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Abstract 18 

Muscle synergy analysis is commonly used for investigating the neurophysiological mechanisms that the 19 
central nervous system employs to control muscle activations. In the last two decades, several models have 20 
been developed to decompose EMG signals into spatial, temporal or spatiotemporal synergies. However, the 21 
presence of different approaches complicates the comparison and interpretation of results. Spatial synergies 22 
represent invariant activation weights in muscle groups modulated with variant temporal coefficients, while 23 
temporal synergies are based on invariant temporal profiles that coordinate variant muscle weights. While non-24 
negative matrix factorization (NMF) allows to extract both spatial and temporal synergies, temporal synergies 25 
and the comparison between the two approaches have been barely investigated and so far no study targeted a 26 
large set of multi-joint upper limb movements. Here we present several analyses that highlight the duality of 27 
spatial and temporal synergies as a characterization of low-dimensional and intermittent motor coordination 28 
in the upper limb, allowing high flexibility and dexterity. First, spatial and temporal synergies were extracted 29 
from two datasets representing a comprehensive mapping of proximal (REACH PLUS) and distal (NINAPRO) 30 
upper limb movements, focusing on their differences in reconstruction accuracy and inter-individual 31 
variability. For both models, we extracted synergies achieving a given level of the goodness of reconstruction 32 
(R2), and we compared the similarity of the invariant components across participants. The two models provide 33 
a compact characterization of motor coordination at spatial or temporal level, respectively. However, a lower 34 
number of temporal synergies are needed to achieve the same R2 with a higher inter-subject similarity. Spatial 35 
and temporal synergies may thus capture different levels of motor control. Second, we showed the existence 36 
of both spatial and temporal structure in the EMG data, extracting spatial and temporal synergies from a 37 
surrogate dataset in which the phases were shuffled preserving the same frequency content of the original data. 38 
Last, a detailed characterization of the structure of the temporal synergies suggested that they can be related to 39 
an intermittent control of the movement. These results may be useful to improve muscle synergy analysis in 40 
several fields such as rehabilitation, prosthesis control and motor control studies.  41 
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1. Introduction 42 

The study of motor control focuses on how the central nervous system (CNS) executes and coordinates 43 

complex movements involving several muscles. Human motor control relies on a combination of a limited 44 

number of spatial and/or temporal patterns or modules (Bizzi et al., 2008), to simplify the planning and the 45 

production of movement. These patterns of muscular activations are often referred to as muscle synergies. In 46 

the last two decades, many studies have exploited different approaches based on muscle synergies for the 47 

analysis of human motor control and different models have been developed to decompose the EMG signals 48 

into spatial, temporal or spatiotemporal organizations. Existing models are spatial or synchronous synergies 49 

(Cheung et al., 2005; Ting & Macpherson, 2005; Tresch et al., 1999), invariant temporal components or 50 

temporal synergies (Ivanenko et al., 2004; 2005), spatiotemporal or time-varying synergies (D’Avella et al., 51 

2003, 2006) and space-by-time synergistic models (Delis et al., 2014, 2015). 52 

Spatial and temporal synergies are based on simple invariant modules: in spatial synergies, invariant muscle 53 

weights are modulated by variant temporal coefficients; in temporal synergies, temporal invariant synergies 54 

modulate variant muscle weights. Typically, muscle patterns observed in different conditions of a motor task 55 

are captured by the variable combination of invariant spatial or temporal synergies. The spatiotemporal model 56 

on the other hand captures the variability in the muscle patterns as due to the amplitude modulation and 57 

temporal delay of invariant collections of potentially asynchronous muscle activation waveforms. The space-58 

by-time model proposes invariant spatial and temporal synergies combined into invariant synchronous 59 

spatiotemporal patterns that are recruited by variant coefficients. In summary, all synergy models assume that 60 

a few invariant modules are recruited with some spatially or temporally variant coefficients to account for the 61 

variability observed in the muscle patterns.  62 

The modules, i.e., the muscle synergies, however, may also vary. Muscle synergy variability can be affected 63 

by many factors, such as the synergy model used, and the algorithm chosen for the extraction. Spatial and 64 

temporal synergies can be extracted with NMF (Lee & Seung, 1999). Interestingly, the standard NMF is mostly 65 

used to extract spatial synergies rather than temporal synergies. This is probably due to the fact that original 66 

work on muscle synergies focused on the spinal cord and demonstrated a spatial organization of muscle 67 

patterns (Cheung et al., 2005; Tresch et al., 1999). Another factor that influences muscle synergy variability is 68 

whether EMG data are averaged over repetitions of the same task or concatenated. For the spatial model, 69 

considering M muscles, K tasks sampled with T samples each, and R repetitions of each group of tasks, and S 70 

extracted synergies, the EMG signals are grouped in a data matrix with M rows and K∙T columns, if the task 71 

repetitions are averaged; on the contrary, if task repetitions are concatenated (Oliveira et al., 2014), EMG 72 

signals are grouped in a data matrix with M rows and K∙T∙R columns. Extracted synergies are thus extracted 73 

as a matrix with M rows and S columns of invariant spatial synergies modulated by variant temporal 74 

coefficients typical of each task. While this model is by far the most frequently employed in the literature, the 75 

dual module (time invariant temporal synergies) may also be used. For the temporal model, the EMG signals 76 

are grouped in a data matrix with T rows and K∙M columns, if the task repetitions are averaged; on the contrary, 77 

if task repetitions are concatenated, EMG signals are grouped in a data matrix with T rows and K∙M∙R columns. 78 

Extracted synergies are thus organized in a matrix with T rows and S columns of invariant temporal synergies 79 

modulated by variant muscle weights typical of each task. A schematic illustration of how the matrix is 80 

arranged for each case is shown in Figure 1. 81 
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 82 

Figure 1. Schematic representation of data matrix arrangement and decomposition for both spatial and temporal synergy 83 
models. In the upper panel, task repetitions are averaged, while in the lower panel the repetitions are concatenated. Data 84 
are collected in matrices in which the task is represented by the color (blue, green, orange), the channels (4 in the 85 
example) are represented by different patterns and the time samples (5) are represented by different color saturation 86 
levels.   87 

The temporal model is based on the hypothesis that activation profiles - rather than spatial weights - are 88 

invariant. The extraction of this type of synergies is usually employed in periodic tasks, like locomotion 89 

(Ivanenko et al., 2004, 2005) and cycling (Torricelli et al., 2020), where an invariant temporal structure is 90 

naturally found. However, the typical, highly repeatable bell-shaped velocity profiles found in human upper 91 

limb discrete movement (Flash & Hogan, 1985) also suggest the existence of temporal modules, in addition to 92 

spatial modules, whose amplitude modulation explains the observed directional tuning of muscle activations 93 

(Borzelli et al., 2013; Mira et al., 2021; Scano et al., 2019). We argue that spatial synergies may characterize 94 

motor coordination well at the spinal (Takei et al., 2017) and the corticospinal (Cheung et al., 2009, 2012) 95 

levels, while temporal and spatiotemporal synergies may be employed at the cortical (Overduin et al., 2015) 96 

and the cerebellar (Berger et al., 2020) levels for coordination even at higher levels of the neuro-motor 97 

hierarchy (Wolpert & Kawato, 1998).  98 

The presence of multiple definitions of muscle synergies in the literature complicates the comparison and the 99 

interpretation of the results obtained from different studies. Few studies are available that compare the spatial 100 

and the temporal models and show what their differences imply in the interpretation of the data. Delis and 101 

collaborators (2014) compared the spatial and temporal models with the space-by-time model and found that 102 

the space-by-time model, while compatible with the two models, provides a more parsimonious representation 103 

of muscle activation patterns. Chiovetto and colleagues (2013) compared temporal, spatial and spatiotemporal 104 

models by extracting muscle synergies from single joint movements, including only two muscles. They showed 105 

that all the three models lead to interpretable synergies that encode specific motor features: in particular, spatial 106 
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synergies describe the coordinated activation of a group of muscles, while the temporal ones reveal the 107 

different phases of the movement. Safavynia and Ting (2012) used both spatial and temporal synergies to 108 

analyze postural control under perturbation and found that spatial synergies reconstruct the EMG signals better 109 

and are more interpretable. Russo and collaborators (2014) employed the spatial, temporal and spatiotemporal 110 

synergy models to investigate and compare the dimensionality of joint torques to the one of muscle patterns. 111 

They found that joint torques have a lower dimensionality with respect to muscles and the temporal synergy 112 

model is more parsimonious than the spatial one. Spatial and temporal synergy models were also compared by 113 

Torricelli and collaborators (2020), who also used a surrogate dataset to evaluate the process of short-term 114 

adaptation in cycling tasks. Their results showed that neither spatial nor temporal model could describe the 115 

learning process adequately, while the temporal model shifted by an optimal delay could explain the changes 116 

in muscle coordination. Finally, Berger et al. (2020) studied the role of the cerebellum on the organization of 117 

movement employing spatial, temporal and spatiotemporal synergy models and found that spatiotemporal 118 

synergies could identify changes in muscular pattern as a specific effect of cerebellar damage.   119 

Despite the high number of studies in the domain, there are still open challenges. First, while the temporal 120 

model has been employed less frequently than the spatial one, no study to date has investigated at what extent 121 

temporal synergies reflect a specific temporal structure of the muscle activation patterns rather than only their 122 

intrinsic smoothness. Second, while several studies compared spatial and temporal synergies, there are not 123 

studies in literature targeting a large set of multi-joint upper limb movements. 124 

To address these issues, this paper aims at assessing the existence of significative spatial and temporal structure 125 

and at comparing the spatial and temporal models when using the same EMG datasets. Two comprehensive 126 

datasets were used that include many muscles and degrees of freedom of the upper limb. The first one includes 127 

proximal upper-limb muscles (Scano et al., 2019) and the other distal upper-limb muscles (Atzori et al., 2014). 128 

The first objective was achieved building a surrogate dataset from the original data, randomly shuffling the 129 

phases of the Fourier Transform of the signal and preserving the frequency content (Torricelli et al., 2020). 130 

The spatial and the temporal synergy models were employed on both the original dataset and the surrogate one 131 

and the goodness of the reconstruction was compared in order to find significative differences between the 132 

synergies extracted from original and surrogate datasets. After validating the synergy models, spatial and 133 

temporal synergies were extracted with NMF from both original datasets and a comprehensive comparison 134 

was performed. The reconstruction capability of the two models suggests a different organization of the motor 135 

control between proximal and distal upper limbs. Differences in inter-subject variability of the invariant 136 

components between the two models and the two datasets were observed. Furthermore, we provide a detailed 137 

characterization of the temporal features of the temporal synergies, suggesting that they can be related to an 138 

intermittent control scheme of the movement that allows high flexibility and dexterity. 139 

2. Materials & Methods 140 

An overview of the study is shown in Figure 2. 141 
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 142 

Figure 2. Schematic of the workflow for the analysis of both REACH PLUS and NINAPRO datasets. Each dataset is 143 
composed of M muscles, K tasks, R repetitions and T time samples. In the first row, the workflow for the validation of the 144 
synergy model is reported, while the comparison between temporal and spatial synergy model is shown in the second 145 
row.  146 

2.1 Dataset description and preprocessing 147 

Two datasets were selected for this analysis: the REACH PLUS dataset, representing the proximal upper-limb 148 
coordination in multi-directional movements (Scano et al., 2019) and the publicly available distal upper-limb 149 
dataset NINAPRO (Atzori et al., 2014). They both were already used for muscle synergy extraction with the 150 
spatial synergy model based on NMF (Pale et al., 2020; Scano et al., 2018).  151 

The REACH PLUS dataset features 16 healthy participants performing frontal point to point movements 152 
towards 9 main cardinal directions and frontal exploration tasks from a central point towards 8 cardinal 153 
directions, and back to the central point; each group of movements was repeated ten times. The EMG signal 154 
was recorded from 16 muscles of the right upper limb. The data pre-processing was achieved with the methods 155 
already described in detail in a previous report (Scano et al., 2019). In summary, EMG data were resampled, 156 
filtered, aligned and the tonic component was removed with a linear ramp model. Normalization was 157 
performed on the maximum value of filtered EMG for each channel. The data from each phase were down 158 
sampled to 16 samples, so that spatial and temporal synergies were extracted from the same total number of 159 
samples.  160 

The NINAPRO dataset features 30 selected healthy participants performing 20 hand grasps, extracted from 161 
hand repertoire of NINAPRO Dataset 2 (NINAPRO DB2). Each group of movements was repeated six times. 162 
Twelve channels were used for the recording of the EMG signal. The data pre-processing was achieved with 163 
the methods described in detail in a previous report (Scano et al., 2018): EMG data were resampled, filtered, 164 
aligned and finally normalized on the maximum value of filtered EMG for each channel. The data from each 165 
phase were down sampled to 12 samples, so that spatial and temporal synergies were extracted from the same 166 
total number of samples. 167 

The two datasets were analyzed separately and the results were compared. 168 
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2.2 Surrogate dataset 169 

A preliminary step for our analysis was to validate both the spatial and temporal models for synergy extraction, 170 
demonstrating that a significative spatial and temporal organization exists in the muscle activation patterns 171 
and, in particular, that the spatial synergies do not simply represent a feature related to the amplitude 172 
distribution of the signals and the temporal synergies a feature related to the smoothness of the signals. To do 173 
this, we constructed a surrogate dataset mimicking the amplitude distribution and smoothness of the original 174 
dataset (having the same Fourier components) but removing its specific spatiotemporal structure (by 175 
randomization of the phases of the Fourier components of each muscle), inspired from a previously adopted 176 
procedure (Torricelli et al., 2020). Following the approach of Faes et al. (2004), the surrogate datasets were 177 
constructed computing the Fourier Transform (FT) of the original time series; for each frequency component, 178 
we substituted the phases with random phases 𝜙 chosen in the interval [−𝜋, 𝜋], while the modulus remained 179 

unchanged. Therefore, each complex amplitude obtained from FT was multiplied by 𝑒𝑖𝜙 and, in order to 180 

compute a real inverse FT, the phases were symmetrized to have 𝜙(𝑓) =  −𝜙(−𝑓) (Theiler et al., 1992). 181 
Finally, the inverse of the Fourier Transform was applied to return into the time domain, obtaining time series 182 
with the same frequency content of the original data but with random temporal structure. An example of the 183 
original and the surrogate dataset is shown in Figure 3. These datasets were given as input to the spatial and 184 
the temporal synergy extraction algorithm and the resulting reconstruction R2 and order of factorization for 185 
each R2 threshold were compared to those obtained from the original dataset.  186 

The bootstrapping procedure was performed for both datasets and repeated ten times for each participant: 187 
therefore, ten surrogate datasets were obtained and only the mean R2 over the ten repetitions for each 188 
participant was taken into consideration. 189 
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 190 

Figure 3. Example of the original (upper panel) and the surrogate (lower panel) dataset from one subject of the REACH 191 
PLUS dataset.   192 

2.3 Synergy extraction  193 

As in a previous study (Scano et al., 2019), data from the REACH PLUS dataset were averaged across 194 

repetitions and arranged differently for the extraction of spatial and temporal synergies. For extracting spatial 195 

synergies, considering 𝑀 muscles, 𝐾 tasks sampled with 𝑇 samples each, the EMG signals were rearranged in 196 

a data matrix with M rows and 𝐾 ∙ 𝑇 columns. In contrast, for extracting temporal synergies, the EMG data 197 

matrix had T rows and 𝐾 ∙ 𝑀 columns.  198 
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Since there are 6 repetitions of each movement in the NINAPRO dataset and they had a longer duration, data 199 

were concatenated in order to preserve the trial by trial variability (Oliveira et al., 2014). Therefore, considering 200 

𝑀 muscles, 𝐾 tasks sampled with 𝑇 samples each, and 𝑅 repetitions of each group of tasks, the EMG signals 201 

were arranged in a data matrix with M rows and 𝐾 ∙ 𝑇 ∙ 𝑅 columns for extracting spatial synergies and in a data 202 

matrix with T rows and 𝐾 ∙  𝑅 ∙ 𝑀 columns for extracting temporal synergies. 203 

For extracting both spatial and temporal synergies, we used a non-negative matrix factorization algorithm. The 204 
spatial model is the following:  205 

𝐸𝑀𝐺(𝑘, 𝑟, 𝑡,𝑚) =∑𝑐𝑖
𝑘,𝑟(𝑡) 𝑤𝑖(𝑚)

𝑆

𝑖=1

 206 

where 𝒘𝒊 are the time-invariant synergy vectors and  𝒄𝒊 the time-varying scalar activation coefficients for each 207 

synergy (i = 1…S), and 𝐸𝑀𝐺(𝑡, k) the activity of muscle m at time t of task k. 208 

For the REACH PLUS dataset, considering 𝐾 = 25, 𝑇 = 16, 𝑀 = 16, input data was a 16 ∙ 400 matrix. 209 

Spatial extraction would lead to 𝑆 synergies (each a column vector with 16 components) and 𝑆 ∙ 25 time-210 

varying coefficients (16 samples each). For NINAPRO dataset, input data was a 12 ∙ 1440 matrix, considering 211 

𝐾 = 20, 𝑇 = 12, 𝑅 = 6, 𝑀 = 12. Spatial extraction would lead to S synergies (each a column vector with 12 212 

components) and 𝑆 ∙ 120 time-varying coefficients (12 samples each). Each spatial synergy was normalized 213 

by the Euclidean norm of that synergy and as a consequence the temporal coefficients were also normalized 214 

by the reciprocal of the norm.  215 

The temporal model is:   216 

𝐸𝑀𝐺(𝑘,𝑚, 𝑟, 𝑡) =∑ 𝑤𝑖
𝑘,𝑟(𝑚) 𝑐𝑖(𝑡)

𝑆

𝑖=1

 217 

Where 𝒄𝒊 are the invariant temporal synergy vectors and 𝒘𝒊 the variant muscle weight vectors for each synergy 218 

dependent on task and repetition. Using the REACH PLUS dataset, input data was a 16 ∙ 400 matrix and the 219 

extraction would lead to 𝑆 temporal synergies (16 ∙ 𝑆 matrix) and 𝑆 ∙ 400 variant muscle weights (25 loads per 220 

spatial group). With NINAPRO dataset, input data was a 12 ∙ 1440 matrix and the extraction would lead to 𝑆 221 

temporal synergies (12 ∙ 𝑆 matrix) and 𝑆 ∙ 1440 variant muscle weights (120 weights per spatial group). 222 

The order of factorization 𝑆, given as input in the NMF algorithm, was increased from 1 to the number of EMG 223 

channels (16 for REACH PLUS and 12 for NINAPRO) for both spatial and temporal synergy extraction. For 224 

each 𝑆, the algorithm was applied 100 times with different random initializations in order to avoid local minima 225 

and the optimization run accounting for the higher variance of the signal was chosen as the representative of 226 

the order 𝑆.  227 

 228 

As a measure of goodness of reconstruction, we used the 𝑅2  defined as 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
 where 𝑆𝑆𝐸 is the sum of the 229 

squared residuals and 𝑆𝑆𝑇 is the sum of the squared differences with the mean EMG vector (D’Avella et al., 230 

2006). The order of factorization was chosen as the lowest one explaining a predefined threshold level of R2. 231 

We chose three threshold levels commonly adopted in literature (Pale et al., 2020) that were 0.80, 0.85 and 232 

0.90. 233 

 234 

2.4 Synergy clustering  235 

To evaluate the variability of synergies from different participants, we grouped invariant spatial and temporal 236 
synergies across participants for each R2 level. Cluster analysis allows to reduce the dataset of extracted 237 
synergies to a limited number of groups, which compactly represent the repertoire of modules extracted among 238 
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the participants. Since the order of factorization varied across the participants, we decided to group the 239 
extracted synergies using the k-means clustering algorithm (Steele et al., 2015). 240 

A matrix containing the whole set of muscle synergies extracted from all the participants was given as input 241 

to the algorithm. The number of clusters was initially set equal to the maximum order of factorization obtained 242 

among the participants for the chosen threshold and was increased until all the synergies from the same 243 

participant were assigned to different clusters. The number of replicates was set to 200, namely the number of 244 

times the algorithm repeated the clustering with new initial cluster centroids estimates (chosen uniformly at 245 

random (Arthur & Vassilvitskii, 2007)) with the same number of clusters and give the results with the lowest 246 

sum of Euclidean distances of each point in the cluster to the centroid. The entire procedure was repeated 10 247 

times and we considered as the best solution the one that gave the most parsimonious number of clusters. The 248 

algorithm gave the synergies grouped in each cluster and the centroid (mean synergy in the cluster). The 249 

clustering procedure was performed for both spatial and temporal model and for each R2 threshold.  250 

 253 

2.5 Outcome measures and statistics 254 

The goodness of the reconstruction was obtained from the original and the surrogate dataset with a spatial and 255 

a temporal model. A linear mixed-effects model (McLean et al., 1991) was fitted for the R2 in order to 256 

investigate the effects of the use of the surrogate and original dataset. First, the data was tested for normality 257 

with the Kolmogorov-Smirnov test. Then, the R2 was modelled as the dependent variable with fixed effects 258 

for dataset type and order of extraction with interaction, considering the order of extraction as a categorical 259 

variable. Random intercepts were included for effects of subjects. The level of significance (𝛼) was set 0.05. 260 

In order to compare the spatial and the temporal model, we proceeded as follows. First, we compared the 261 

goodness of reconstruction obtained from each model and a statistical analysis was conducted to evaluate the 262 

differences. We extracted synergies according to 3 reconstruction R2 thresholds and we quantified the mean 263 

and the standard deviation of each order of factorization to compare the R2 achieved with spatial and temporal 264 

synergies. Linear mixed-effects model was fitted for the R2 to investigate the effects of the use of the spatial 265 

and temporal model. First, the data was tested for normality with the Kolmogorov-Smirnov test. Then, the R2 266 

was modelled as the dependent variable with fixed effects for synergy model and order of extraction with 267 

interaction, considering the order of extraction as a categorical variable. Random intercepts were included for 268 

effects of subjects. The level of significance (𝛼) was set 0.05.  269 

Furthermore, we clustered extracted synergies across participants and R2 levels to define the inter-subject 270 

repertoire of invariant spatial and temporal synergies. The inter-subject similarity was computed via cosine 271 

angle, comparing all combination of synergies present in a cluster and then mediated for each level of R2. This 272 

process was done for each dataset and for both spatial and temporal invariant synergies.  273 

Finally, to provide a detailed characterization of the temporal model and of the temporal structure found in the 274 
data, temporal synergies were extracted from the surrogate datasets, considering the same order of factorization 275 
of the original dataset for each R2 threshold, and they were clustered with k-means clustering algorithm. For 276 
both the original and the surrogate datasets, the mean of the temporal synergies in each cluster were fitted with 277 
a Gaussian distribution and the phase (the peak location), the period (distance between two consecutive 278 
phases), and the full width at half maximum (FWHM) were computed. After testing the data for normality 279 
with the Kolmogorov-Smirnov test, a two-sample t-test was performed at each R2 threshold in order to identify 280 

the difference between original and surrogate datasets. The level of significance (𝛼) was set 0.05. 281 

3. Results 282 

3.1 Validation of the synergy models 283 

In Figure 4, the comparison of the reconstruction R2 of the spatial model using the original and the surrogate 284 

data is shown for both REACH PLUS and NINAPRO dataset. The R2 reconstruction was higher using the 285 
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original dataset with respect to the surrogate one, for both REACH PLUS and NINAPRO. For both datasets, 286 

the ‘dataset type’ (surrogate/original) had a significant influence on the reconstruction R2 (p < 0.001), 287 

indicating that the spatial organization of the muscle patterns captured by the spatial synergy decomposition 288 

did not simply arise from the amplitude distribution of the data. 289 

290 
Figure 4. Reconstruction R2 computed with spatial synergy model: comparison between original data (dark blue) and the 291 
surrogate dataset (light blue). Both REACH PLUS and NINAPRO results are reported, averaged across participants. 292 
The squares are the mean across participants and the error bars represent the standard deviations. 293 

The difference between the R2 curve of the surrogate and the R2 curve of the original data was significant for 294 

all the order of extraction with p < 0.001 until order 14 (included) for REACH PLUS and order 10 (included) 295 

for NINAPRO. 296 

In Figure 5, the comparison of the reconstruction R2 of the temporal model using the original and the surrogate 297 

data is shown for both REACH PLUS and NINAPRO dataset. As for the spatial model, the reconstruction R2 298 

was higher using the original dataset with respect to the surrogate one, for both REACH PLUS and NINAPRO.  299 

For both datasets, the ‘dataset type’ (surrogate/original) exhibited a significant influence on the reconstruction 300 

R2 (p < 0.001), indicating that also the temporal organization of the muscle patterns revealed by the temporal 301 

synergy decomposition could not simply be explained by the smoothness of the data.   302 
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303 
Figure 5. Reconstruction R2 computed with temporal synergy model: comparison between original data (red) and the 304 
surrogate dataset (pink). Both REACH PLUS and NINAPRO results are reported, averaged across participants. The 305 
squares are the mean across participants and the error bars represent the standard deviation. 306 

The difference between the R2 curve of the surrogate and the R2 curve of the original data was significant for 307 

all the order of extraction until order 14 (p = 0.015) for REACH PLUS and order 11 (p = 0.03) for NINAPRO. 308 

3.2 Synergy reconstruction and order of factorization 309 

In Figure 6, we reported the reconstruction R2 comparing spatial synergies and temporal synergies for the 310 

REACH PLUS and for NINAPRO dataset.  311 

312 
Figure 6. Reconstruction R2 for spatial and temporal synergies for both datasets (REACH PLUS and NINAPRO) 313 
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The R2 reconstruction was reported from order 1 to the number of EMG channels, 16 for REACH PLUS and 314 

12 for NINAPRO. In REACH PLUS dataset, the two methods reported nearly the same R2 at order 1 (0.35 for 315 

spatial and at 0.32 for temporal). For all the other order of factorization, the temporal model showed a higher 316 

R2. In NINAPRO dataset, instead, the R2 curves of the two methods crossed each other between order 4 and 5: 317 

R2 is higher in temporal synergies until order 4 and in spatial synergies after this order. The linear mixed-318 

effects model analysis indicated that the ‘synergy model’ had significant effects on the R2, with p < 0.001 for 319 

REACH PLUS and with p = 0.04 for NINAPRO, indicating a different reconstruction between the spatial and 320 

the temporal model. Furthermore, for REACH PLUS the difference between the R2 curve of the spatial model 321 

and the R2 curve of the temporal model was significant for all the order of extraction until order 10 (p = 0.028), 322 

while for NINAPRO the difference between the R2 of the two models is significant only for order 1 and 2 with 323 

p < 0.001. 324 

In table I, the orders of factorization averaged across participants for each R2 threshold are reported. For the 325 

REACH PLUS dataset, the number of extracted synergies for each R2 thresholds varied across participants 326 

respectively from 4 to 7, from 5 to 9, from 7 to 11 for the spatial model, while the range was between 3 and 6, 327 

4 and 7, 5 and 10, for temporal model. For NINAPRO dataset, the order of factorization ranged from 2 to 5, 328 

from 3 to 6, from 3 to 8 for the spatial model, while using temporal model the orders were between 2 and 5, 3 329 

and 6, 4 and 8.  330 

Table I. Means and standard deviations for the number of extracted synergies for each R2 threshold for spatial and 331 
temporal models in both datasets. 332 

MODEL R2 = 0.80 R2 = 0.85 R2 = 0.90 

REACH PLUS 

SPATIAL 5.8 ± 1.0 7.2 ± 1.2 9.2 ± 1.2 

TEMPORAL 4.6 ± 0.8 5.7 ± 1.2 7.5 ± 1.7 

NINAPRO 

SPATIAL 3.8 ± 0.7 4.6 ± 0.8 5.6 ± 0.9 

TEMPORAL 3.6 ± 0.8 4.3 ± 0.8 5.7 ± 0.8 

 333 

In Figure 7, we report an example of spatial synergies and variant temporal coefficients extracted from EMG 334 

signal of a typical subject of the REACH PLUS dataset. With R2 threshold = 0.80, the order of extraction was 335 

five, with R2 = 0.81. In the first row, the distribution of muscles in each synergy is shown, while the temporal 336 

activation profiles of each synergy are reported for each direction of movement. 337 
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 338 

Figure 7. Typical example of spatial synergies and variant temporal coefficients, extracted from the REACH PLUS 339 
dataset. 340 

An example of temporal synergies with variant spatial loads extracted from the same participant is reported in 341 

Figure 7. In this case, imposing a R2 threshold of 0.80, four synergies were extracted, (R2 = 0.83). The invariant 342 

temporal synergies are shown in the first column and the respective variant spatial loads are reported for each 343 

direction of movement.  344 

 345 

Figure 8. Typical example of temporal synergies and variant spatial loads, extracted from the REACH PLUS dataset. 346 

 347 
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3.3 Inter-individual variability of invariant components 348 

In Figure 9, the spatial synergies after clustering are reported for the REACH PLUS dataset (inter-subject 349 

synergies).  350 

 351 

Figure 9.  Spatial synergies averaged across participants after k-means clustering, for three level of reconstruction R2 352 
(REACH PLUS). The bold lines represent the means and the standard deviations of the synergies for each cluster.   353 

Twelve clusters were chosen for grouping the synergies obtained with R2 = 0.80 and each cluster contained 354 

from 4 to 14 synergies. With R2 = 0.85, fourteen clusters were found to group synergies, with 3 to 14 synergies 355 

in each cluster. Finally, for R2 = 0.90, synergies were clustered in fourteen groups composed of 6 to 16 356 

synergies each.  357 

In Figure 10, we report the temporal synergies after matching across participants for REACH PLUS (inter-358 

subject synergies). 359 
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 360 

Figure 10. Temporal synergies averaged across participants after k-means clustering, for three level of reconstruction 361 
R2 for REACH PLUS dataset. The bold lines represent the means with the standard deviations of the synergies for each 362 
cluster. 363 

For the first R2 threshold, temporal synergies were clustered in seven groups, containing from 8 to 14 synergies. 364 

With R2 = 0.85, eight clusters were used to match the temporal synergies and in each cluster the number of 365 

synergies ranged from 6 to 15. Eleven clusters were found for R2 = 0.90, containing from 2 to 14 synergies 366 

each. The number of clusters needed to group temporal synergies were lower with respect to spatial synergies 367 

for all the R2 thresholds, as reflected by the lower mean order of factorization.  368 

In Figure 11, we report the spatial synergies after matching across participants for the NINAPRO dataset (inter-369 

subject synergies). 370 

371 
Figure 11.  Spatial synergies averaged across participants after clustering procedure, at three level of reconstruction R2 372 
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for NINAPRO dataset. The bold lines represent the means with the standard deviations of the synergies belonging to that 373 
cluster. 374 

For the NINAPRO dataset, the number of clusters for R2 = 0.80 was nine, with a range of 4 to 23 synergies in 375 

each group. For R2 = 0.85, spatial synergies were clustered in ten groups (each composed of 6 to 24 synergies). 376 

Finally, for R2 = 0.90, eleven clusters were found and each cluster contained from 9 to 25 synergies. 377 

In Figure 12, we report the temporal synergies after matching across participants for the NINAPRO dataset 378 

(inter-subject synergies). 379 

 380 

Figure 12. Temporal synergies averaged across participants after k-means clustering, for three level of reconstruction 381 
R2 for NINAPRO dataset. The bold lines represent the means with the standard deviations of the synergies for each 382 
cluster. 383 

Temporal synergies were grouped in seven clusters for R2 = 0.80, with 10 to 21 synergies in each group. For 384 

R2 equal to 0.85, the number of clusters was eight and each one contained from 12 to 27 temporal synergies. 385 

For R2 = 0.90, ten clusters were found and the number of synergies in each one ranged from 10 to 27. As for 386 

REACH PLUS dataset, the number of clusters were lower for the temporal model with respect to the spatial 387 

model in all the R2 thresholds, even if the mean order of extraction was similar between the two models.  388 

In Table II, the inter-individual similarities for spatial and temporal synergies in the same cluster are 389 
summarized. 390 

Table II. Inter-individual similarity (spatial and temporal synergies) is reported for each threshold and each dataset. The 391 
values are the mean and standard deviations between the similarity computed in each cluster obtained at that threshold.  392 

MODEL R2 = 0.80 R2 = 0.85 R2 = 0.90 

REACH PLUS 

SPATIAL 0.78 ± 0.04 0.77 ± 0.04 0.81 ± 0.04 

TEMPORAL 0.89 ± 0.02 0.88 ± 0.02 0.89 ± 0.02 

NINAPRO 

SPATIAL 0.85 ± 0.03 0.86 ± 0.02 0.86 ± 0.03 

TEMPORAL 0.90 ± 0.03 0.89 ± 0.03 0.88 ± 0.02 

 393 
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The similarity computed in each cluster was high (>0.75) for all the conditions. In the REACH PLUS dataset, 394 

similarity of spatial synergies was 0.78, 0.77 and 0.81 for the 0.80, 0.85, 0.90 thresholds, respectively. For the 395 

temporal model, instead, the similarity was higher, reaching 0.89 for R2 threshold = 0.80 and 0.90 and 0.88 for 396 

R2 threshold = 0.85. For the NINAPRO dataset, the similarity of spatial synergies was 0.85, 0.86 and 0.86. For 397 

temporal synergies, the similarity was higher and decreased when increasing the threshold: it was 0.90 at R2 398 

threshold = 0.80, 0.89 for R2 threshold = 0.85 and 0.88 for the highest threshold.  399 

Similarity was computed in each cluster and, then, mediated across clusters for the same R2 threshold. Mean 400 

and standard deviations are compared in Figure 13. For both the datasets, temporal synergies showed a higher 401 

similarity and lower standard deviations with respect to spatial synergies. 402 

 403 

Figure 13: Inter-subject similarity of invariant synergies (spatial and temporal) for both datasets when changing the R2 404 
threshold.  405 

3.4 Characterization of the temporal synergies 406 

In Figure 14, the results of the k-means clustering on the temporal synergies extracted from the surrogate data 407 
of REACH PLUS dataset are reported. For each subject, the order of factorization for each threshold was the 408 
same used for the synergy extraction from the original dataset and the extracted synergies were clustered in 7, 409 
9, and 11 clusters. The number of clusters was equal to the number of clusters of the original dataset for R2 410 
threshold = 0.80 and R2 threshold = 0.90, while for R2 threshold = 0.85 the number of clusters was higher.  411 
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 412 

Figure 14. Temporal synergies extracted from surrogate dataset averaged across participants after k-means clustering, 413 
for three level of reconstruction R2 for the REACH PLUS dataset. The bold lines represent the means with the standard 414 
deviations of the synergies for each cluster. 415 

416 
Figure 15. Temporal synergies extracted from surrogate dataset averaged across participants after k-means clustering, 417 
at three level of reconstruction R2 for NINAPRO dataset. The bold lines represent the means with the standard 418 
deviations of the synergies for each cluster. 419 

In Figure 15, the results of the clustering procedure on the temporal synergies extracted from the surrogate 420 
data of NINAPRO dataset are reported. For each subject, the order of factorization for each threshold was the 421 
same used for the synergy extraction from the original dataset and the extracted synergies were clustered in 6, 422 
7, and 10 clusters. Differently from the REACH PLUS dataset, the clusters were fewer than the clusters of the 423 
original dataset R2 threshold = 0.80 and R2 threshold = 0.85, indicating that the synergies extracted from the 424 

 

   

 

 
 

 
 
                

 

   

 

 
 

 

   

 

 
 

 

   

 

 
 

 

   

 

 
 

 

   

 

 
 

 

   

 

 
 

 
 

 
 
                

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
                

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 

          

     

          

     

 
 
 

                                           

          

     

 

   

 

 
 

 
 
                

 

   

 

 
 

 

   

 

 
 

 

   

 

 
 

 

   

 

 
 

 

   

 

 
 

 
 

 
 
                

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
                

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

          

     

 
 
 

                                        

          

     

          

     

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 12, 2022. ; https://doi.org/10.1101/2022.07.11.499519doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.11.499519
http://creativecommons.org/licenses/by-nc-nd/4.0/


surrogate dataset were more similar between subjects, while for R2 threshold = 0.90 the number of clusters was 425 
the same of the original dataset. 426 

The mean temporal synergy of each cluster was fitted with a Gaussian function and the phase of the peak and 427 
its full width at half maximum (FWHM) were computed for both the original and the surrogate dataset and 428 
they are reported in Table III. The synergies with normalized movement phase <5% or >95% were reported in 429 
brackets and excluded from the computation of the mean period (difference between peak phases) and FWHM 430 
because they represent the tails of the signals and these curves were incomplete and cannot be easily fitted 431 
with a Gaussian function. Mean widths and mean periods are reported in Figure 16. 432 

 433 

Figure 16. The mean FWHM (left panel) and the mean period (right panel) computed on the mean temporal synergy of 434 
each cluster are reported for both REACH PLUS and NINAPRO datasets. The red bars refer to the original data, while 435 
the pink ones to the surrogate data. 436 

For both the original and surrogate datasets, the period and the FWHM decreased as the number of extracted 437 
synergies increased. The surrogate synergies showed larger FWHM and period with respect to the original 438 
synergies for all the thresholds, even when the number of clusters was higher (as in the REACH PLUS dataset). 439 
The original synergies appear more concentrated, with closer and narrower peaks.  440 

Statistical analysis showed that FWHM was significantly different between original and surrogate data for R2 441 
= 0.80 (p = 0.01) and R2 = 0.90 (p = 0.02) for REACH PLUS, while significant differences were found for R2 442 
= 0.80 (p = 0.01) and R2 = 0.85 (p = 0.007) for NINAPRO. Differences in periods were statistically significant 443 
for all the threshold in both REACH PLUS and NINAPRO datasets. 444 

Table III. Full widths at half maximum and phases of the peak are reported for the mean temporal synergy of each cluster 445 
of the original (Or) and the surrogate (Sur) dataset of both REACH PLUS and NINAPRO datasets. In the last column, 446 
the mean width and the mean phase difference between consecutive peaks (period) are reported. The values in brackets 447 
are excluded from the mean since the phases was <5 or >95. The bold indicates the synergies in which the FWHM of the 448 
original data is larger than the FWHM of the surrogate data. 449 

REACH PLUS 

  R2 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 mean 

FWHM 

Or 

0.80 (23.1) 13.5 14.2 14.7 17.5 16.1 21.9     16.3±3.1 

0.85 (21.6) 10.7 13.5 12.4 15.3 15.5 19.4 21.7    15.5±3.9 

0.90 (21.3) 9.9 10.9 10.9 11.3 10.0 10.7 16.9 5.1 10.8 9.7 10.6±2.8 

Sur 

0.80 (19.1) 19.7 20.8 21.4 19.8 19.3 20.6     20.3±0.8 

0.85 (8.0) 16.9 17.1 17.2 15.5 16.7 17.3 17.4 15.8   16.7±0.7 

0.90 (9.1) 13.2 14.5 14.4 11.1 13.1 13.7 12.3 12.4 12.9 12.1 13.0±1.1 

phase 

Or 

0.80 (-0.9) 22.4 30.8 38.2 49.7 59.1 70.4     9.6±1.8 

0.85 (-1.5) 19.7 28.2 37.0 47.3 56.5 67.4 77.8    9.7±1.0 

0.90 (-1.6) 19.7 27.1 38.8 52.4 60.3 67.8 76.4 11.4 45.5 33.1 7.2±1.0 

Sur 

0.80 (2.0) 15.2 28.6 43.5 59.5 77.0 93.5     15.7±1.5 

0.85 (1.0) 20.0 34.2 47.2 56.7 78.6 93.0 5.9 66.0   12.4±2.2 

0.90 (1.0) 16.8 27.2 37.3 57.1 82.6 93.9 6.5 66.1 50.2 74.0 9.7±1.8 
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NINAPRO 

  R2 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 mean 

FWHM 

Or 

0.80 22.5 26.9 28.5 25.4 22.9 31.8 (38.8)     26.3±3.5 

0.85 16.5 24.6 24.5 23.9 23.8 22.0 (42.7) 18.8    22.0±3.2 

0.90 14.8 16.5 19.5 21.5 17.4 14.4 (25.2) 16.1 22.0 15.8  17.5±2.8 

Sur 

0.80 (33.1) 30.9 30.4 34.8 30.5 35.7      32.5±2.6 

0.85 26.5 27.1 27.2 27.5 25.2 26.7 (25.4)     26.5±1.0 

0.90 18.6 20.2 19.4 19.5 21.2 20.4 (13.9) 20.0 19.9 20.7  19.5±2.2 

phase 

Or 

0.80 24.9 37.5 49.0 59.8 71.3 82.6 (98.0)     11.7±1.0 

0.85 20.3 38.4 49.6 57.6 67.8 79.6 (99.5) 30.8    9.9±1.7 

0.90 19.1 37.9 48.3 55.2 70.6 82.9 (97.2) 29.7 77.6 61.8  8.0±1.9 

Sur 

0.80 (2.7) 21.5 34.9 51.7 71.5 89.1      16.9±2.7 

0.85 7.4 21.5 39.3 56.5 71.3 83.7 (100.3)     15.3±2.2 

0.90 8.7 18.2 29.8 51.2 71.4 83.1 (101.7) 41.0 61.1 94.9  10.8±0.9 

 450 

4. Discussion 451 

In this study, we performed a quantitative assessment of the spatial and temporal synergies extracted using 452 

NMF from two datasets that provide a comprehensive description of both distal and proximal upper limb 453 

movements. We compared spatial and temporal synergies in terms of goodness of reconstruction and inter-454 

individual variability. We first showed that there exists a significative spatial and temporal structure in the 455 

EMG signals of several muscles that could not be simply explained by the amplitude distribution or the 456 

smoothness of the data. In fact, the goodness of reconstruction with temporal and spatial synergies obtained 457 

with a surrogate dataset when the temporal and spatial structures of individual muscles was randomized (while 458 

maintaining the same EMG spectral features) was lower than the one obtained with the original signals. Spatial 459 

and temporal synergy models were then compared in terms of quality of reconstruction (R2), number of 460 

synergies (reconstruction order) selected according to three different R2 thresholds, and inter-subject synergy 461 

variability. Interestingly, we found that especially for low and frequently used reconstruction R2, the temporal 462 

factorization required fewer temporal components than spatial ones. These findings were not analyzed in detail 463 

before and suggest that the smoothness of the data constrains the temporal dimensionality more than the 464 

amplitude distribution of the data constrains the spatial dimensionality. The differences between the two 465 

models were more evident in the proximal upper limb dataset. At the same time, the “elbow” in the 466 

reconstruction R2 curve was more pronounced with temporal synergies than with spatial synergies. It follows 467 

that it is often possible to find an even more compact representation of movement with temporal synergies 468 

with respect to the standard spatial model. It is indeed likely to obtain a lower dimensional representation when 469 

using the temporal model. On the contrary, spatial synergies were more parsimonious than temporal for higher 470 

reconstruction R2 values, that are less frequently used. Comparing both models with the surrogate dataset, the 471 

R2 curve of the surrogate data is closer to the R2 curve of the original data for the temporal model. Since the 472 

surrogate data indicate the intrinsic dimensionality expected for signal with such characteristics, the temporal 473 

synergies may have a lower dimensionality due to the smoothness of the data rather than to a more compact 474 

representation of the temporal model. Thus, the smoothness of the data appears to constrain the temporal 475 

dimensionality more than the amplitude distribution of the data constrains the spatial dimensionality. 476 

Consequently, according to this point of view, the spatial model gives a more compact representation of the 477 

movement, even if it requires more synergies as previously explained. However, we remark that spatial and 478 

temporal synergies capture different levels of organization and no assumption should be made a priori on the 479 

proper number of synergies that should be extracted (which can in general be different when adopting on model 480 

or the other). We conclude that the two methods are complementary at a mathematical level, even if they may 481 

reflect different features and organization at neural level. It follows that it is probably not correct to support 482 

only the use of the spatial (or the temporal) model. 483 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 12, 2022. ; https://doi.org/10.1101/2022.07.11.499519doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.11.499519
http://creativecommons.org/licenses/by-nc-nd/4.0/


The sensibility of the temporal synergy model on the number of samples of the input signals should be 484 

investigated more in future work. Decreasing the number of samples may give a higher reconstruction of the 485 

signal, as in Torricelli et al. (2020) in which better results were obtained using 18 samples for the temporal 486 

model. Similarly, in this study the number of samples for EMG time series was low, as it was matched to the 487 

number of muscles to allow a fair comparison between the two models. Therefore, the temporal structure can 488 

be computed after down-sampling or over-sampling the time series and this may affect the results. The two 489 

models exhibit some differences on the datasets employed, probably due to the movements involved. Temporal 490 

synergies have been used principally to describe cyclic movements characterized by specific cyclic timings, 491 

like locomotion (Ivanenko et al., 2004, 2005). Therefore, in the REACH PLUS dataset, where typical reaching 492 

movements are characterized by bell-shaped velocity profile of the end effector trajectory, the temporal 493 

synergy model gives results similar to the spatial model. In the NINAPRO dataset, reach to grasp movements 494 

are characterized by a triphasic modulation (pre-shaping, grasping and releasing) and more synergies are 495 

needed to obtain high R2 reconstruction. Similar results were found also in kinematic synergies applied to hand 496 

grasps. Indeed, Jarque-Bou et al. (2019) found that three kinematic synergies accounted for more than the 50% 497 

of variance but a high number of synergies was needed to reconstruct finer movements of the hand. Moreover, 498 

finer movements of the hand require a more fractionated control of muscles that might be reflected by multiple 499 

temporal synergies (Takei et al., 2017).  500 

The temporal synergy structure was analyzed in detail comparing original and surrogate datasets. The 501 

differences found in the distribution of the temporal synergies extracted from original and surrogate datasets 502 

suggest that the shape of temporal synergies is not simply related to the smoothness of the input signal but it 503 

may represent a specific feature of the neural commands. Temporal synergies of the original datasets were 504 

narrower and activated closer in time and condensed in the central phase with respect to the smoothed 505 

Gaussians of the surrogate data. Thus, neural commands may be generated as a sequence of narrow pulses 506 

generated at regular and short intervals during a movement, each activating one or more spatial synergies. The 507 

reduction of the full width at half maximum and of the periods when comparing temporal components with 508 

the natural composition of a signal with the same frequency content seems to suggest that the configuration of 509 

the temporal synergies may reflect an intermittent control of movement. Although the majority of the optimal 510 

control theories are based on continuous control signals that generate the human movement, some studies 511 

already suggested that the control signal is based on an intermittent control mechanism (Gawthrop et al., 2011; 512 

Karniel, 2013). In this control paradigm, the sensory feedback is used intermittently to parameterize the 513 

controlled motion law. The CNS sends pulsed commands to generate the movement that are transformed into 514 

activation profiles of muscles (Leib et al., 2020) and allows to shape the motor output by adjusting the timing 515 

and the amplitude of the bursts (Gross et al., 2002). While the movements analyzed in this study reflect mainly 516 

feedforward control (especially in the REACH PLUS dataset), in this study we still observed an intermittent 517 

organization of temporal synergies. Given the importance of high dexterity of flexibility of human upper limb 518 

and hand, we suppose that the control architecture might be tuned to be intermittent by nature in order to be 519 

ready to implement intermittent adaptation and corrections to the movement. In a sensory feedback based 520 

experimental design, we expect that intermittent control emerges even further. This is also suggested by the 521 

fact that in the NINAPRO (featuring slower movements and higher involvement of the sensory feedback) the 522 

difference between the real dataset and the surrogate is amplified with respect to REACH PLUS in which 523 

movements are mainly feedforward.  This implementation of control of human movement may be related to 524 

higher order derivative of the trajectory than the acceleration. Indeed, the intermittent control is predicted by 525 

the control signal of the minimum acceleration criterion with constraints (Ben-Itzhak & Karniel, 2008), that is 526 

based on minimizing the acceleration while constraining the maximum value of the jerk (third derivative). 527 

Intermittent control allows an online optimization process that provides higher adaptability and flexibility of 528 

the movement (Loram et al., 2014; van de Kamp et al., 2013). 529 

This finding paves the way for considering spatial and temporal synergies as representative of different features 530 

of the modular and hierarchical neuromotor organization. The rationale behind spatial synergies has been 531 
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widely discussed in the literature. It is based on the observation of spinal modules that produce movements by 532 

linear combination of their force or and associated muscle activity output (Bizzi et al., 2002; D’Avella & Bizzi, 533 

2005). This means that spatial modules need divergent neural connection for being implemented and they have 534 

been widely related to neural circuits at the spinal level (Saltiel et al., 2001; Tresch et al., 1999). At the same 535 

time, in this study we noted that temporal synergies for low orders can achieve higher reconstruction R2. We 536 

thus propose that temporal synergies may reflect a neural strategy for generating motor commands, possibly 537 

at cortical level, as a reduced number of descending signals  recruiting spatial synergies, possibly at spinal 538 

level, although Ivanenko et al. (2006) suggested that the temporal patterns of muscle activation during 539 

locomotion may also be  located in the spinal circuitry. Many studies suggest that CNS structures above spinal 540 

level contribute to movement planning. Hart and Giszter (Hart & Giszter, 2004, 2010) demonstrated that the 541 

brainstem can be involved in the time-scale distribution, improving smoothness and reducing co-contraction, 542 

thus contributing to the implementation of temporal synergies.  It has been also demonstrated that internal 543 

models controlling the arm movement are located in cerebellum (Kawato, 1999) and multiple inverse and 544 

forward models can be adapted to a large set of situations (Haruno et al., 1999; Wolpert & Kawato, 1998). 545 

Santello et al. (2013) hypothesized that the cerebellum receives direct input from the spinal premotor pools 546 

(and synergies) employed in the tasks. Berger et al. (2020) showed that temporal and spatiotemporal but not 547 

spatial structure in the muscle patterns is affected by cerebellar damage. At the same time, the temporal 548 

structure of the EMG signals itself can be the result of a set of sensorimotor feedback signals involved in motor 549 

control for adaption and tuning (Lockhart & Ting, 2007; Welch & Ting, 2008), thus temporal synergies can 550 

be shared between higher and lower levels of the CNS. All these evidences support the notion that synergies 551 

are found not only at spinal level. They also contribute to explain the observation that temporal synergies show 552 

lower dimensionality with respect to spatial synergies: motion planning takes place in a “principal components-553 

based, synthetic space” that summarizes the main features of the movement more synthetically than the 554 

actuation (spatial synergies). Thus, spatial and temporal synergies may not just be “dual models” but they may 555 

reflect different levels of a hierarchical organization. Temporal synergies reflect coordination in time, and 556 

mapping of goals into high-level features of motor commands (planning); spatial synergies reflect the 557 

organization to execute the movement (actuation). Since both models are supported by the data and describe 558 

complementary aspects of motor control, a more complete analysis of motor control may be provided by the 559 

space-by-time model (Delis et al., 2014, 2015) which incorporates both spatial and temporal synergies. This 560 

method identifies both spatial and temporal invariant modules that encode complementary aspects of the tasks: 561 

spatial modules identify muscles that activate synchronously, while temporal modules encoded movement 562 

phases (Hilt et al., 2018). Spatial synergies can replicate better the original signal, but the temporal model is 563 

more efficient at discriminating task (Delis et al., 2018). Overduin et al. (2015) demonstrated that the motor 564 

cortex employs spatiotemporal synergies to control movement, indicating that the hierarchical organization of 565 

motor control utilizes spatial and temporal features to organize motor synergies. The space-by-time model 566 

incorporates both models in compact way, even if it requires more parameters to be stored (Delis et al., 2014). 567 

The systematic analysis of spatiotemporal synergies could give a more comprehensive perspective; thus, it 568 

should be thoroughly studied in future work. 569 

Understanding better how muscle synergies are related to the neural organization of motor control can be 570 

important for many applications. A principal field of application is neurorehabilitation (Singh et al., 2018), 571 

since many studies have demonstrated that muscle synergies are a physiological marker in stroke patients 572 

(Cheung et al., 2009; Roh et al., 2015). In this way, the rehabilitation can be focused on the altered synergies, 573 

improving motor recovery. Furthermore, modularity of motor control can simplify the control of 574 

neuroprosthesis (Cole & Ajiboye, 2019; Piazza et al., 2012), allowing to reproduce the desired movement with 575 

a small number of command inputs.  576 

 577 

 578 
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5. Conclusions 579 

In this paper, we provided an assessment of spatial and temporal synergies and tested their difference in 580 
reconstruction accuracy and inter-subject matching. We also showed the existence of both spatial and temporal 581 
structure of EMG signal, comparing synergies extracted from the original and a surrogate dataset. While the 582 
spatial model has been employed in the vast majority of muscle synergy studies, our results show how the 583 
poorly exploited temporal model might also be helpful in the study of motor control. With a detailed 584 
characterization of temporal synergies, we suggested that the temporal synergies may capture a higher level of 585 
motor organization based on intermittent control that provides flexibility and adaptability of the movement. 586 
We believe that this paper will be useful to improve analysis targeting several fields such as rehabilitation, 587 
prosthesis control and motor control studies. 588 
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