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Abstract—In this paper we investigate the limit performance
of Floating Gossip, a new, fully distributed Gossip Learning
scheme which relies on Floating Content to implement location-
based probabilistic storage of machine learning models in an
infrastructure-less manner.

We consider dynamic scenarios where continuous learning is
necessary, and we adopt a mean field approach to investigate the
limit performance of Floating Gossip in terms of amount of data
that users can incorporate into their models, as a function of the
main system parameters. Differently from existing approaches
in which either communication or computing aspects of Gossip
Learning are analyzed and optimized, our approach accounts for
the compound impact of both aspects. We validate our results
through detailed simulations, proving good accuracy. Our model
shows that Floating Gossip can be very effective in implementing
continuous training and update of machine learning models in
a cooperative manner, based on opportunistic exchanges among
moving users.

I. INTRODUCTION

With the standardization of the 5G NR (New Radio) sidelink
[1], in addition to the LTE sidelink [2], WiFi direct [3],
and Bluetooth 5.2 [4], a number of options now exist for
implementing wireless D2D (Device to Device) communica-
tions [5]. Such rich set of technologies is likely to foster the
development of new services based on the direct exchange of
information among users. This will facilitate the implementa-
tion of context-aware location-based services such as mobile
crowdsensing applications, or services like Gigwalk [6], Waze
[7], and Millionagents [8], to name a few, since users can share
location and context through D2D automatically.

In particular, services that require the continuous acquisition
of fresh information (we will refer to them with the generic
term observations) about some specific context, and the sub-
sequent elaboration in each user equipment (UE) of a machine
learning (ML) model are poised to become common. Such ML
models will allow UEs to devise up-to-date strategies for the
optimization of a utility function while performing a task.

In this paper we study the effectiveness of D2D-based
opportunistic services to support privacy-preserving ML-based
decision making in UEs that operate autonomously, without
the need for a RAN infrastructure, without centralized support,
and without exchanging any observation. Our main goal is to
determine the maximum amount of information that a group of
UEs can autonomously learn and incorporate in their ML mod-
els, without centralized coordination, only exploiting their own
computation capacity combined with D2D communications
and gossip learning (GL) [9]. The GL approach is beneficial
both in terms of maintaining data out of reach of indirect

observers—hence avoiding tampering with and exposing pri-
vate information—and in terms of scalability, because it only
moves ML models based on observations, not the observations
themselves. Note that a reduction of the volume of data results
in simpler processing at mobile sensing platforms [10] thus
making simple devices—e.g., mobile UEs—able to participate
in model training processes.

Several works have previously looked at components of
the system we consider. For example, a number of works
on Floating Content (FC) have characterized the opportunistic
D2D aspect [11]–[13]. Other works on GL have tackled the
ML aspects [14]–[16]. We name the system that we propose
and analyze Floating Gossip (FG), because of its roots in
GL and in FC augmented with computing within UEs. Our
investigation is based on a mean field approach validated
through detailed simulation experiments. Specifically, the main
contributions of this work are the following.
• We present Floating Gossip, a fully distributed Gossip

Learning scheme based on localized probabilistic storage
of models in an infrastructure-less manner.

• We derive a mean field-based analytical approach to mod-
eling the limit performance of FG, in terms of model
freshness (i.e., of average time elapsed since the collection
of the most recent observation included in an ML model)
and of learning capacity, i.e., of the maximum amount of
observations which can be incorporated in an ML model.

• We evaluate numerically our results, validating our as-
sumptions against simulation under different configurations,
showing the accuracy of our mean field approach, and
characterizing the properties of FG limit performance as a
function of the main system parameters.

II. RELATED WORK

Our work is inspired by Gossip Learning (GL) [9], a
collaborative ML approach that is motivated mainly by the
need to guarantee data privacy and scalability. In GL, learning
is achieved by combining model training on the local dataset
of each node (updated over time with new observations)
with model sharing and merging with other devices. We use
GL with the restriction that model sharing can only occur
over D2D within the FC boundaries, which imposes specific
performance constraints in addition to computation constraints.
A similar system has been proposed and studied in terms of
accuracy of generated models in [14]. In that work, federated
learning relies on opportunistic model exchanges like in our
work, and the authors show that encounter-based learning can
be effective. However, they assume that training data can be



at least partially exchanged over D2D, thus exposing data to
privacy risks.

Giaretta and Girdzijauskas [15] consider a static network,
and analyze the impact on the behavior of GL of data dis-
tribution, of network connectivity, and communication speed.
Our work considers the same aspects, adding the peculiarities
of a dynamic, opportunistic communication environment.

First, while a fully distributed data model is often assumed,
in which each device only owns a data point and trains the
model once (see [16] and references therein) — only the
authors of [15] propose to train over multiple points, and
present a simulation study for its performance impact — we
are more general, because we allow not only devices to train
multiple times on different data points, but also account for
the possibility that multiple devices might observe the same
event and therefore own non-unique data points. The latter has
not been considered in other works so far.

Second, network connectivity is typically taken as stable,
with little or no limitations imposed by physical distance and
interconnection infrastructure, which is often fully comprised
within a same data center or within a multi-thread computing
architecture [16]–[18]. Instead, network connectivity is a key
factor, which can slow down the convergence of GL, as shown
for the particular case of stochastic gradient descent algorithms
in [19]. We consider only opportunistic communications of
physically distinct and not co-deployed devices, with no in-
frastructure support at all, so that the number of neighbors that
can exchange models is limited. Most important, we consider
dynamic topologies with churn in UEs, hence timely and
opportunistically exchange of models becomes fundamental.

Third, while many works that focus on networked de-
vices consider unrealistically high communication speed or
neglect transmission time and connection establishment over-
heads [20], or neglect communications delay almost com-
pletely [21], we account for the limitations of D2D connectiv-
ity and protocols, which consist not only in relatively low data
rates, but also in the fact that a connection takes time to be
established and a device might be busy exchanging data with
a UE when a new communication opportunity arises, which is
therefore missed. Hence, differently from existing approaches
in which either communication or computing aspects of GL
are analyzed and optimized, here we focus on the compound
impact of both aspects.

Eventually, we remark that there are no comprehensive
analytical models to evaluate the performance of GL, and all
reviewed papers show results based on simulations or real trace
analysis. In contrast, we only resort to simulation to validate
the complex model developed in this paper. The closest work,
related to the analytical methodology used in our work is
the seminal work of Chaintreau et al. on gossiping as a tool
to spread information [22], which shows how to use mean
field analysis on the epidemic diffusion of messages. We also
use mean field analysis, but we account for the specifics of
learning and computing in the generation of the information
to be shared, and the specificity of FC as a means to keep
models available in a given area of interest.

III. THE FLOATING GOSSIP SCHEME—SYSTEM MODEL

A. What’s Floating Gossip?
We consider a dynamic environment where many events

happen, such as a crowded theme park or a post-disaster
area. During their stay in the environment, a number of actors
(humans or machines, that we term nodes) collect information
that helps them make decisions and/or perform some task. The
individually collected information consists in local viewpoints
(termed observations) of what is happening in the environment
at a given time. By using observations, each node builds
its own partial, incomplete representation of the environ-
ment (termed model), and may therefore take potentially sub-
optimal decisions. To go beyond such limitations, we consider
that nodes periodically combine their models with the ones
received through D2D opportunistic exchanges. The combined
model is a potentially better representation of the environment
because it incorporates a larger number of observations, some
older, some more recent. In general, the utility of a model is
related to the number of incorporated observations, as well as
to the time at which they have been collected.

Furthermore, we consider that models are relevant only
in specific geographical areas, and that observations become
obsolete after a fixed amount of time. Therefore stale obser-
vations are discarded, and nodes moving outside of the region
of interest drop the instances of the models they own.

Our approach is thus similar to the one adopted in GL, but it
is based on models and observations whose availability persists
in the region of interest thanks to an opportunistic floating
content scheme [23]. Our approach can be seen as a machine
learning process, where each observation is incorporated into
the model (through a training algorithm), and models are
exchanged and fused (through a merging algorithm), as in
GL. In the rest of this paper we will refer to this case, but
we will not address any specific ML algorithm, so that our
model is general enough to be applicable to several different
ML techniques.

B. Some definitions
We consider a population of nodes that cooperate in con-

structing a multidimensional representation of the environment
in which they operate. Each dimension of the representation
is associated with a model.

For the sake of simplicity we describe the system operations
in the case of one model, concerned with one dimension of
the environment (e.g., the road interruptions in the disaster
area), but later we will also look at the case of several models
evolving in parallel.

Nodes move within an area, a portion of which defines the
model Replication Zone (RZ). When entering the RZ, nodes
have a model structure (also called default model), not yet
populated with fresh data (for example, a rescue team entering
a disaster area has a map that does not yet contain recent
information on the critical issues in the area). While in the RZ,
nodes collect data (i.e., observations) that are used to integrate
the model structure with a training operation. By so doing,
each node generates and updates its own model instance.



Each node is equipped with a wireless transceiver, and a
positioning system that gives its position in space. We say two
nodes are in contact when they are able to directly exchange
information via wireless communications.

When two nodes come in contact of one another within
the RZ, they may exchange their model instances by means
of D2D, provided that the nodes are not already engaged in
other D2D exchanges, or that their models do not incorporate
identical sets of observations. Each node then produces a better
informed version of its own model instance by merging it with
the received one.

A model is thus a description of the environment according
to one dimension, and can be used to support decisions related
to such dimension. The local model instance of a node is
generally different from that of other nodes. A model instance
is trained with the node’s own observations (which form the
model local training set), and can be merged with other nodes’
model instances to incorporate their observations (the union of
the local training sets of all merged models forms the model
total training set).

The model training operation is a transformation which
takes as input a model instance, and a new set of one or
more observations, and gives as output a new model instance,
with a training set given by the union of the training set of
the old model instance and the new set of observations. In
what follows we assume that model training is performed one
observation at a time, though our approach easily extends
to the case in which all observations in the new set are
incorporated as a batch in the model instance.

The merging operation is a transformation which takes
as input two instances of a model, and gives as output a
new model instance, whose training set is the union of the
training sets of both of the input instances. It occurs after an
exchange of models among nodes, if the newly received model
instance(s) incorporate observations that were not present in
the local model instance.

The process by which the new model is derived is not
specified in our work. Typically, in the case of Artificial Neural
Networks (ANNs), the coefficients of the model obtained
through merging are derived as a weighted average of the
coefficients of the merged model instances, though more
complex approaches are possible. Such a definition of the
merging operation seems to suggest that it produces a model
instance with the same performance (e.g., in terms of accuracy)
as a model instance obtained by training over the union of
the two training sets. However, this is well known to be an
approximation.

Every time a node collects a new observation, it uses the
new observation to train its local instance of the model. The
age of an observation is the time since its generation. Finally,
users exiting the RZ discard their local model instance, as well
as all collected observations.

C. Modeling assumptions

We consider nodes moving over the plane according to a
stationary mobility model such that, at any time instant, nodes

are uniformly distributed in space. We consider the RZ to be
a finite region of the plane, of arbitrary shape and area A.
With α we denote the mean rate at which nodes enter the RZ,
(which coincides with the mean rate at which nodes exit the
same area because of equilibrium).

We assume that the environment is constantly changing, thus
requiring a continuous process of observation collection and
incorporation in the models. We assume that there exist M
models in total, and each node can hold a single instance of
up to W models, assuming that a realistic implementation of
FG will impose such practical limitation. When the number of
models M is larger than W , we assume each node chooses a
subset of models of interest, which is equivalent to subscribe
to up to W observation channels. For the remaining M −W
models, the node will not accept any instance, nor it will record
any observation associated to them. To simplify the notation,
in this paper we derive analytical expressions that hold for
M ≥ W . However, substituting min(M,W ) for M would
make the same expressions valid for the general case.

Differently from GL, in FG learning occurs in a fully dis-
tributed way, using opportunistic data exchange through D2D
protocols. We partially neglect the overhead of such protocols
and retain two main aspects: i) connection establishment takes
time t0, which we consider as a constant, and ii) data transfer
is not instantaneous, but depends on the quantity of data to
exchange bidirectionally, since we consider the transfer rate to
be fixed. We also assume that data exchanges occur pairwise,
and it is not possible to create and manage groups with more
than two connected nodes, which would be highly unstable due
to mobility. We say that two nodes establishing a connection or
exchanging models are busy, so they cannot accept any request
to connect with other nodes until they finish and immediately
disconnect.

These parameters are important to determine the success of
a model transfer upon a contact between two nodes. Other
important factors are the frequency of contacts observed by
each node, g, and the duration of contacts, which is denoted
by tc. The values of g and tc are the same for all nodes.
In particular, tc is a random variable with probability density
function (pdf) denoted by f(tc). The mean time necessary for
the transfer of a model instance between two nodes is instead
denoted as TL, which is a function of the capacity of the
channel between two nodes in contact, as well as of the size
of the model instances, which we assume to be equal to L
bits. The order in which model instances are transferred upon
a contact is important, but since scheduling optimization is out
of the scope of our investigation, we assume that models to be
transferred are chosen at random among the available ones.

Once exchanged, instances belonging to the same model are
then merged through local computation, again without the help
of an infrastructure. We assume that received model instances
are not used and propagated until they have been fused with the
local instance. This requires storage and computing resources
at the nodes not only for incorporating observations into local
model instances (training), but also to fuse different instances
of the same model, when they are received from neighbors



(merging). We assume that storage/compute resources are used
as in a system with two FIFO queues, one for training and one
for merging. We assume a single shared service with finite
capacity, that gives strict priority to merging tasks, with no
preemption of training tasks. We do this because merging tasks
move more information at once than training tasks, so they are
more important to enable the derivation of better models. For
simplicity, we assume that queues have no buffering limit,
although in practice we will show that they need limited
storage space. Training and merging times are assumed to be
constant, and are indicated as TT and TM , respectively.

Moreover, since observations are sequentially generated and
model instances are asynchronously acquired, they are queued
individually and then trained or merged one by one. However,
an observation can be recorded simultaneously by 1 ≤ Λ ≤ W
nodes (i.e., by the Λ nodes interested in the model the observa-
tion is relevant for, and being in proximity of the point at which
the observation can be gathered). Model instances resulting
from training and merging are uniquely identified by the set
of observations used to build the merged instances. Therefore,
we also assume that two instances of the same model with a
same (aggregate) training set are indistinguishable. We assume
however that relevant observations are all those generated
within a maximum age, which we denote as τl. That is,
observations older than τl do not need to be incorporated into a
model, and they are not counted as part of the training set. This
makes sense in those scenarios in which the process which
underlies the generation of the observations is not stationary
over time. Finally, we remark that since the model size is finite,
an instance of the model can only accommodate a limited
number of observations. We therefore assume that if a new
observation is added when the model instance is “full”, the
oldest observation is dropped from the training set.

IV. PERFORMANCE ANALYSIS OF FLOATING GOSSIP

The main goal of the FG scheme is to enable the elaboration
of “well-enough trained” models, and to share them among
users within the RZ.

In what follows, we consider the system at times t in which
the process of model sharing within the RZ is in steady state.

A first performance metric for our FG scheme is the obser-
vation incorporation rate, i.e., the rate at which observations
with a given age are incorporated in a model.

Definition 1. For a given model, a given age of observation
τ , and for a time t, the observation incorporation rate R(t, τ)
at time t is the average of the ratio between the amount
of observations with age ∈ (τ, τ + ∆τ) incorporated in an
instance of the model at time t, and the time interval ∆τ , for
∆τ → 0.

Since we study the system at steady state, we assume that
the observation incorporation rate does not depend on t, or
on the location of observation generation. The observation
incorporation rate is an indicator of the effectiveness and of
the speed with which our FG scheme is able to store new
observations in a model.

Another measure of the ability of the FG scheme to incor-
porate the most recent measured data is the model staleness.

Definition 2. The staleness Fi of a model instance is the
average time elapsed since the generation of the most recent
observation included in the model instance. The staleness F
of a model is the average of Fi over all instances of the model
present in the RZ.

Model staleness is a measure of how much “up to date”
on average an instance of a model is, in a given scenario.
Note however that a staleness value of τ does not say how
many observations are included in a given interval (τ, τ+∆τ).
Thus, for instance, it does not necessarily imply that enough
observations are included on average in an instance of the
model to allow the model to have a comprehensive picture of
the status of the observed system at τ .

A. Derivation of Observation Incorporation Rate and of
Model staleness

Definition 3. With reference to a given observation and the
node on which it resides, the seeding probability P is the
probability that the observation is included in a model instance
at the node by the time the node exits the RZ.

With Y we denote the probability that at a node the local
instance is not merged with a received instance because the
training set of the former is a superset of the training set of
the latter.

Definition 4. We say that the system is in the substable regime
when P ≈ 1 and Y ≈ 0.

The substable regime implies that the computing load is
low enough for an observation to have very high chances to
be incorporated in an instance by training. The condition Y ≈
0 instead is typically achieved when on average each model
instance has a large training set, so that the likelihood that
a merging between the local instance and an incoming model
does not increase the training set of the local instance is low. In
practice, the substable regime assumption is an approximation,
which brings to accurate results when the above conditions are
met.

We now introduce three of the key parameters describing
the dynamics of the FG system: the model availability, the
node busy probability and the observation availability.

Definition 5. The availability of model m at time t, denoted
as am(t, A), is the mean fraction of nodes possessing a non-
default instance (i.e., an instance with a non-empty training
set) of the m-th model, where A is the RZ area.

In general, model availability takes different values for
different models in a same RZ.

Definition 6. The probability that a node within a RZ with
area A is busy at time t, denoted with b(t, A), is the probability
that the node is not available for information exchange with
other nodes in contact, at the given time instant.



The following result states that, ∀m, the steady state values
of am(t, A) and b(t, A) depend neither on the specific trajec-
tories (i.e., on the amount of initial seeders for each model)
nor on the time at which each model has been seeded, but only
on properties of the system once all transients are exhausted.

Lemma 1. For t → ∞, in the substable regime the mean
values of the variables am(t, A), ∀m, and b(t, A) at the mean
field limit (denoted as a and b, respectively) are given by the
unique solution of the following fixed point problem in a:

a = 0.5

(
H +

√
H2 +

4TS(a)λΛ

bNS(a)w

)
(1)

with

H = 1− TS(a)(α+ λΛ)

bNS(a)w

b = K −
√

K2 − 1

K = 1 +
1

4gTS(a)
+

α

2gN

γ = 2Mw2a (2)

S(a) =

∫ +∞

t0

min

(
1,

⌊
(tc − t0)

TL

⌋
1

γ

)
f(tc)dtc

TS(a) =

∫ +∞

0

min (tc, γTL + t0)f(tc)dtc

where t0 is the transfer setup time, N is the mean number of
nodes in the RZ, and w = min

(
W
M , 1

)
. Independently from

the initial condition, any trajectory of the system converges to
the solution of Equation (1).

For the proof, please refer to Section A in the appendix.
Let us now consider an observation which has been incor-

porated into the m-th model, and let τ denote its age. Let
o(τ) denote the mean observation availability, i.e., the mean
fraction of nodes with the m-th model whose local instance
includes the given observation at age τ , at the mean field limit.

Definition 7. Given a node in the RZ, a given model, and a
given observation of age τ , at the mean field limit, the mean
observation availability o(τ) is the probability to find that
observation of age τ in the training set of an instance of that
model at that node, assuming that 1) that node possesses an
instance for that model, and 2) the given observation has been
incorporated by training in at least one instance of that model
in the whole RZ.

This definition implies that, given a node, a model and
an observation of age τ , the probability that it is included
in an instance of that model on that node is wao(τ). Let
dI denote the mean time taken by an observation to be
incorporated through training, and dM the mean time required
by an instance of the m-th model received by a node to be
merged.

Lemma 2. At the mean field limit, in the steady state for
the model diffusion process, in the substable regime the mean

arrival rate of merging tasks at a node r is r = MaSw2g(1−
b)2, where S, a and b are given by Lemma 1.

For the proof, please refer to Section B in the appendix.

Lemma 3. Let t∗ be the mean sojourn time in the RZ. When
the stability condition(

MwλΛTT

N
+ rTM

)
∨
[

1

t∗2(1− rTM )
·

·

(
rT 2

M

1− rTM
+

TT (2− MλΛ
N TT )

1− MλΛ
N TT

)]
≤ 1 (3)

holds, dM and dI are given by

dM = TM +
rT 2

M

2(1− rTM )
+

MwλΛ

N
TT

2

dI =
1

1− rTM

(
rT 2

M

2(1− rTM )
+ TT +

MwλΛ
N T 2

T

2(1− MwλΛ
N TT )

)
(4)

Proof. The system can be modeled as M/D/1 queue with two
classes of customers, in which merging has non-preemptive
priority over training. For the high priority class, the arrival
rate is rTM , and it is MwλΛTT

N for low priority. From the
condition of stability of the M/D/1 queue we derive the
condition rTM + MwλΛTT

N ≤ 1. The derivation of delay
formulas follows standard results from queuing theory for such
systems. The second stability condition derives from imposing
that the mean delays for both classes be less than the mean
sojourn time in the RZ.

The following result gives an analytical expression for the
incorporation rate, as a function of the mean value of the
observation availability at the mean field limit and over finite
time intervals, for large RZ areas, hence for a large amount
of nodes involved in the scheme.

Theorem 1. When the stability condition (3) holds, at the
mean field limit the incorporation rate at age τ is given by
R(τ) = λo(τ). The mean observation availability at age τ
at the mean field limit o(τ) is given by the solution of the
following delay differential equation:

do(τ)

dt
=

bS(a)w2

TS(a)
[(1− a)o(τ)+

+ao(τ − dM )(1− o(τ − dM ))]− αw

N
o(τ) (5)

with initial condition

o(τ) =

{
0 τ < dI
1+(Λ−1)
⌈aN⌉ dI ≤ τ ≤ dI + dM

(6)

For the proof, please refer to Section C in the appendix.
This result states that the probability of observing a difference
between any point of the trajectory of the availability of a
given observation and the solution of (5) goes to zero as the
RZ area (and hence the mean number of nodes in a RZ) grows.
That is, in the mean field limit, the error made by considering



a deterministic system characterized by o(τ), instead of the
actual system goes to zero. Moreover, at any time τ from
observation generation, for any A, o(τ) is the expected value
of the observation availability at τ in a finite system.

Theorem 2. ∀i ∈ Z+, let γi =
∑i

k=1 ξk, with ξk i.i.d.
∼ Exp(λ). When the stability condition holds, the mean
staleness F of a model is lower bounded by

F ≥
δ
∑∞

i=1 iE [o(γi)|γi≤τl]
∏i−1

j=1(1−E [o(γj)|γi≤τl])∑∞
i=1 E [o(γi)]

∏i−1
j=1(1−E [o(γi)|γi ≤ τl])

(7)

For the proof, please refer to Appendix Section D.

V. LEARNING CAPACITY OF A FG SYSTEM

In this section, we derive a set of results which allow
evaluating the key performance indicators of our decentralized
FG framework. In what follows, we mostly refer to the case
in which models are neural networks, but considerations may
be extended to a large class of deep and shallow learning.

We know from the literature (see [24] and references
therein) that when the total number of coefficients of an ML
model is larger than the cardinality of the training dataset,
then labels can be perfectly recovered. One of the interesting
consequences of this result is that it establishes a linear
relationship between model size L, i.e., the total amount of bits
required to represent the model coefficients, and the maximum
amount of information that the model can store. Thus, if a
model has length L, and k coefficients are needed to encode
one bit of information independently from other coefficients,
with a given ML algorithm, then the ratio L/k is the largest
amount of information (expressed in bits) that a model is able
to store and recreate with vanishing little error [24]. Note that
typically data in a training set is not i.i.d., and the correlation
among data points translates into looser requirements on the
maximum amount of information that the model can store than
the one indicated by these results.

One of the measures of effectiveness of FG training in a
dynamic setting is the node stored information.

Definition 8. Consider a FG system at steady state for the
process of model diffusion. The node stored information is the
mean of the total amount of observations incorporated in all
of the model instances possessed by a node, with an age not
greater than τl.

Lemma 4. When the stability condition (3) holds, the node
stored information is Mwamin

(
L
k , λ

∫ τl
0

o(τ)dτ
)
.

Proof. The probability for a user to possess an instance of
a given model is wa, and thus Mwa is the mean number
of model instances it possesses, at the mean field limit. For
each model, the mean amount of observations incorporated is
the minimum between the maximum amount that the model
can store, and the mean of the total number of observations
incorporated in an instance of that model with an age between
0 and τl, given by the integral of the observation incorporation
rate within [0, τl].

Note that at the end of Section III-C we have assumed that,
in a model which is already storing an amount of information
L/k, the incorporation of the new data point implies discarding
the oldest data point in the model. This assumption corre-
sponds to an ideal case, as in practical cases many models
simply degrade their accuracy when incorporating more points
than they can store. Thus, Lemma 4 gives an upper bound on
the total amount of information stored at a node.

Another key performance indicator of our FG scheme is the
learning capacity.

Definition 9. In a FG system at steady state, the learning
capacity is the maximum achievable ratio between the node
stored information and the total observation arrival rate.

The learning capacity gives an idea of up to which point
our FG scheme is able to effectively incorporate in the models
possessed by nodes in the region those observations which are
continuously generated within it, and thus to keep the models
up to date. Specifically, the learning capacity of an FG scheme
is the solution of the following problem:
Problem 1 (FG learning capacity).

maximize
M,L

wamin

(
L

λk
,

∫ τl

0

o(τ)dτ

)
subject to :

Equations (1), (3), (5)
M ≥ 1, L ≥ Lm

Proposition 1. If (M∗, L∗) is a solution of Problem 1, then
L∗ = Lm.

Proof. wLa
λk is directly proportional to the area capacity of

the floating system represented by the RZ area and the M
models floating within it (see [25] and references therein).
Thus, for the first element of the minimum in the objective
function, Proposition 1 follows from its properties. As for
the second element, we note that w does not depend on L.
As for o(τ), as shown in Theorem 1, it is a nondecreasing
function of τ . Due to this, it is easy to see from its expression
that the integral

∫ τl
0

o(τ)dτ monotonically decreases when a
decreases. At the same time, when keeping M constant, a
decreases monotonically as L increases, due to the well known
FC saturation effects. Indeed, holding constant everything else,
the lower the content size, the lower the amount of contact time
spent in content transfers which do not complete due to the end
of contact time. Finally, for the same reason, the left member
of constraint (3) decreases when decreasing L, increasing
the maximum value of M which satisfies all constraints in
Problem 1.

Therefore, Problem 1 can be cast into a maximization prob-
lem over M only, with model size equal to its minimum value.
Thus, it can be solved efficiently with greedy approaches.

VI. NUMERICAL EVALUATION

In this section, we use the mean field model presented in
this paper to characterize the limit performance (in the mean
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Fig. 1: Mean model availability a (left) and node stored information (right) in a FG system versus model size L, for different values of
training time (TT ) and merging time (TM ), of node speed, and of number of models M . Simulation results (represented by markers) are
averages with a 95% confidence intervals of at most 5% (not shown in the figure).

field sense) of a FG system as a function of the main system
parameters, and we assess the accuracy of the model by means
of detailed simulations.

In the simulator, we consider a square area with side 200
m, at the center of which is a circular RZ, whose radius is
100 m. A fixed number of nodes (200 is the default value)
move according to the Random Direction Mobility Model,
with reflections at the boundary of the simulated area. Nodes
have a transmission radius of 5 m, and enough storage to
accommodate an arbitrary number of models. When two nodes
are in contact, the channel data rate is taken to be constant,
equal to 10 Mb/s. The default duration of training and merging
tasks is 5 s and 2.5 s, respectively. The maximum age for an
observation is 5 min, and the default model size is 10 kb
(hence, model exchanges require 2 ms). At the beginning of
each simulation run, nodes are randomly positioned within
the simulation area, and they only possess a default model
instance. Simulation time is divided in equally sized slots,
whose duration has been chosen in such a way as to minimize
quantization effects on the accuracy of results. Simulations are
run until steady state is reached, and transients are discarded.
In a first set of experiments, we have assessed model accuracy
by comparing analytical and simulation results for the mean
model availability and the mean number of observations stored
by each node, as a function of model size. As Fig. 1 shows,
the estimates derived with our mean field approach well match
the simulation results across different values of node speed, of
model size, of number of models, and of training and merging
times. We can also see that when model size gets close to the
maximum amount which can be sustained by the system (due
to limitations in contact duration among nodes and in channel
throughput), our mean field model yields slightly optimistic
results, due to the difference between finite systems and their
mean field limit.
To investigate the properties of the FG learning capacity, in

Fig. 2 we plot the optimal values deriving from the solution
of Problem 1 as a function of the per-model observation
generation rate. As the plot suggests, when the model capac-

10-2 10-1 100 101 102

Per-model observation generation rate  [s-1]

40

60

80

100

120

L
ea

rn
in

g
 C

ap
ac

it
y 

[s
]

k=1, L=105 bits, 
l
 = 5 min

k=100, L=105 bits, 
l
 = 5 min

k=100, L=106 bits, 
l
 = 5 min

k=1, L=105 bits,
l
= 5 min, T

T
=0.5 s, T

M
=0.25 s

Fig. 2: Learning capacity in a FG system versus per-model observa-
tion generation rate λ, as a function of observation lifetime τl, model
size and capacity (L/k), and training/merging times TT and TM .

ity L/k is large enough, the learning capacity grows with
the observation arrival rate (and thus with the amount of
information which needs to be captured). This is due to the
fact that a higher rate of arrivals of observations leads to
a larger model availability, and thus to a higher chance for
observations to be incorporated in a model and to diffuse
in the RZ. The experiments also show that learning capacity
peaks at a point at which further increases in load are not
sustainable due to node computing capacity or data transfer
capacity limits. For higher loads, it decreases sharply, until the
system is no longer stable, i.e., it is no longer able to sustain
the demand for computing (due to training and merging) that
the arrival rate of observations induces. The curves also show
that decreasing training and merging times by a factor ten with
respect to their default values increases the maximum value of
observation arrival rate beyond which the system is unstable
by a factor ten. Not surprisingly, decreasing those computing
times increases also learning capacity, since it accelerates the
diffusion of models and of observations within the considered
region. When model capacity is not “large enough”, even if
the system is in its linear regime, the amount of observations
incorporated (and thus the learning capacity) grows until it
hits the model capacity limits. After that, it remains constant,
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Fig. 3: Value of the left hand side of stability condition (3) versus
number of models M and per-model observation generation rate λ,
for observation lifetime τl = 300s, model size L = 10 kb, and
k = 1.

implying a learning capacity that decreases with the inverse
of the load.
Next, with Fig. 3 we characterize the stability region of the

system, i.e., the range of values of load and of number of
models for which (3) holds, so that the FG system is actually
able to incorporate new observations in a timely manner. In the
figure, the color scale corresponds to the value of the left-hand-
side of (3), which must be below one. Hence, the yellow area
above the isotonic line at value 1 represents unstable points.
The same line also illustrates the tradeoff between number
of models and observation generation rate. In this specific
case, the system is stable with at most about 40 models with
observations generated every 100 seconds, but also with just
one model whose observations can be generated as frequently
as about twenty times per second, which is a rate suitable
to capture a video. From Fig. 3, it emerges that for small
values of per-model observation generation rate (with respect
to observation lifetime), the system is not limited by node
computing load due to training and merging, rather by the
maximum amount of models which it can sustain for a given
model size. Indeed, from the figure, stability depends mainly
on number of models in the system. Note that, for a given
maximum age of observations, there is a lower bound on the
minimum per-model observation generation rate, below which
models are likely to incorporate very few (if any) observations,
thus making the whole FG system useless. When observation
generation rate increases, the system performance is progres-
sively more dependent on the maximum computing load it
can tolerate. Clearly, in this “computing-limited” regime, an
increase in the number of models entails not only an increase
in the training load, but also an increase in overall observation
arrival rate, and thus merging load. Indeed, as the plot shows in
this regime, keeping the stability condition unaltered after such
an increase would entail decreasing the per-model observation
arrival rate, with a relationship of (roughly, logarithmically)
inverse proportionality. Note that discontinuities in the plot
are due to quantization in the number of models.

Coming to model staleness, we report in Fig. 4 the model
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Fig. 4: Ratio of model staleness F , computed via its bound (7), over
per-model mean observation interarrival time 1/λ, versus per-model
observation generation rate λ. Observation lifetime is τl = 300 s,
k = 1, with model size L = 10 kb.

prediction normalized to the per-model mean observation
interarrival time, versus the per-model observation generation
rate λ, in the case of observation lifetime τl = 300 s, k = 1. As
we can expect, staleness decreases for increasing observation
generation rate, as it is the age of the most recent observation
incorporated in a model. However, we are interested in how
quickly an observation is incorporated into a model. As we
can see, for low values of λ, an increase of λ brings the FG
system to incorporate more quickly an observation, as a higher
observation arrival rate implies a larger model availability and
thus a more effective diffusion of observations in the region.
However, for large values of λ, the average computing load
of nodes becomes high enough to actually slow down the
process of diffusion of observations. Thus, in this operating
regime the normalized model staleness first peaks and then
decreases. For high enough values of λ (where curves stop),
the system becomes unstable. As expected, this takes place
for lower values of λ in the case of a higher number of
models. The figure also shows that by increasing the number of
models floating in the RZ, the normalized staleness increases,
as expected. However, the increase is less than linear with
the number of models. At the peak, moving from M = 1 to
M = 25 models only incurs a staleness increase of about 10%.
From this observation we conclude that FG scales relatively
well with M .

VII. CONCLUSIONS

In this paper we have developed a mean field model
to investigate the limit performance of Floating Gossip, a
distributed learning scheme based on Floating Content for the
opportunistic exchange of ML models stored by mobile users.
Our study shows that Floating Gossip can be very effective
in implementing opportunistic, fully distributed, privacy pre-
serving, training and update of ML models in a cooperative
manner. Differently from centralized training schemes, whose
limit performance is heavily degraded by the effects of node
churn and mobility, gossip-based schemes have proven to be
very robust against those factors, and to depend heavily on
nodes’ ability to harvest data about the environment in which
they operate.
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APPENDIX

A. Proof of Lemma 1 (outline)

First, it is easy to see that, with the given assumptions,
the number of non-default model instances possessed by a
node is distributed as a binomial B(Mw, am(t, A)). The mean
number of non-default model instances possessed by a node
in stationary state is thus Mam(t, A)w.
To derive the mean value of the variables am(t, A) and b(t, A)
at the mean field limit, we first derive the differential equations
for the drift [26], [27]. Let Na denote the mean number
of nodes in the region possessing a given model at time t.
We have therefore Na = am(t, A)AD, where D is node
density. The rate of change of Na is given by the sum of
three components. The first is given by those nodes which
complete a model instance transfer in a contact with another
node, ADb(t,A)

Ts
am(t, A)(1− am(t, A))S(t). The second term

is given by the rate at which a node receives an observation
for that model (i.e., λΛ

DA ) multiplied by the probability that the
given node does not have the model yet (i.e., (1−am(t, A))w).
Finally, the term α

Nwa(t) accounts for the rate at which nodes
with a model instance leave the given region.
Let us now consider the rate at which the mean number of
busy nodes in the region evolves over time. Its increase is due
to contacts (taking place at a rate of gA), among two non-busy
nodes (with a probability (1−b(t, A))2). Its decrease is due to
the end of the process of model exchange with another node.
Such an event takes place with a mean rate ADb(t,A)

Ts
. Putting

all together, and normalizing by AD, we get

dam(t, A)

dt
=

b(t, A)

Ts(t)
am(t, A)(1− am(t, A))S(t)w2+

+
λΛ(1− am(t, A))w

DA
− α

DA
wam(t, A)

db(t, A)

dt
= 2g(1− b(t, A))2 − b(t, A)

TS(t)
− 2α

DA
b(t, A)

From this drift expression, by applying standard results, it is
easy to prove the convergence to the mean field limit, from
which the steady state expressions for a and b are obtained.

B. Proof of Lemma 2 (outline)

If g is the mean contact rate, of all contacts, those which
may bring to an exchange of models are those in which both
nodes are not busy. The probability of such an event is (1−b)2.
The mean amount of models received during an exchange is
derived in a similar way as γ in Lemma 1.

C. Derivation of Theorem 1

We derive the drift, which describes the average local
variation of observation availability over time. We assume the
system satisfies the homogeneous conditions. That is, that at
t = 0 the mean number of nodes per unit surface possessing a
given model is the same for all models; that at any time instant,
nodes possessing a given model are uniformly distributed
within the region; and that the probability of a node to have
that model is independent from the probability of any other
node to have the same model.

Lemma 5. When the system satisfies the homogeneous con-

ditions, the drift of the CTMC is given by
do(τ,A)

dτ
=

bS(a)

TS(a)
ao(τ−dM , A)(1−o(τ−dM , A)), with initial condition

o(τ,A) = 0 for τ < dI , and o(dI , A) =
1

⌈Na⌉ .

Proof. The derivation goes along the same lines as that of
Lemma 1. Let No(τ,A) denote the number of nodes in the RZ
possessing a model instance including the given observation,
at a given time τ from observation generation, for a RZ area
A. The rate at which this quantity varies over time is given
by the sum of three components. The first is due to contacts
between, on one side, a node with a model which incorporates
the given observation, and a node possessing only the default
model. The mean rate at which nodes exit the busy state is
given by the ratio between the mean number of busy nodes
at time τ in the region, given by N̄(A)b, and the mean time
taken by an exchange between two nodes, TS(a). Thus the
rate of relevant events is N̄(A)b

2TS(a) . Moreover, let us consider
one of these terminating exchanges. The probability that the
model was transferred to the node possessing only the default
model during such exchange is equal to the probability that
the sender node had the model and that the receiving node did
not have it, given by 2a(1− a), multiplied by the probability
that the transferred model incorporated the given observation,
No(τ,A)
aN̄(A)

= o(τ,A), and by the probability that the model was
transferred successfully, given by S(a). Summing up, the first
contribution is N̄(A)bS(a)

TS(a) a(1 − a)o(τ,A). Similarly, for the
second contribution, which accounts for the case in which
the exchange is among two nodes each with a non-default
model, we have N̄(A)bS(a)

TS(a) a2o(τ −dM , A)(1−o(τ −dM , A)).
This correspond to the rate at which nodes conclude the
merging operation, after receiving the instance with the given
observation. Thus the observation availability that matters is
the one at the moment in which the exchange took place,
i.e., at time τ − dM . The third contribution is given by nodes
exiting the RZ, and it is given by the rate at which nodes
exit the RZ (i.e., α) multiplied by the fraction of those exiting
nodes which has the model and incorporates the observation
(i.e., ao(τ,A)). Putting all together, and normalizing, we get
the final expression of the drift.

The rest of Theorem 1 proof follows the standard procedure
for mean field convergence, i.e., convergence of initial condi-
tions, and condition on the drift of the Population Continuous



Time Markov Chain (PCTMC) associated to the system. As
its drift is continuous for τ ≥ dI , let ō(τ) = limR→∞ o(τ,A).
As our sequence of PCTMC models satisfies these properties,
by Theorem 1 in [26] for any finite time horizon T ≤ ∞,
the sequence of population models associated to A converges
almost surely to the dynamics of the ordinary differential
equation in (5), which proves Theorem 1.

D. Derivation of Theorem 2

Proof. (sketch). For a given time t, let i ∈ Z+ be the label
of the i-th last observation generated in the system, counting
backward in time from t. We aim at computing the expectation
of the time τ since the generation of the last observation
incorporated in a given model. We have E[τ ] =

∑∞
i=1 E[τ |i]P (i)∑∞

i=1 P (i)

where E[τ |i] is the expectation of τ conditioned on having
observation 1 to i−1 not included in the model, and observa-
tion i included, while P (i) is the probability of such an event.
As arrivals are Poisson with intensity λ, E[τ |i] = i

λ . P (i)
is computed taking into account that arrivals are independent,
and that the probability of an observation generated x seconds
ago to be included in a given model is o(x). We have thus

F =
δ
∑∞

i=1 iEξ1,...,ξi [o(γi)
∏i−1

j=1(1−o(γj))|γi≤τl]∑∞
i=1 Eξ1,...,ξi [o(γi)

∏i−1
j=1(1−o(γj))|γi≥τl]

. Equation (7)
derives from applying Jensen’s integral inequality to the above
expression for staleness F .
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