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Abstract—Internet of Things (IoT) devices often have batteries
of limited capacity, which are not easily replaced or recharged.
This implies very short device lifetimes, and calls for a very
careful device configuration to achieve the optimal trade-off be-
tween performance and power consumption. SWIPT (Simultaneous
Wireless Information and Power Transfer) deals with this problem
by harvesting energy at IoT devices from the received RF signals.
Studying the efficiency of SWIPT in dealing with the energy and
data transfer demands of IoT nodes leads to a number of open
issues. In this paper, we devise an analytical model based on
stochastic geometry for a SWIPT radio access network with a dense
population of IoT users. With our model, it is possible to accurately
study the impact of the system parameters on the key system
performance indicators, while accounting in a realistic manner
for device performance, and for the statistics of time scheduling
at base stations. This allows us to understand (not without some
surprise) what are the most effective strategies to minimize energy
consumption in a SWIPT network, and what is their potential for
energy savings.

I. INTRODUCTION

The Internet of Things (IoT) paradigm is playing an increas-
ing role in determining the overall energy footprint of cellular
radio access networks (RANs), while reshaping their design
and operations. Indeed, IoT is predicted to bring the share of
energy consumed by ICT to almost one fifth of the whole energy
consumption by 2025 [1]. One of the key factors that may limit
the diffusion and the potential of the IoT paradigm is the limited
power available to a large fraction of IoT devices, many of
which are battery operated, with no access to a stable power
source. This poses stringent limits to the amount of sensing,
computing and actuation they can perform, as well as to their
availability, connectivity and operational lifetime. To overcome
these limitations, several techniques for energy harvesting (EH)
have been proposed in IoT systems. Among these, simultaneous
wireless information and power transfer (SWIPT) [2] is of
special interest, since it enables the delivery of power through
the same cellular infrastructure used to deliver data, and thus
in a potentially more cost effective manner than alternative
approaches.

Several works recently focused on the performance analysis
of SWIPT networks. A large share of them focus on modeling
performance and optimizing operations, in terms of energy
efficiency maximization, and on modeling the impact of the
delivery of both connectivity and power on the overall network
energy consumption. For example, [3] considers the characteri-
zation of the data rate vs. energy trade-off, while [4] considers
the optimization of transmit power allocation to each user. [5]
proposes a Markov Chain model to study a joint power and
connectivity outage probability. However, these works mainly

consider simple scenarios, composed of a base station (BS)
(possibly a broadband unit with several remote radio heads)
and a population of EH devices. [6] proposes an algorithm
to minimize the total energy consumption of a set of BSs
and a population of IoT devices, over sub-carrier and transmit
power allocation. However, since the strategies proposed in
those works focus on optimizing the operations of a network
in a specific configuration, they do not give an idea of the
average performance and of the overall potential for energy
saving allowed by the approach. Thus, they leave open the
more general issue of what are the most effective management
strategies to achieve system-level energy proportionality in a
SWIPT network, as a function of the main system parameters.

Another set of works perform a system-level analysis, mod-
eling the average behavior of a SWIPT network, such as the
data rate vs. energy tradeoff (e.g., see [7]–[9]). Surprisingly,
all these results do not account for the effects of resource
allocation and scheduling among users, such as the statistics
of the sharing of BS time across all associated users. Thus,
they do not enable an accurate and realistic characterization of
the main performance trade-offs, and thus of the potential for
QoS-aware energy-efficient operation of SWIPT networks.

In this paper we address these issues, and we propose
an analytical framework based on stochastic geometry (SG)
for system-level analysis and optimization of SWIPT cellular
networks providing connectivity and power to a heterogeneous
population of broadband users and IoT EH users. The use of
SG allows focusing on the average behavior of the system
over many realizations of the process of UE (user equipment)
and BS spatial distributions, thus enabling the analysis of the
potential for QoS-aware energy optimization of SWIPT-enabled
networks. We formulate an energy minimization problem, which
allows deriving the optimal network configuration, shedding
light on the main performance trade-offs and on the impact of
the main system parameters. More specifically, for a given user
density, we propose an approach for deriving a configuration (in
terms of density of active BSs, split ratio, and transmit power)
which minimizes the mean total power consumption of the
network, while achieving a target QoS level for both information
transfer (in downlink and uplink) and wireless power delivery.
We use the proposed framework to characterize some of the
key performance and resource efficiency trade-offs of SWIPT
networks. This allows us to observe some rather surprising
effects, like, in some cases, a decrease of the optimal density of
BSs required to serve an increasingly dense population of UEs,
and the irrelevance of active BS charging for very dense UE
populations.
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Fig. 1: Downlink time scheduling for a SWIPT BS, with GPS weights.

II. SYSTEM MODEL

We assume that BSs are distributed in space according to a
homogeneous planar Poisson Point Process (PPP) with a density
equal to λb BSs per km2. UEs are distributed in space according
to a homogeneous PPP with an intensity equal to λu UEs per
km2. UEs are either broadband (BB) terminals, or IoT (Internet
of Things) devices. We assume the latter are a fraction γ of the
total number of UEs.

We consider the case in which IoT devices harvest the needed
energy, while BB users don’t. To this end, each IoT device is
equipped with two separate receivers, one for information and
another for energy, and it is capable of exploiting downlink
signals for decoding its intended information, as well as down-
link and uplink signals from both BSs and UEs for charging its
battery. The receiver operating mode is time splitting [10], by
which a fraction η (the time split ratio, with 0 ≤ η ≤ 1) of
the time dedicated by a BS to serve an associated IoT device in
downlink is devoted to active power transfer, i.e., it is used by
the UE for harvesting energy from the signal received from the
BS. The rest of that time is used for receiving information1. We
assume η is the same for all devices. Thus, IoT devices harvest
energy not only from their serving BS (active charging), but also
from the signal received from all of the other BSs, as well as
from uplink transmissions from both IoT and BB UEs (passive
charging).

We assume that BSs use a generalized processor sharing
(GPS) mechanism to divide BS time among all the connected
UEs. In downlink, the GPS weights are 1 for IoT UEs, and
δd(1− η) for BB UEs. δd is thus the ratio between the BS time
dedicated to information transfer to a BB UE, and to an IoT
UE. The time spent by the BS without transmitting is modeled
as a user with a GPS weight βd. As for uplink, the GPS weights
are 1 for IoT UEs, δu for BB UEs, and βu for the uplink BS
time not assigned to any UE.
We assume IoT UEs to periodically cycle between two opera-
tional states. During the active state, they send and receive data,
plus possibly they perform some other task, such as sensing,
while harvesting energy from active and passive sources. In the
low power state, IoT devices only harvest energy. We assume
that each IoT device is disconnected from the power grid, and
it possesses an ideal battery (i.e., with efficiency equal to one)
with enough capacity to compensate for the fluctuations in the
energy consumed and harvested. With φ we denote the fraction
of time spent by an IoT device in the active state. BB users are
instead assumed to always be in the active state.
We assume the system is in saturation, i.e., BSs have always
data to send to users, and users in the active state have always
data to transmit. Moreover, we adopt a linear EH model, by

1Note however that our approach easily extends to other receiver architectures,
such as power splitting mode [10].

which the ratio between the harvested power and the received
power ξ is constant, though our approach extends easily to other
EH models, as well as to consider non-ideal batteries and finite
battery capacity.

Given that the cellular RAN delivers two classes of services to
two different types of UE, the performance metrics are defined
as follows:
• Information transfer: For all UEs, the end-user performance

metric is the per-bit delay τ of data transfers, defined as the
inverse of the short-term user throughput, i.e., the actual rate
at which the user is served.

• Power transfer: The performance parameter is the amount
of power harvested by an IoT device, denoted with h.

As a result of the scheduling strategy (both in downlink and
uplink), the amount of harvested energy may vary substantially
across the various devices. These metrics must be considered
relatively to the corresponding application demands. As an
example, the energy harvested by each device during a complete
on-off cycle (and therefore the value of the parameter h) must
be sufficient to compensate for the energy consumed during
the cycle by such tasks as sensing, processing, storing and
distributing data, while accounting for battery efficiency and
for fluctuations in consumption patterns due to changes in
the operational state of IoT devices. Accordingly, the target
performance for information transfer are related to application
specific requirements.

A. Channel and Service Model

Our channel model does not consider the effect of fading
and shadowing, and only takes into account distance-dependent
path loss. We assume that random frequency reuse is in place,
with reuse factor k. That is, every BS is assigned one out of k
frequency bands with equal probability.
We assume that UEs are associated with the BS with the largest
SINR at the user location. We consider urban scenarios, where
the high capacity demand justifies the use of strategies for
energy efficient network planning and management, and where
the assumption of high attenuation (with exponent α ≥ 3)
typically holds. In these settings, as no fading is considered
and all BSs use the same transmit power, assuming that users
associate to the closest BS is a reasonable approximation [11].
We assume BS antennas use beamforming, and we denote with
G the beamforming gain and with L the side lobes attenuation.
Denote by S(x) the location of the BS that is closest to a UE
located at x. We denote the capacity to a user located at a
distance r from the BS by C(r, P,G, I) bit/s per Hertz, where
P is the BS transmit power, and I the total received interfering
power. We model C(r, P,G, I) using Shannon’s capacity law:

C(r, P,G, I) = (B/k) log2

(
1 +

PGr−α

N0 + I

)
(1)

where α is the attenuation factor, N0 the power spectral density
of the additive white Gaussian noise, and k the reuse factor.

B. Base Station and UE Energy Consumption Model

The power consumed by a BS depends on a number of factors,
which vary according to the BS type (e.g. macro, micro, femto)
and the implementation technology (e.g. standalone vs cloud-
RAN), among others. In what follows, we refer to the following
BS energy model, proposed in [12], [13]:



q1 + Ud[q2 + q3(P − Pmin)] (2)

where Ud is the downlink BS utilization and P is its
transmit power, which we assume varies within the interval
[Pmin, Pmax]. The component q1 models the total power con-
sumed when the BS is idle, which does not depend on load
or transmit power. In what follows we assume that, when
transmitting, a BS is using the whole bandwidth at its disposal.
q2Ud models that fraction of consumed power which depends on
utilization, but not on transmit power (such as part of baseband
and RF processing).The third component models the fraction of
consumed power due to the power amplifier which depends, at
the same time, on the transmit power P and on the amount of
active resources at the BS.

C. Base station service model
We define the utilization U(S(x)) of the BS serving a UE at

location x as the average fraction of time in which the BS is busy
transmitting (in downlink) or receiving (in uplink), respectively.
Thus, its expression is given by the fraction of BS time dedicated
to all active users:

Ud(S(x)) =
Niot(S(x)) + δd(1− η)Nbb(S(x))

Niot(S(x)) + δd(1− η)Nbb(S(x)) + βd

Uu(S(x)) =
φNiot(S(x)) + δuNbb(S(x))

φNiot(S(x)) + δuNbb(S(x)) + βu
(3)

Given η, by tuning βj it is possible to vary the mean amount
of service received by UEs for both communication and energy
transfer, and the overall BS utilization.

Definition II.1. The ideal per-bit delay perceived by a UE is
the one if the associated BS had utilization equal to 1.

Note that the above definition does not assume that all of the
BSs have utilization equal to one, but only the BS serving the
considered UE.

From expressions 3 and from the above definition, we have
that for a UE at x, the relationship between the ideal per bit
delay τ idj , j ∈ d, u and the actual per bit delay, both in uplink
and in downlink, is given by

Uj(S(x))τj(S(x)) = τ idj (S(x)), j ∈ d, u

Indeed, from the expression of the utilization, the ratio between
the ideal an the actual per bit delay is equal to the fraction of
time the BS is active.

For each UE type, and for both uplink and downlink, a notion
of target minimum quality of service (QoS) is defined. Namely,
UEs are said to perceive satisfactory performance if the average
per-bit delay experienced by a typical BB user (resp. IoT
device)2 are less than their respective predefined target values.
In what follows, for a given η, we assume each BS adopts the
values of βj , j ∈ d, u (and thus of utilization in downlink and
uplink) which achieve the target QoS for communications. This
makes the average of the actual per bit delays (over all the users
associated to that BS) coincide with the target values.

III. MODELING USER PERCEIVED PERFORMANCE

In this section, we characterize the main performance pa-
rameters, e.g. the per-bit and per-joule delays perceived by a

2The definition of the typical user in the system is provided by classical Palm
theory [14].

typical user who is just beginning service, as well as the mean
harvested power, as a function of the main system parameters.
The expression of the power harvested by a user at x is given
by the following result.

Lemma 1. The power harvested by a user at x is

h(x) = ξ

{
Pr(x)−α

[
GK(x) + LUd(S(x))− LK(x)

η

]
+

+

(
1−K(x)

(1− η)

η

)
(I(r(x), k) +O(x))

}
(4)

with K(x) = η
Niot(S(x))+δd(1−η)Nbb(S(x))Ud(S(x)).

r(x) is the distance of the user at x from its serving BS, and
I(r(x), k) is the total power harvested by the user at x from
BSs other than the one with which it is associated. O(x) is the
power harvested from UE transmissions, averaged over time,
and Ud(S(x)) the downlink utilization of the BS with which
the user in x is associated.

For a proof, please refer to Appendix C. ξ is a factor which
accounts for several technological factors affecting the efficiency
of the energy harvesting process, ranging from receiver antenna
gain, to exposure of the specific IoT device, among others.

From its definition, and from the service model description,
it derives that in downlink the ideal per-bit delay perceived by
a BB UE at x is given by

τ idd (x) =
Niot(S(x)) + δd(1− η)Nbb(S(x))

δd(1− η)C(r(x), P,G, I)
(5)

where Nbb(S(x)) (Niot(S(x))) are the number of broadband
(resp. IoT) users associated with the BS serving the UE at x.
For the uplink instead we have

τ idu (x) =
φNiot(S(x)) + δuNbb(S(x))

δuC(r(x), PI , 1, 0)
(6)

For IoT users, the ideal per-bit delay perceived is τ idj,I(x) =

δjτ
id
j (x), j = d, u. With τ̄j (τ̄j,I ) we denote the average per-

bit delay perceived in downlink (resp. in uplink) by broadband
and IoT users, respectively. The following result derives an
expression for the average per-bit delay perceived by the typical
user (BB or IoT) which is just beginning service.

Theorem 1. The mean ideal per-bit delays in downlink and
uplink, and the mean ideal per-Joule delay perceived by a typical
best-effort user joining the system are given by:

τ̄d =H(δd, η, C(r, P,G, Ī)) (7)

τ̄u =H

(
δu
φ
, 0, C(r, PI , 1, 0)

)
(8)

τ̄j,I =δj τ̄j , j ∈ {d, u} (9)

Where:

H(δj , η, g(r)) =

∫ ∞
0

f(r, η, δj)
e−λbπr

2

λb2πr

δj(1− η)g(r)
dr. (10)

with

f(r, η, δj) = λu

∫ ∞
0

∫ 2π

0

e−λbA(r,x,θ)xdθdx·

· [1− γ (1− δj(1− η))]

A(r, x, θ) is the area of the circle centered at (x, θ) with radius
x that is not overlapped by the circle centered at (0,−r) with



radius r. C(r, P,G, Ī) is given by (1), with the interference term
Ī given by

Ī(r, k) =
PLλb2πr

2−α

k(α− 2)

τ̄d
τ0
d

For the proof, please refer to appendix A.
We say that the considered system is in the dense IoT regime

when the density of IoT users is such that the probability of
having a cell without IoT users is negligible.

Theorem 2. In the dense IoT regime, the cumulative distribu-
tion function CDFh of the power harvested by an IoT user who
is just beginning service is

CDFh(h0) = CDFr(g
−1(h0))

for all h0 ≥ 0, where CDFr is the cumulative distribution
function of the distance of the user to its serving BS:

CDFr(r) =

∫ r

0

e−λbπy
2

λb2πydy

where
g(r) = ξ

[
Pr−αL

τ̄d
τ0
d

+ kĪ(r, k) + Ō

]
+

X(r)

f(r, η, δd)

X(r) = ξ
τ̄d
τ0
d

[
Pr−α(Gη − L)− (1− η)(kĪ(r, k) + Ō)

]
Ō =

(1− γ)δuPbb + φγPI
(1− γ)δu + φγ

λbπα

α− 2

τ̄u
τ0
u

(11)

For the proof, please refer to Appendix B. Pbb and PI denote
the transmit power of BB and IoT UEs, respectively.

IV. ENERGY-OPTIMAL NETWORK CONFIGURATION

One of the main open issues in SWIPT networks is to
determine, as a function of the main system parameters as well
as of the energy and traffic demands, how the main network
parameters should be tuned in order to optimize the energy
consumed by the system. To this end, we present below the
formulation of the optimization problem which provides, for a
given BS energy model, as well as for a given user mean density,
the energy optimal BS transmit power, the optimal density of
active BSs, as well as the optimal amount of BS time dedicated
to power transfer, which satisfy the performance constraints.

Problem 1.
minP,λb,η λb

[
q1 +

τ̄d(η, P, λb)

τ0
d

(q2 + q3(P − Pmin))

]
Subject to: τ̄d(η, P, λb)

τ0
d

≤ 1,
τ̄u(η, P, λb)

τ0
u

≤ 1 (12)

Pmin ≤ P ≤Pmax (13)
0 ≤ η ≤1 (14)

CDFh(h0, η, P ) ≤µ (15)
0 ≤ λb ≤λb,max (16)

where h0 in constraint (15) is the minimum harvested power
required by each IoT device to operate, computed based on
the amount of energy required by the device during a whole
on-off cycle. µ is the maximum acceptable ratio of IoT users
which harvest less than h0 Joules per second. τ̄d, τ̄u are given
by Theorem 1. λb,max derives from practical constraints to BS
deployments in urban settings.

Problem 1 is non-convex and nonlinear. However, being a
function of three variables defined over finite intervals, it can
be solved efficiently by exhaustive search.

V. NUMERICAL RESULTS

A. Setup

Base stations work at a frequency of 1 GHz, and use a
bandwidth of 50 MHz. Unless otherwise indicated, we assume
a percentage of IoT devices equal to 20% of the total number of
UEs, a transmit power equal to 0.1 W for both IoT and BB UEs,
a frequency reuse factor of 3, a beamforming gain equal to 5,
that is assumed constant over the whole main lobe aperture of 45
degrees, and a path loss exponent α = 3, typical of urban areas.
We assume a linear EH model, with a conversion efficiency of
0.9 and no lower/upper threshold. We assume the BS transmit
power to vary between 1 and 11 W, and we set a target mean
per-bit delay in downlink for BB (resp. IoT) UEs equal to 10−5

s (resp. 10−3 s), and in uplink equal to 10−4 s for all UEs, (e.g.
typical of IoT systems for environmental monitoring [6]). We
consider the user density to vary from 10−4 users per m2 (typical
of settings with a high share of BB users, at night) to 10−1 users
per m2 (modeling scenarios with crowds of BB UEs and with
high density of IoT deployments). We assume IoT UEs to be
active for 2% of the time, and to require a minimum harvested
power of 100 mW. We set to 5% the maximum acceptable share
of IoT users which are not able to harvest the target minimum
energy.
The parameters of the BS energy model are chosen to fit
two different types of BSs. A first type (labelled LLP – low
load proportionality) reflects the behavior of the majority of
current stand-alone BSs, and it is characterized by a 27% load
proportionality (with q1 = 1100, q2 = 100, and q3 = 30).
Conversely, the high load proportionality (HLP) BS type (with
q1 = 482.3, q2 = 48.23, and q3 = 144.69) corresponds to a
75% load proportionality, achievable, e.g., through time-domain
duty-cycling at the sub-system level, i.e., through micro-sleep
techniques involving modules of the BS or of the BBU in cloud-
RAN designs. For the sake of comparison, these parameters
were chosen to fit a per-BS maximum consumed power of 1500
W, typical of stand-alone BSs.

B. Model validation

In order to assess the accuracy of our results, we simulated
the system for several values of user and BS densities. For
every configuration, the simulated scenario was set to include
a number of BSs ≥ 1000, and an amount of users ≥ 10000.
In these settings, we compared the measured per-bit delay, as
well as the CDF of harvested energy, with the values predicted
by our analysis. Simulation results have confidence intervals at
95% confidence of width at most equal to 5% of the mean.
As Fig. 2 and Fig. 3 show, our modeling approach is extremely

accurate across very diverse system configurations. In particular,
a very good accuracy is achieved even for low values of user
density, for which the dense IoT assumption of Theorem 2 does
not hold. As can be seen in Fig. 2, the distribution of harvested
power exhibits a fat tail for the largest values, with a non-
negligible probability of achieving values of harvested power up
to two orders of magnitude larger than the mean. This implies
not only that the system cannot be dimensioned based on the
average harvested power, but also that the standard deviation of



Fig. 2: CDF of harvested power from our model, and empirical CDF of
harvested power from simulations.

Fig. 3: Mean ideal per-bit delay over user density.

Fig. 4: Power per km2 consumed at the optimum vs user density, for different
target minimum harvested power and IoT UE receiver configurations.

Fig. 5: Optimal BS density vs user density, for different target minimum
harvested power and IoT UE receiver configurations.

the harvested power, being substantially larger than the mean,
is not informative of the lower tail of the distribution.

C. Energy optimal configuration

To investigate the properties of the solutions of Problem
1, in Fig. 4 we plot the power per km2 consumed by the
network at the optimum, as a function of user density, while
in Fig. 5 to 7 we plot the corresponding optimal values of
base station density, of transmit power, and of time split ratio.

Fig. 6: Optimal BS transmit power vs user density, for different target minimum
harvested power and IoT UE receiver configurations.

Fig. 7: Optimal time split ratio vs user density, for different target minimum
harvested power and IoT UE receiver configurations.

The red curves refer to a target minimum harvested power of
6 mW, while the green curve refers to the case of 1 mW.
As expected, for a same target QoS, at any user density, high
levels of load proportionality enable a substantial decrease in the
power consumed, thanks to the tuning of the three main system
parameters mentioned above (note the difference between the
two red curves). At low user densities, an energy-optimal tuning
of the system brings to an almost linear proportionality between
user density and consumed power. However, in sharp contrast
to RANs delivering only connectivity, at high user densities
the service capacity of a SWIPT network is complemented by
the signals transmitted by users, which thus contribute to the
delivery of power to IoT users. As a result, in the two red
configurations, the optimal consumed power grows more slowly
with user density, and it decreases in the green configuration.
Moreover, this brings to a consumed power per user which,
at the optimum, keeps on decreasing steadily with increasing
user density in all configurations. This is true even for networks
of highly load proportional BSs, and shows that optimal (and
possibly dynamic) configuration tuning holds the potential to
play a key role in minimizing the energy footprint of a SWIPT
network, by making it more and more energy efficient when
the demand (of both energy and communication) it must satisfy
grows.
In particular, at high user densities, the optimal network con-
figuration and the resulting consumed power are the result of
the interplay between the detrimental effect of interference on
communications (which decreases the efficiency with which
network resources are used), and the beneficial effect of many
user transmissions on the amount of power harvested by IoT
users. Indeed, from Fig. 4, in low-power IoT scenarios (solid
green curve), when increasing user density, these two contrasting
effects bring the power consumed to actually decrease with



respect to that consumed at low user densities, before increasing
again due to the effects of high levels of interference levels on
user-perceived QoS for data.
As Fig. 5 shows, in 6 mW IoT scenarios, at high user densities
the optimal BS density does not vary significantly when increas-
ing service demand, thanks to a corresponding increase in user-
supplied service capacity. In low-power (1 mW) IoT scenarios,
for some values of user density this effect brings to optimal BS
densities which are even lower than those for low user densities,
thus suggesting (quite surprisingly) patterns of BS sleep modes
which, in contrast to those for non-SWIPT RANs, turn off BSs
when demand increases.

Fig. 6 and 7 offer some key insight on how tuning transmit
power and power split ratio contributes to achieving energy
optimal operation of a SWIPT network. For low load propor-
tional BSs, the optimal strategies consist in keeping transmit
power and power split ratio at its maximum value. In high
load proportional BS settings, such as C-RANs, the optimal
strategy consists in adapting transmit power to user density. In
the low power IoT case, for low user densities this brings to
increasing BS transmit power when demand grows. However,
when the user supplied service capacity is sufficiently high,
the optimal BS transmit power and power split ratio actually
decrease with growing user density, and beyond a given user
density (4.5 · 10−2 m−2 in the considered setting) the SWIPT
network effectively stops to actively deliver power to IoT users
(the solid green curve goes to zero), as passive power supply
from ambient sources is sufficient to achieve the target QoS for
energy harvesting.

Finally, we have analyzed the impact of receiver architecture
on the energy optimal configurations of a SWIPT network, by
considering the case in which users cannot harvest power from
other users’ transmissions (the ”no UPC” case green curve) and
the case in which only active power delivery is possible (the
”only active charging” case green curve). Indeed, the larger the
spectrum of frequencies over which an IoT device is assumed to
harvest power, the more complex the receiver architecture, and
the overall cost of the IoT device itself. As the figures show,
with only active charging the optimal strategies in the low power
IoT scenarios are very similar to the ones with more power
hungry IoT devices. Indeed, in the latter case passive charging
plays a secondary role in achieving the target QoS for power
supply with respect to active power delivery. These curves also
show the crucial role of eventually harvesting energy from other
users, which, at high densities, offers the potential to achieve
substantial savings both in the amount of power required to
operate the network, and in the density of BSs required to serve
users at the optimum.

VI. CONCLUSIONS

In this paper we proposed an analytical framework for the
characterization of the performance of a SWIPT network serving
a combination of broadband users and EH IoT devices, and
for the identification of energy-optimal network configurations
satisfying constraints on user perceived QoS. Numerical results
suggest that substantial energy savings are possible by schemes
that adapt the main network parameters to fluctuations in user
density. We also showed that such schemes remain essential
even in more energy proportional cloud-RAN settings. The
most interesting insight provided by our results concerns the

interplay between energy harvesting and interference in cases of
extreme densities of IoT devices. In such cases we observed that
very high device densities facilitate energy harvesting before
interference becomes a problem. As a result, the optimal base
station density can be very low even when the network load
is high. This implies that base station sleep modes in SWIPT
networks should follow different dynamics with respect to
networks that do not provide energy harvesting to IoT devices.

In Section IV, we have introduced the problem of optimizing
the energy consumed by the system. We have approached
this non-convex and nonlinear problem by assuming that the
objective function variability is limited and using an heuristics
where the solution space has been densely sampled within a grid
and then a search for an optimal solution is done. As a future
work, we intent to strengthen our work by exploiting a proper
resolution approach to face the potentially many local minima,
saddle points and widely varying curvature characterizing this
class of optimization problems. In addition, there are various
parameters that may potentially influence the energy harvesting
process and its efficiency, but the impact of their variations on
the overall process has not been wholly investigated. As a future
work, we also intent to perform a sensitivity analysis when these
parameters varies, such as changing the variance of the fading
and shadowing processes, so as to have a glimpse of their effect
on the CDF of the power harvested by an IoT user.
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APPENDIX

A. Proof of Theorem 1

We consider the user at zero, but we drop this indication in
what follows for ease of notation (i.e. S(0) becomes S, and
r(0) becomes D). We start by computing the Palm expectation
of the expression in (5):
τ̄d = E0[Niot(S)+δd(1−η)Nbb(S)

C(D,I) ]

=
∫∞

0
E0[Niot(S)+δd(1−η)Nbb(S)

C(D,I) |r ≤ D ≤ r + dr]P (r ≤ D ≤ r + dr)

≈
∫∞

0
E0[Nbb(S)+δd(1−η)Niot(S)|r≤D≤r+dr]

C(r,Ī(r,k))
P (B(0, r) = φ)λb2πrdr

where Ī(r, k) is the average interfering power for the typical
user at r, given by Ī(r, k) = PLλb2πr

2−α

k(α−2)
τ̄d
τ0
d

([15]). Thus

τ̄d ≈
∫∞

0
E0[Nbb(S)+δd(1−η)Niot(S)|r≤D≤r+dr]

C(r,Ī(r,k))
e−λbπr

2

λb2πrdr

where P (B(0, r) = φ) is the probability that a ball of
radius r centered at the origin is empty. Let Ntot(S) =
Nbb(S) + Niot(S). The palm expectation at the numerator
becomes [1−γ(1−δd(1−η))]E0[Ntot(D)|r ≤ D ≤ r+dr]. The
random variable Ntot(D) is the total number of users present in
the same cell as the user at the origin, when his distance from its
serving base station is D. As users are distributed according to
a PPP with intensity λu, Ntot(D) is Poisson, with an intensity
given by the conditional Palm expectation inside the integral.
Using Campbell’s formula [14], this expectation becomes
E0[
∫∞

0

∫ 2π

0
1(S(x,θ)=S|r≤D≤r+dr)λudθxdx[1− γ(1− δd(1− η))]

=
∫∞

0

∫ 2π

0
λuP (S(x, θ) = S|r ≤ D ≤ r + dr)dθxdx[1− γ(1− δd(1− η))]

The conditional probability within the integral is given by∫∞
0

∫ 2π

0
λue
−λbA(r,x,θ)dθxdx, where A(r, x, θ) is ([16]):

A(r, x, θ) = πx2 − [r2 arccos
(
r+x sin(θ)
d(r,x,θ)

)
+

x2 arccos
(
x+r sin(θ)
d(r,x,θ)

)
+

− 1
2 (−(d(r, x, θ)− x)2 + r2)

1
2 ((d(r, x, θ) + x)2 − r2)

1
2 ].

By substituting, we get the expression for τ̄d. The derivation
of τ̄u follows along the same lines.The expressions of τ̄d and
τ̄u obtained are implicit (i.e. they are a function of these same
parameters). Thus they constitute a fixed point problem. It is
easy to see however that the mapping operator associated to
this fixed point is contractive, and thus that the problem admits
a unique solution.

B. Proof of Theorem 2

Lemma 2. The average power received from users for the
typical user arriving in the system at a distance r from the
serving BS is approximated by

Ō =
(1− γ)δuPbb + φγPI

(1− γ)δu + φγ

λbπα

α− 2

τ̄u
τ0
u

(17)

Proof. The mean transmit power from a user is (1−γ)δuPbb+γPI
(1−γ)δu+γ .

Let x′i(t), i ∈ χ(j) be the position of the i-th user served by
BS j at time t, d(x, x′i(t)) denote the distance between the two
users considered, and u(x′i(t)) the probability that the given user
is transmitting at time t. Then we can write the expression of
O(x, t) as follows:

∑
j

∑
i∈χ(j)

(1− γ)δuPbb + γPI
(1− γ)δu + γ

d(x, x′i(t))
−αu(x′i(t)) (18)

where χ(j) is the set of users served by BS j. As we assume
the base station has utilization τ̄u

τ0
u

in the uplink,

u(x′i(t)) =
1

λuAj

τ̄u
τ0
u

where Aj is the area of the Voronoi cell of BS j. Given that users
are uniformly distributed in the plane, the palm expectation of
(18) is well approximated by

(1− γ)δuPbb + γPI
(1− γ)δu + γ

E

∑
j

∫
x′∈Aj d(x, x′)−αdx′

λuAj

 τ̄u
τ0
u

=

As Aj is statistically independent on d(x, x′), the approximated
formula becomes

=
(1− γ)δuPbb + γPI

(1− γ)δu + γ

∫ +∞
0

λumin(1, s−α)2πsds

λuĀ

τ̄u
τ0
u

where Ā is the mean area of a Voronoi cell for a BS density of
λb, which is equal to λ−1

b . Assuming α > 2, we get

=
(1− γ)δuPbb + γPI

(1− γ)δu + γ

λbπα

α− 2

τ̄u
τ0
u

Proof. (Theorem 2) Let h(x) = F (x) +X(x), with:

F (x) = ξ{PBSr(x)−αLUd(x) + (kI(r(x), k) +O(x))}

X(x) = ξK(x)
{
PBSr(x)−α(G− L

η )− 1−η
η (kI(r(x), k) +O(x))

}
= ξK(x)Z(x).

Let’s set E0[F (D)|r ≤ D ≤ r + dr] = F (r), and
E0 [X(D)|r ≤ D ≤ r + dr] = ξE0 [K(D)|r ≤ D ≤ r + dr]Z(r)

= ξE0
[

Ud(D)η
1−γ(1−δd(1−η))]Ntot(D) |r ≤ D ≤ r + dr

]
Z(r)

where Ud(D) is the downlink utilization of the base station to
which the user at the origin is associated.
≈ ξZ(r) τ̄d

τ0[1−γ(1−δd(1−η))]ηE
0
[

1
Ntot(D) |r ≤ D ≤ r + dr

]
.

For Jensen’s inequality,
E0
[

1
Ntot(D) |r ≤ D ≤ r + dr

]
≤ 1

E0[Ntot(D)|r≤D≤r+dr] .
For a given cell, Ntot(D) is Poisson distributed. Thus the ratio
of the standard deviation of over the mean of this variable
decreases with increasing user density. Therefore in the dense
IoT regime, such an inequality is tight. The denominator is then
computed as a function of r as in the proof of Theorem 1.

C. Proof of Lemma 1

Let us consider that BS utilization is equal to 1. The power of
the signal received by the user at x by the base station, with the
goal of getting charged wirelessly, is PBSr(x)−α. Niot(S(x))+
δd(1− η)Nbb(S(x)) is the sum of the GPS weights of all users
served by the base station serving the user at x. η is the product
of the GPS weight of the IOT user by the factor η, which denotes
that fraction of BS time dedicated to the IoT user which is



devoted to active power transfer (to distinguish it from passive
power transfer, i.e. from power harvested by ambient radiation).

K(x) =
η

Niot(S(x)) + δd(1− η)Nbb(S(x))

is the fraction of total base station time dedicated to actively
charging the user at x, when downlink BS utilization is 1.
In the more general case in which base station utilization is
Ud(S(x)) ≤ 1, the expression for K(x) is

K(x) =
η

Niot(S(x)) + δd(1− η)Nbb(S(x))
Ud(S(x))

The amount of energy received by the user at x during such time,
and due to active charging, is therefore ξPBSr(x)−αGK(x).
K(x)(1−η)

η is the fraction of total base station time dedicated to
transmitting information to the IoT user at x, and it accounts
for downlink base station utilization. Thus,

(
1− K(x)(1−η)

η

)
is the fraction of time during which the user at x can harvest
energy, because it is not receiving information. The fraction of
time during which the BS to which the user at x is associated
is active and not serving it is Ud(S(x))

(
1− K(x)

Ud(S(x))η

)
. The

sources of energy from which IoT users can charge passively
are: 1) the serving BS, due to downlink transmission to other
users belonging to the same cell; 2) other base stations; 3) users
in uplink, from all cells. The amount of power received due to
(1) is thus obtained by the product of the power received by x
when its BS is serving other users, PBSr(x)−αL, multiplied by
the fraction of time during which the BS is active and serving
other users:

ξPBSr(x)−αLUd(S(x))

(
1− K(x)

Ud(S(x))η

)
The contribution (2) is given by ξI(r(x), k) multiplied by(

1− K(x)(1−η)
η

)
, i.e. by the fraction of base station time

dedicated to other than transmitting information to the user at
x. Note that I(r(x), k) account also for the downlink utilization
of the interfering base stations. As for the contribution (3), we
denote it with ξO(x)

(
1− K(x)(1−η)

η

)
.


