£2.33 Mean EPKL 80.07 +1.98
Mean RMI 80.52 +1.54 Mean RMI 81.91 £2.32 Mean RMI 79.95 +1.99
Mean ExE 79.34 +1.54 Mean ExE 80.67 +2.49 Mean ExE 78.80 +1.94
Random 74.90 + 1.58 Random 75.75 + 2.61 Random 74.55 +1.98

(x) - statistically significant difference is detected between DDUtue and the rest of the measures according to

one-sided Wilcoxon tests (H1: Median DDUtve > Median Unc. meas.) at a significance level of 0.01.



