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Disclaimer

This document reflects intermediate results of a multi-stage Delphi process on metrics con-
ducted by an international consortium of more than 70 image analysis experts. By making
the current status of the Delphi process publicly accessible, we seek to obtain constructive
feedback by the community in order to optimize the best practice recommendations in the
final version of the paper.

*Shared first authors.
TThe complete list of affiliations can be found in App. K.
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Abstract:

Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an
underestimated global problem. Particularly in automatic biomedical image analysis, chosen per-
formance metrics often do not reflect the domain interest, thus failing to adequately measure
scientific progress and hindering translation of ML techniques into practice. To overcome this, a
large international expert consortium created Metrics Reloaded, a comprehensive framework guiding
researchers towards choosing metrics in a problem-aware manner. Following the convergence of
ML methodology across application domains, Metrics Reloaded fosters the convergence of validation
methodology. The framework was developed in a multi-stage Delphi process and is based on the
novel concept of a problem fingerprint — a structured representation of the given problem that
captures all aspects that are relevant for metric selection from the domain interest to the properties
of the target structure(s), data set and algorithm output. Metrics Reloaded targets image analysis
problems that can be interpreted as a classification task at image, object or pixel level, namely
image-level classification, object detection, semantic segmentation, and instance segmentation tasks.
Users are guided through the process of selecting and applying appropriate validation metrics
while being made aware of potential pitfalls. To improve the user experience, we implemented
the framework in the Metrics Reloaded online tool, which also provides a common point of access
to explore weaknesses and strengths of the most common validation metrics. An instantiation of
the framework for various biological and medical image analysis use cases demonstrates its broad
applicability across domains.

Keywords: Challenges, Competitions, Validation, Evaluation, Metrics, Good Scientific Practice, Image Pro-

cessing, Image Analysis, Computer Vision, Classification, Segmentation, Instance Segmentation, Semantic
Segmentation, Detection, Localization, Medical Imaging, Biological Imaging
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INTRODUCTION

Machine learning (ML)-based automated image processing is gaining increasing traction in bio-
logical and medical imaging research and practice. So far, research has predominantly focused
on the development of new image processing algorithms. The critical issue of reliable and objec-
tive performance assessment of these algorithms, however, remains largely unexplored. While
the suitability of new medical treatments is typically directly assessed via well-interpretable and
clinically meaningful measures, such as survival and complication rates, algorithm performance
in image processing is commonly assessed with so-called validation metrics' that should serve
as proxies for the domain interest. In consequence, the impact of validation metrics cannot be
overstated; first, they measure the scientific progress in the field, such that all future developments
directly depend on them. Second, they are the basis for deciding on the practical (e.g. clinical)
suitability of an algorithm and are thus a key component for translation into biomedical practice.
In fact, validation that is not conducted according to relevant metrics could be one major reason
for why many Artificial Intelligence (AI) developments in medical imaging fail to reach (clinical)
practice.

Despite their importance, an increasing body of work shows that the metrics used in common
practice often do not adequately reflect the underlying biomedical problems, diminishing the
validity of the investigated algorithms [31, 36, 41, 52, 54, 58, 62, 88]. This especially holds true
for so-called challenges, internationally respected competitions that have over the last few years
become the de facto standard for comparative performance assessment of Machine Learning (ML)
algorithms and other methods. These challenges are often published in prestigious journals [22, 73,
87] and receive tremendous attention from both the scientific community and industry. Among
a number of shortcomings in design and quality control that were recently unveiled by a multi-
center initiative [58] performing the first comprehensive evaluation of biomedical image analysis
challenges, the choice of inappropriate metrics stood out as a core problem. Compared to other
areas of Al research, choosing the right metric is particularly challenging in image processing
because the suitability of a metric depends on various factors. As a foundation for the present work,
we identified three core categories related to pitfalls in metric selection (see Fig. 1a):

Inappropriate phrasing of the problem: The chosen metrics do not always reflect the biomed-
ical need. For example, the popular segmentation metric Dice Similarity Coefficient (DSC)
is frequently chosen as a metric for object detection problems [19, 45] although it does not
reflect the critical need of detecting as many structure instances as possible (Fig. 1a, top left).

Poor metric selection: Certain characteristics of a given biomedical problem render particular
metrics inadequate. Mathematical metric properties are often neglected, for example when
using the DSC in the presence of particularly small structures (Fig. 1a, top right).

Poor metric application: Even if a metric is well-suited for a given problem in principle,
pitfalls can occur when applying that metric to a specific data set. For example, a common
flaw pertains to ignoring hierarchical data structure, as in data from multiple hospitals or a
variable number of images per patient (Fig. 1a, bottom), when aggregating metric values.

INot to be confused with distance metrics in the pure mathematical sense.
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Fig. 1. Contributions of the Metrics Reloaded framework. a) Motivation: Common problems related to
metrics typically arise from (top left) inappropriate phrasing of the problem (here: object detection confused
with semantic segmentation), (top right) poor metric selection (here: neglecting the small size of structures)
and (bottom) poor metric application (here: inappropriate aggregation scheme). @ refers to the average DSC
values. b) Metrics Reloaded addresses these pitfalls. (1) To enable the selection of metrics that match the
domain interest, the framework is based on the new concept of problem fingerprinting; the generation of a
structured representation of the given biomedical problem that captures all properties that are relevant for
metric selection. Based on the problem fingerprint, Metrics Reloaded guides the user through the process
of metric selection and application while raising awareness of relevant pitfalls. (2) An instantiation of the
framework for common biomedical use cases demonstrates its broad applicability. (3) A publicly available
online tool facilitates application of the framework.
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These problems are magnified by the fact that common practice often grows historically, and
poor standards may be propagated from generation to generation of scientists. To dismantle such
historically grown poor practices and leverage distributed knowledge from various subfields of
image processing, we established the multidisciplinary Metrics Reloaded? consortium, comprising
international experts from the fields of medical image analysis, biological image analysis, medical
guideline development, general ML, statistics and epidemiology, and representing a large number
of relevant biomedical imaging initiatives and societies.

The mission of Metrics Reloaded is to foster reliable algorithm validation through problem-aware
choice of metrics with the long-term goal of (1) enabling the reliable tracking of scientific progress and
(2) bridging the current chasm between Al research and translation into biomedical imaging practice.

Based on a kickoff workshop held in December 2020, the Metrics Reloaded framework (Fig. 1b
and Fig. 2) was developed using a multi-stage Delphi process [15] for consensus building. Its
primary purpose is to enable users to make educated decisions on which metrics to choose for a
driving biomedical problem. The foundation of the metric selection process is the new concept
of problem fingerprinting (Fig. 3). Abstracting from a specific domain, problem fingerprinting is
the generation of a structured representation of the given biomedical problem that captures all
properties relevant for the purpose of metric selection. As depicted in Fig. 3, the properties captured
by the fingerprint comprise domain interest-related properties, such as the particular importance
of structure boundary, volume or center, target structure-related properties, such as the shape
complexity or the size of structures relative to the image grid size, data set-related properties, such
as class imbalance, as well as algorithm output-related properties, such as the theoretical possibility
of the algorithm output not containing any target structure. Based on the problem fingerprint, the
user is then, in a transparent and understandable manner, guided through the process of selecting
an appropriate set of metrics while being made aware of potential pitfalls related to the specific
characteristics of the underlying biomedical problem. The Metrics Reloaded framework currently
considers problems in which categorical output for a given n-dimensional input image (possibly
enhanced with context information) is sought at pixel, object or image level, as illustrated in Fig. 4.
It thus considers problems that can be assigned to one of the following four problem categories:
image-level classification, semantic segmentation, object detection or instance segmentation. Designed
to be modality-independent, Metrics Reloaded can be suited for application in various image analysis
domains even beyond the field of biomedicine.

In the following, we will present the key contributions of our work in detail, namely (1) the Metrics
Reloaded framework for problem-aware metric selection along with the key findings and design
decisions that guided its development (Fig. 2), (2) the application of the framework to common
biomedical use cases, showcasing its broad applicability (selection shown in Fig. 5) and (3) the open
online tool that has been implemented to improve the user experience with our framework.

2We thank former IMSY lab member Nina Sauter for the suggestion of the name, inspired by the Matrix film series.
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Fig. 2. Metrics Reloaded recommendation framework from a user’s perspective. In step 1 - problem
fingerprinting, the given biomedical image analysis problem is mapped to the appropriate image problem
category, namely image-level classification (ILC), , object detection (OD), or instance
segmentation (IS) (Fig. 4). The problem category as well as further characteristics of the given biomedical
problem that are relevant for metric selection are then captured in a problem fingerprint (Fig. 3). In step 2
- metric selection, the user follows the respective coloured path of the chosen problem category (ILC —,

,OD — or IS —) to select a suitable pool of metrics from the Metrics Reloaded pools shown in green.
When a branching of the tree occurs, the fingerprint items determine which exact path to take. Finally, in
step 3 - metric application, the user is supported in applying the metrics to a given data set. During the
traversal of the decision tree, the user passes subprocesses, indicated by the B-symbol, which are provided in
dedicated figures in App. E and represent relevant steps in the metric selection process. Ambiguities related
to metric selection are resolved via decision guides (App. F) that help users make an educated decision when
multiple options are possible. An overview of the symbols used in the process diagram is provided in Fig. 6.
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This is only possible for some metrics.

Target structure-related properties (selection)
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Fig. 3. Relevant properties of a driving biomedical image analysis problem are captured by the
problem fingerprint (selection for semantic segmentation shown here). The fingerprint comprises a set of
items, each of which represents a specific property of the problem, is either binary or categorical and must
be instantiated by the user. Besides the problem category, the fingerprint comprises domain interest-related,
target structure-related, data set-related and algorithm output-related properties. A comprehensive version
of the fingerprints for all problem categories can be found in Fig. 10 (image-level classification), Figs. 12/13
(semantic segmentation), Figs. 14-16 (object detection) and Figs. 17-19 (instance segmentation).
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RESULTS

Metrics Reloaded is the result of a multi-stage Delphi process, comprising five international work-
shops, six questionnaires, numerous expert group meetings and social media-based crowdsourced
feedback processes, all conducted over the past two years.

Image analysis pitfalls generalize across domains

As a foundation of the Metrics Reloaded recommendation framework, we identified common and
rare pitfalls of metrics in the field of biomedical image analysis using a community-powered process,
detailed in the sister publication of this work [72]. Notably, many pitfalls generalize not only across
the four problem categories that our framework addresses but also across domains (Fig. 4). This
is because the source of the pitfall, such as class imbalance, uncertainties in the reference or
poor image resolution, can occur irrespective of a specific modality or application. Following the
convergence of AI methodology across domains and problem categories, we therefore argue for the
analogous convergence of validation methodology.

Trocar: 0.1

Malignant: 0.7 Infected: 0.2 Grasper: 0.7 "
Image level Ben Uninfected: 0.8 Ligasure: 02 |

(Image-level
classification)

Object level & | -
detection)

Object/pixel level
(Instance
segmentation)

CLASSIFICATION SCALE

RBCRL?
" RBC:0.7
i Malignant: 0.6 WB(
Pixel level ; Fa"gnm L RB'C‘O BC:02
; Benign: 0.3 oy eSO

(Semantic e ' ? a0
segmentation) Rings: 0.1
, >
Computed Microscopy Endoscopy vee
tomography
MODALITY

Fig. 4. Metrics Reloaded fosters the convergence of validation methodology across modalities, ap-
plication domains and classification scales. The framework considers problems in which categorical
output is sought at image, object and/or pixel level, resulting (from top to bottom) in image-level classification,
object detection, instance segmentation or semantic segmentation problems. These problem categories are
relevant across modalities (here Computed Tomography (CT), microscopy and endoscopy) and application
domains. From left to right: annotation of (left) benign and malignant lesions in CT images, (middle) different
cell types in microscopy images, and (right) medical instruments in laparoscopic surgery images.
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Historically grown practices are not always justified

To better understand common practice, we prospectively captured the designs of challenges orga-
nized by the IEEE Society of the International Symposium of Biomedical Imaging (ISBI), the Medical
Image Computing and Computer Assisted Interventions (MICCAI) Society and the Medical Imaging
with Deep Learning (MIDL) consortia. The organizers of the respective competitions were asked to
provide a rationale for why they picked the chosen metrics for their competition. An analysis of a
total of 138 competitions conducted between 2018 and 2022 revealed that metrics are frequently (in
24% of the competitions) based on common practice in the community. We found, however, that
common practice is often not well-justified, and poor practices may even be propagated from one
generation to the next.

One remarkable example is the widespread adaptation of an incorrect naming and inconsistent
mathematical formulation of a metric proposed for cell instance segmentation. The term "Mean
Average Precision (mAP)" usually refers to one of the most common metrics in object-level classifi-
cation [57, 72]. Here, Precision denotes the Positive Predictive Value (PPV), which is "averaged"
over varying thresholds on the predicted class scores of an object detection algorithm. The "mean"
Average Precision (AP) is then obtained by taking the mean over classes [33, 72]. Despite the
popularity of mAP, a widely known challenge on cell segmentation [48] introduced a new "Mean
Average Precision" in 2018. Here, all the terms of the metric (mean, average and precision) refer
to entirely different concepts. For instance, the common definition of Precision from literature
TP/(TP +FP) has been altered to TP/(TP + FP + FN), where TP, FP, and FN refer to the cardinalities
of the confusion matrix (i.e. the true/false positives/negatives). The latter formula actually denotes
the Intersection over Union (IoU) metric. Despite these problems, the terminology has been adapted
by subsequent influential work [49, 76, 82] indicating a wide-spread usage within the community.

To break such historically grown poor practices, we followed a multidisciplinary cross-domain
approach that enabled us to critically question common practice in different communities and integrate
distributed knowledge in one common framework.

Cross-domain approach enables integration of distributed knowledge

To leverage distributed knowledge on metric pitfalls, strengths and weaknesses, and thus arrive
at a "best of all worlds" solution, we formed an international multidisciplinary consortium of 73
experts from various biomedical image analysis-related fields. Furthermore, we crowdsourced
metric pitfalls and feedback on our approach in a social media campaign. This process led to a total
of 126 researchers contributing to this work (including 53 mentioned in the acknowledgements).
Consideration of the different knowledge and perspectives on metrics led to the following key
design decisions for Metrics Reloaded.

Encapsulating domain knowledge: The questions asked to select a suitable metric are mostly
similar regardless of image modality or application: Are the classes balanced? Is there a spe-
cific preference for the positive or negative class? What is the accuracy of the reference
annotation? Is the structure boundary or volume of relevance for the target application?, and
so on. Importantly, while answering these questions requires domain expertise, the consequences
in terms of metric selection can be regarded as domain-independent. Our approach is thus to
abstract from the specific image modality and domain of a given problem by capturing the
properties relevant for metric selection in a problem fingerprint (Fig. 3).

Exploiting synergies across classification scales: Likewise, similar considerations must be
made when choosing metrics for classification, detection and segmentation tasks. The reason
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is that they can all be regarded as classification tasks at different scales (Fig. 4). The similarities
between the categories, however, can also lead to problems when the wrong category is
chosen (see Fig. 1 (a) top left)). We therefore (i) address all four problem categories in one
common framework (Fig. 2) and (ii) cover the selection of the problem category itself in our
framework (Fig. 8).

Exploiting complementary metric strengths: A single metric is typically not able to cover
the complex requirements of the driving biomedical problem [71]. To account for the comple-
mentary strengths and weakness of metrics, we generally recommend the usage of multiple
complementary metrics to validate image analysis problems. A Delphi process yielded the
pool of metrics shown in Tab. 2 that our Metrics Reloaded recommendations for common
reference-based metrics are based on. Notably, while this includes broadly applied metrics,
such as the F; Score, Area under the Receiver Operating Characteristic Curve (AUROC), or
AP, it also led to the recommendation of metrics that have not received much attention to
date. A prominent example is the Net Benefit (NB) [90] metric designed for determining
whether basing decisions on a method would do more good than harm. A diagnostic test,
for example, may lead to early identification and treatment of a disease, but typically the
process will also cause some patients without disease being subjected to unnecessary further
interventions. NB allows to consider such trade-offs by putting benefits and harms on the
same scale so that they can be compared directly. Another example is the metric Expected
Cost (EC) [56], which can be seen as a generalization of Accuracy with many desirable added
features but is not well-known in the biomedical image analysis communities. As part of
our crowdsourcing-based feedback on Metrics Reloaded, a researcher from the field of speech
recognition, in which EC is applied very commonly, triggered the integration of the metric
in our framework.

Abstracting from methodology: Metrics should be chosen based solely on the driving biomed-
ical problem and not be affected by algorithm design choices. For example, the error functions
applied in common neural network architectures do not justify the use of corresponding
metrics (e.g. validating with DSC to match the Dice loss used for training a neural network).
Instead, the domain interest should guide the choice of metric, which, in turn, can guide the
choice of the loss term.

Involving and educating users: Choosing adequate validation metrics is a complex process.
Rather than providing a black box recommendation, Metrics Reloaded therefore guides the
user through the process of metric selection while raising awareness on pitfalls that may
occur. In cases in which the tradeoffs between different choices must be considered, decision
guides (App. F) guide the decision making process while respecting individual preferences.

Problem fingerprints encapsulate relevant domain knowledge

To encapsulate relevant domain knowledge in a common format and then enable a modality-agnostic
metric recommendation approach that generalizes over domains, we developed the concept of
problem fingerprinting, illustrated in Fig. 3. As a foundation, we crowdsourced all properties of a
driving biomedical problem that are potentially relevant for metric selection. This process resulted
in a list of binary and categorical variables (fingerprint items) that must be instantiated by a user
to trigger the Metrics Reloaded recommendation process. Common issues often relate to selecting
metrics from the wrong problem category, as illustrated in Fig. 1 (a, top left). To avoid such issues,
the problem fingerprinting begins with the step of mapping a given problem with all its intrinsic
and data set-related properties to the corresponding problem category via the category mapping
shown in Fig. 8. The problem category is a fingerprint item itself.
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In the following, we will refer to all fingerprint items with the notation FX.Y, where Y is a
numerical identifier and the index X represents one of the following families:

1 - General properties solely refer to the problem category encoded in F1.1: Problem category.

2 - Domain interest-related properties reflect user preferences and are highly dependent
on the target application. A semantic image segmentation that serves as the foundation for
radiotherapy planning, for example, would require exact contours (F2.1 Particular importance
of structure boundaries = TRUE). On the other hand, for a cell segmentation problem that
serves as prerequisite for cell tracking, the object centers may be be much more important
(F2.1 Particular importance of structure center = TRUE). Both problems could be tackled with
identical network architectures, but the validation metrics should be different.

3 - Target structure-related properties represent inherent properties of target structure(s)
(if any), such as the size, size variability and the shape.

4 - Data set-related properties capture properties that are inherent to the provided train-
ing/test data. They relate primarily to class prevalences, uncertainties of the reference anno-
tations as well as a (potentially) hierarchical data structure.

5 - Algorithm output-related properties encode properties of the output, such as the avail-
ability of predicted class scores.

Note that not all properties are relevant for all problem categories. For example, the shape and
size of target structures is highly relevant for segmentation problems but irrelevant for image clas-
sification problems. The complete problem category-specific fingerprints are provided in Figs. 10/11
(image-level classification), Figs. 12/13 (semantic segmentation), Figs. 14-16 (object detection) and
Figs. 17-19 (instance segmentation), respectively. Fingerprints are referred to in various parts of the
manuscript including the decision trees (Fig. 2 and App. E), the decision guides (App. F) and in the
cross-category recommendations (Tab. 1).

Metrics Reloaded addresses all three types of metric pitfalls

Metrics Reloaded was designed to address all three types of metric pitfalls identified in [72] and
illustrated in Fig. 1a. More specifically, each of the three steps shown in Fig. 2 addresses one type
of pitfall:

Step 1- Fingerprinting. A user should begin by reading the general instructions of the recommenda-
tion framework, provided in App. C. Next, the driving biomedical problem should be converted to
a problem fingerprint, as detailed in the previous paragraph. This step is not only a prerequisite for
applying the framework across application domains and classification scales, but it also specifically
addresses the inappropriate phrasing of the problem via the integrated category mapping. Once
the user’s domain knowledge has been encapsulated in the problem fingerprint, the actual metric
selection is conducted according to a domain- and modality-agnostic process.

Step 2 - Metric Selection. The metric recommendation is then performed with a Business Process
Model and Notation (BPMN)-inspired flowchart (see Fig. 6), in which conditional operations are
based on one or multiple fingerprint properties (Fig. 2). It can be subdivided into three substeps,
each addressing the complementary strengths and weaknesses of common metrics. First, common
reference-based metrics, which are based on the comparison of the algorithm output to a reference
annotation, are selected. Next, the pool of standard metrics can be complemented with custom
metrics to address application-specific complementary properties. Finally, non-reference-based
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metrics that assess speed, memory consumption or carbon footprint, for example, can be added to
the metric pool(s).

Depending on the problem category, different paths through the mapping are taken; however,
their huge overlap demonstrates substantial synergies. All paths comprise several subprocesses
S (indicated by the m-symbol), each of which is a placeholder for a decision tree representing
one specific step of the selection process. Traversal of a subprocess typically leads to the addition
of a metric to the metric pool. In multi-class prediction problems, dedicated metric pools for
each class must be generated as relevant properties may differ from class to class. A 3D semantic
segmentation problem, for example, could require the simultaneous segmentation of both tubular
and non-tubular structures (e.g. liver and its vessels). These require different metrics for validation.
In ambiguous cases, i.e. when the user can choose between two options in one step of the decision
tree, a corresponding decision guide details the tradeoffs that need to be considered (App. F). For
example, the IoU and the DSC are mathematically closely related. The concrete choice typically
boils down to a simple user/community preference.

The following paragraphs present a summary of the four different colored paths through Step 2 -
Metric Selection of the recommendation tree (Fig. 2), with a focus on reference-based metrics.

Image-level Classification. Image-level classification is conceptionally the most straightforward
problem category, as the task is simply to assign one or multiple labels to the entire image. The
validation metrics are designed to measure two key properties: discrimination and calibration.
Discrimination refers to the ability of a classifier to discriminate two or more classes from each
other. This can be achieved with counting metrics that operate on the cardinalities of a fixed
confusion matrix (i.e. the true/false positives/negatives in the binary case). Prominent examples are
Sensitivity, Specificity or F; Score for binary settings and Matthews Correlation Coefficient (MCC)
for multi-class settings. Setting a (potentially arbitrary) cutoff on the predicted class scores to
obtain a confusion matrix can be regarded as problematic [72]. Multi-threshold metrics, such as
AUROC, are therefore based on varying the cutoff, which enables the explicit analysis of the
tradeoff between competing properties such as Sensitivity and Specificity. This, in turn, can lead
to an in-depth understanding of the inherent capabilities of a method. Another complementary
important property of classification algorithms is the calibration performance. A method is well-
calibrated if the predicted class scores match the probability of class membership. Overconfident or
underconfident classifiers can be especially problematic in prediction tasks where a clinical decision
may be made based on the risk of the patient of developing a certain condition. Based on these
considerations Metrics Reloaded provides recommendations for both discrimination and calibration
capabilities of algorithms. We recommend the following process for classification problems (blue
path in Fig. 2):

1: Select multi-class metric (if any): Multi-class metrics have the unique advantage that
they capture the performance of an algorithm for all classes in a single value. With the ability
of taking into account all entries of the multi-class confusion matrix, they provide a holistic
measure of performance without the need for customized class-aggregation schemes. We
recommend using a multi-class metric if a cutoff on predicted class scores is requested. The
concrete choice of metric depends on the distribution of classes and whether there is an
unequal interest in class confusions. Details can be found in subprocess S2 for selecting
multi-class metrics (Fig. 20).
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2: Select multi-threshold metric (if any): As detailed class-specific analyses are not possible
with multi-class metrics, we recommend an additional per-class validation based on a multi-
threshold metric. Each class of interest is separately assessed, preferably in a "One-vs-the-Rest"
fashion (see App. H). While we recommend AUROC as the default multi-threshold metric
for classification, AP can be suitable when class imbalances should be compensated. Details
can be found in subprocess S3 for selecting multi-threshold metrics (Fig. 21).

3: Select calibration metric (if any): If predicted class probabilities are provided and should
be human-interpretable, an additional metric that measures the calibration capabilities of the
method should be added to the metric pool. Depending on user preferences, we recommend the
Expected Calibration Error (ECE) or Proper Scoring Rules (PSR), as detailed in the respective
decision guide (App. F DM.1).

4: Select per-class counting metric (if any): If a cutoff on the predicted class score is desired,
we further recommend the selection of a per-class counting metric. The choice depends
primarily on the cutoff strategy (see App. D) and the distribution of classes. Details can be
found in subprocess 5S4 for selecting per-class counting metrics (Fig. 22).

. In semantic segmentation, classification occurs at pixel level. However,
it is not advisable to simply apply the standard classification metrics to the entire collection of
pixels in a data set for two reasons. Firstly, pixels of the same image are highly correlated. Hence,
to respect the hierarchical data structure, metric values should first be computed per image and
then be aggregated over the set of images. Note in this context that the commonly used DSC is
mathematically identical to the popular F; Score applied at pixel level. Secondly, in segmentation
problems, the user typically has an inherent interest in structure boundaries, shapes or volumes of
structures (F2.1, F2.2, F2.3). The family of boundary-based metrics (subset of distance-based metrics)
therefore requires the extraction of structure boundaries from the binary segmentation masks
as a foundation for segmentation assessment. Based on these considerations and given all the
complementary strengths and weaknesses of common segmentation metrics [72], we recommend
the following process for segmentation problems (orange path in Fig. 2):

1: Select overlap-based metric (if any): In segmentation problems, counting metrics such
as the DSC or IoU measure the overlap between the reference annotation and the prediction
of the algorithm. As they can be considered the de facto standard for assessing segmentation
quality and are well-interpretable, we recommend using them by default unless the target
structures are consistently small (relative to the grid size) and the reference may be noisy.
Depending on the specific properties of the problems, we recommend the DSC or IoU (default
recommendation), the F5 Score (preferred when there is a preference for either FP or FN) or
the Center line Dice Similarity Coefficient (cIDice) (for tubular structures). Details can be
found in subprocess S7 for selecting overlap-based metrics (Fig. 25).

2: Select boundary-based metric (if any): Key weaknesses of overlap-based metrics include
shape unawareness and limitations when dealing with small structures or high size variabil-
ity [72]. Our general recommendation is therefore to complement an overlap-based metric
with a boundary-based metric. Depending on the specific properties of the driving problem,
we recommend the Normalized Surface Distance (NSD) or Boundary IoU (good for addressing
inter-rater variability), the Average Symmetric Surface Distance (ASSD) or Mean Average
Surface Distance (MASD) (good for distance-based penalization of outliers with contour
focus), or the Hausdorff Distance (HD) or its variants (good for distance-based penalization of
outliers with outlier focus), as detailed in subprocess S8 for selecting boundary-based metrics
(Fig. 26). Note that distance-based metrics are not appropriate under several circumstances.
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In scenarios in which multiple structures of the same type can be seen within the same
image (e.g. in Multiple Sclerosis (MS) lesion segmentation), for example, a potential pitfall is
related to comparing a given structure boundary to the boundary of the wrong instance in
the reference (Fig. 9). Similar issues arise in the case of completely missed instances. In such
scenarios, we recommend reconsideration to phrase the problem as an instance segmentation
problem. If semantic segmentation remains the chosen category, we advise against the use
of distance-based metrics, as these are not designed for cases where mix-up of boundaries
across different instances can occur.

When complementing these common metrics by further application-specific metrics, various
properties may be taken into account. To address the particular importance of structure volume
(F2.2), for example, volume-based metrics [69, 69, 91] may be added to the pool. Similarly, the
compliance with prior knowledge, such as hierarchical label structure (F3.4), can be measured with
further application-specific metrics.

Object detection. Object detection problems differ from segmentation problems in several key
features with respect to metric selection. Firstly, they are capable of distinguishing different in-
stances of the same class and thus require the step of locating objects and assigning them to the
corresponding reference object. Secondly, the granularity of localization is comparatively rough,
which is why no boundary-based metrics are required (otherwise the problem would be phrased
as an instance segmentation problem). Finally, and crucially important from a mathematical per-
spective is the absence of True Negative (TN) in object detection problems, which renders many
popular classification metrics (e.g. Accuracy, Specificity, AUROC) invalid. In fact, suitable counting
metrics can only be based on three of the four entries of the confusion matrix. Based on these
considerations and taking into account all the complementary strengths and weaknesses of existing
metrics [72], we propose the following steps for object detection problems (green path in Fig. 2):

1: Select localization criterion: An essential part of the validation is to decide whether a
prediction matches a reference object. To this end, (1) the location of both the reference
objects and the predicted objects must be adequately represented (e.g. by masks, bounding
boxes or center points) and (2) a metric for deciding on a match (e.g. Mask IoU) must be
chosen. As detailed in subprocess S5 for selecting the localization criterion ( Fig. 23), our
recommendation considers both the granularity of the provided reference and the required
granularity of the localization.

2: Select assignment strategy: As the localization does not necessarily lead to unambiguous
matchings, an assignment strategy needs to be chosen to potentially resolve ambiguities
that occurred during localization. As detailed in subprocess S6 for selecting the assignment
strategy (Fig. 24), the recommended assignment strategy depends on the availability of
continuous class scores, the possibility of overlapping predictions as well as on whether
double assignments should be punished.

3: Select classification metric(s) (if any): Once objects have been located and assigned to
reference objects, generation of a confusion matrix (without TN) is possible. The final step
therefore simply comprises choosing suitable classification metrics for validation. Several
subfields of biomedical image analysis have converged to choosing solely a counting metric,
such as the Fg Score, as primary metric. We follow this recommendation when no continuous
class scores are available for the detected objects. Otherwise, we disagree with the practice
of basing performance assessment solely on a single (potentially suboptimal) cutoff on the
continuous class scores. Instead, we propose selecting a multi-threshold metric (subprocess
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S3, Fig. 21) and potentially complementing it with a counting metric (subprocess S4, Fig. 22)
to present a more holistic picture of performance. As multi-threshold metric, we recommend
AP or Free-Response Receiver Operating Characteristic (FROC) Score, depending on whether
an easy interpretation (FROC Score) or a standardized metric (AP) is preferred. The choice of
the per-class counting metric depends primarily on the cutoff strategy (F2.6)

Note that the previous description implicitly assumed single-class problems, but generalization
to multi-class problems is straightforward by applying the validation per class. It is further worth
mentioning that metric application is not straightforward in object detection problems as the
number of objects in an image may be extremely small (even zero) compared to the number of
pixels in an image. Special considerations with respect to aggregation must therefore be made, as
detailed in App. H.

Instance segmentation. Instance segmentation delivers the tasks of object detection and semantic
segmentation at the same time. Thus, the pitfalls and recommendations for instance segmentation
problems are closely related to those for segmentation and object detection [72]. This is directly
reflected in our metric selection process (purple path in Fig. 2):

1: Select object detection metric(s): To overcome problems related to instance unawareness
(Fig. 1a (top)), we recommend selection of a set of detection metrics to explicitly measure
detection performance. To this end, we recommend almost the exact process as for object
detection with two exceptions. Firstly, given the fine granularity of both the output and the
reference annotation, our recommendation for the localization strategy differs, as detailed
in subprocess S5 (Fig. 23). Secondly, as depicted in S4, Fig. 22, we recommend the Panoptic
Quality (PQ) [51] as an alternative to the Fg Score. This metric is especially suited for
instance segmentation, as it combines the assessment of overall detection performance and
segmentation quality of successfully matched (True Positive (TP)) instances in a single score.

2: Select segmentation metric(s) (if any): In a second step, metrics to explicitly assess the
segmentation quality for the TP instances may be selected. Here, we follow the exact same
process as in semantic segmentation (subprocesses S7, Fig. 25 and S8, Fig. 26). The primary
difference is that the segmentation metrics are applied per instance.

While we have found our generic recommendation for instance segmentation to match the
majority of biomedical problems, the standard reference-based metrics are not well-suited for some
applications. Specifically, reference-based metrics struggle in images with structures of extreme
density and complex shapes, where overlap fails as a criterion for one-to-one correspondences
between predictions and reference. In such cases, specialized metrics targeted to the specific problem
may be required.

Step 3 - Metric Application. Once a suitable metric pool has been generated, the chosen metrics
must be applied to the given data set. While this appears straightforward, numerous pitfalls can
occur [72]. We recommend beginning with the setting of the global decision threshold in case
metrics based on a fixed cutoff on the predicted class scores (F2.6) have been selected, which is
generally the case. In order to avoid overestimation of algorithm performance, this threshold needs
to be set globally for all classes and metrics, as detailed in App. C. Once raw metric values have
been computed for all metrics, metric values are aggregated, potentially combined (for rankings)
and reported. Cross-category recommendations for this process are summarized in Tab. 1. As our
recommendations with respect to aggregation go beyond the current state of the art, we provide a
dedicated section on this topic (App. H)
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Table 1. Cross-category recommendations on metric application.

Recommendation

Further Information

Recommendations on metric aggregation

Perform a per-class validation App. H

Select a strategy for missing data handling if F5.3 Possibility of invalid algorithm App. H

output holds

Respect the hierarchical data structure when aggregating metric values if F45 App. H

non-independence of test data holds

Stratify by size if F3.2 high variability of structures sizes holds (only OD and IS) App. H

Perform weighted class aggregation if F2.5.1 unequal interest across classes holds App. H

Address the potential correlation between classes when aggregating, especially App. H

when F3.4 Possibility of multiple labels per unit holds

Leverage metadata (if any) to reveal potential algorithmic bias Discussion
Recommendations on metric reporting

Include a visualization of the raw metric values [93]

Choose the number of decimal places such that they reflect both relevance and

the uncertainties of the reference

Report on the quality of the reference (e.g. intra-rater and inter-rater variability) [55]

Consider multiple test set runs to address the variability of results resulting
from non-determinism

When combining metrics for algorithm ranking, be aware of their relation

If a ranking of competing algorithms is desired, choose a set of primary metrics
(PM) that best reflect the underlying biomedical goal. Complement the PM
by secondary metrics (SM) such that all relevant performance measures are
covered by PM and SM.

Make uncertainties in rankings (if any) explicit

Depending on the specific application, apply existing reporting guidelines, such
as BIAS [59] (for challenges), TRIPOD [67] (for validation of prediction models,
including recommendations that are applicable to the validation of medical
image analysis algorithms—TRIPOD-AI guidelines currently in preparation
[29]) and CLAIM [66] (checklist for AI algorithms in medical imaging).

[50] and [83]

[72, 81, 84]
App. C

(93]
(1]
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Metrics Reloaded is broadly applicable in biomedical image analysis

To validate the Metrics Reloaded framework, we used it to generate recommendations for common
use cases in biomedical image processing (see App. I). The traversal through the decision tree of
our framework is detailed for eight selected use cases corresponding to the four different problem
categories (Fig. 5):

Image-level classification: frame-based sperm motility classification based on microscopy
time-lapse video containing human spermatozoa and disease classification in dermoscopic
images (Fig. 42).

Semantic segmentation: lung cancer segmentation in microscopy images and liver segmen-
tation in CT images (Fig. 44).

Object detection: cell detection and tracking during the autophagy process in time-lapse
microscopy and MS lesion detection in multi-modal brain Magnetic Resonance Imaging (MRI)
images (Fig. 46).

Instance segmentation: instance segmentation of neurons from the fruit fly in 3D multi-color
light microscopy images and surgical instrument instance segmentation in colonoscopy
videos (Fig. 48).

The resulting metric recommendations shown in Fig. 5 demonstrate that a common framework
across subfields is sensible. In the showcased examples, shared properties of problems from different
domains result in almost identical recommendations. In the semantic segmentation use cases, for
example, the specific image modality is irrelevant for metric selection. What matters is the fact
that a single object with a large size relative to the grid size should be segmented - properties that
are captured by the proposed fingerprint. In App. I, we present recommendations for several other
biomedical use cases.

The Metrics Reloaded online tool improves user experience

Selecting appropriate validation metrics while considering all potential pitfalls that may occur is a
highly complex process, as demonstrated by the large number of figures in this paper. Some of the
complexity, however, also results from the fact that the figures needed to capture all eventualities
at once. For example, many of the figures could be simplified substantially for problems based on
only two classes. To leverage this potential and to improve the user experience with our framework
in general, we have therefore developed the Metrics Reloaded online tool, which captures all
peculiarities of our framework in a user-centric manner and will soon be publicly available in a
web-based version. The online tool can serve as a trustworthy common access point for image
analysis validation.
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Fig. 5. Instantiation of the framework with recommendations for concrete biomedical questions.
From top to bottom: (1) Image classification for the examples of sperm motility classification [40] and disease
classification in dermoscopic images [27]. (2) Semantic segmentation of large objects for the examples of lung
cancer cell segmentation from microscopy [20] and liver segmentation in Computed Tomography (CT) images
[2, 80]. (3) Detection of multiple and arbitrarily located objects for the examples of cell detection and tracking
during the autophagy process [68, 96] and MS lesion detection in multi-modal brain MRI images [30, 53]. (4)
Instance segmentation of tubular objects for the examples of instance segmentation of neurons from the fruit
fly [61, 65, 86] and surgical instrument instance segmentation [60]. The corresponding traversals through the
decision trees are shown in App. I.
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CURRENT STATUS

The Metrics Reloaded consortium is currently finalizing the paper. We are still integrating some of
the valuable community feedback that we have received via the questionnaire issued as part of the
previous version of this paper. The future version will comprise:

(1) An elaboration on the cross-category recommendations summarized in Tab. 1

(2) A comprehensive Methods section detailing the Delphi process and other aspects of our work

(3) A comprehensive discussion of Metrics Reloaded including open research questions and future
work

(4) An introduction of the Metrics Reloaded online tool (including a link to the tool)

In parallel, we are working on the next version of the corresponding pitfalls paper [72], which
will be complemented by further figures, resulting - among others - from community contributions.
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APPENDIX

A Symbol References

Fig. 6. Overview of symbols used in the process diagrams. The notation used in the process diagrams
originates from Business Process Model and Notation (BPMN).
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B Acronyms

Al Artificial Intelligence

AP Average Precision

ASSD Average Symmetric Surface Distance
AUROC Area under the Receiver Operating Characteristic Curve
BA Balanced Accuracy

BPMN Business Process Model and Notation
BS Brier Score

cIDice Center line Dice Similarity Coeflicient
CT Computed Tomography

DSC Dice Similarity Coefficient

EC Expected Cost

ECE Expected Calibration Error

FN False Negative

FP False Positive

FPPI False Positives per Image

FROC Free-Response Receiver Operating Characteristic
HD Hausdorff Distance

HD95 Hausdorff Distance 95% Percentile
IoU Intersection over Union

IoR Intersection over Reference

LR+ Positive Likelihood Ratio

LS Logarithmic Score

mAP Mean Average Precision

MASD Mean Average Surface Distance
MCC Matthews Correlation Coefficient

MICCAI Medical Image Computing and Computer Assisted Interventions

ML Machine Learning

MRI Magnetic Resonance Imaging

MS Multiple Sclerosis

NB Net Benefit

NPV Negative Predictive Value

NSD Normalized Surface Distance
PPV Positive Predictive Value

PQ Panoptic Quality

PHI Protected Health Information

PSR Proper Scoring Rules

ROC Receiver Operating Characteristic
ROI Region of Interest

TN True Negative

TNR True Negative Rate

TP True Positive

TPR True Positive Rate

WCK Weighted Cohen’s Kappa

WSI Whole Slide Imaging

X*" Percentile HD X' Percentile Hausdorff Distance
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C General Instructions

Metrics Reloaded guides the user through the process of selecting and applying validation metrics in
a problem-aware manner. The following guiding principles build the foundation of our framework.

Inclusion criteria. The Metrics Reloaded framework currently considers problems in which categor-
ical output for a given n-dimensional input image is sought. Hence, it covers a broad range of imaging
modalities from classical 2D/3D modalities, such as fluorescence, Computed Tomography (CT) or
X-ray, to novel modalities such as spectral imaging modalities that yield high-dimensional output
per pixel [25]. Classification can occur at pixel, object or image level, resulting in the four problem
problem categories covered by the framework and depicted in Fig. 4:

Image-level classification refers to the assignment of one or multiple category labels to the
entire image or fixed regions/predefined locations within an image.

Semantic segmentation refers to the assignment of one or multiple category labels to each
pixel. For many segmentation problems, object boundaries are generated in addition to the
pixel-wise classification images, which enables the computation of distance-based metrics,
such as the Normalized Surface Distance (NSD).

Object detection refers to the localization and categorization of an unknown number of
structures.

Instance segmentation refers to the localization and delineation of each distinct structure of
a particular class. It can be regarded as delivering the tasks of object detection and semantic
segmentation at the same time. In contrast to object detection, instance segmentation also
involves the accurate marking of the structure boundary. In contrast to semantic segmentation,
it distinguishes different structures of the same class.

Notably, the four different categories are mathematically closely related, as illustrated in Fig. 4.
Application examples for all categories can be found in Fig. 5. Importantly, Metrics Reloaded does not
require an entire image to be provided as input for the validation. For example, the classification of
a Region of Interest (ROI) within a medical image may be required. In this example, the framework
would proceed with the ROI as input as if it was an entire image. Furthermore, the shape of the
image/input does not need to be rectangular. Finally, context information may be provided along
with the input. For example, medical images may be processed along with clinical data to arrive at
a diagnosis; video frames may be processed along with preceeding video snippets. What matters
is that the output of the algorithm, for which a reference annotation is provided, is simply an
n-dimensional image.

Phrasing of the biomedical task. The recommendation framework has been designed in a way to
support the metric selection and application process for one specific driving biomedical question.
In practice, multiple questions are often addressed with one given data set. For example, a clinician
may have the ultimate interest of diagnosing brain cancer in a patient based on a given Magnetic
Resonance Imaging (MRI) data set. While this would be phrased as an image-level classification
task, an interesting surrogate task could be that of segmentation to assess the quality of tumor
delineation. In the case of multiple different driving biomedical questions, a recommendation is
generated separately for each question.

Matching reference annotations. The metric selection process begins with the step of mapping a
given problem with all its intrinsic and data set-related properties to the corresponding problem
category via the category mapping shown in Fig. 8. Our framework assumes that the reference
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annotations of the given dataset meet the requirements of the problem category that has been
identified. Expected formats are provided in App. G.

Model-agnostic metric recommendation. Metrics should be chosen based solely on the driving
biomedical problem and not be affected by algorithm design choices. For example, the error functions
applied in common neural network architectures do not justify the use of corresponding metrics
(e.g. validating with Dice Similarity Coefficient (DSC) to match the Dice loss used for training a
neural network). Instead, the domain interest should guide the choice of metric, which, in turn, can
guide the choice of the loss term.

Dealing with multiple classes. Multi-class metrics, such as Accuracy or Matthews Correlation
Coeflicient (MCC), have the unique advantage that they capture the performance of an algorithm for
all classes in a single score without the need for customized class-aggregation schemes. On the other
hand, they do now allow for detailed class-specific analyses. Metrics Reloaded therefore generally
recommends performing a per-class validation for all target classes (in addition to potential multi-
class validation). In segmentation problems, target classes are typically all classes except for a
potential background class. As problem properties may differ from class to class (e.g. the size or
size variability of target structures in segmentation problems), the problem fingerprint needs to be
generated separately for each class. In consequence, several subprocesses (denoted by the B-symbol
in the framework overview shown in Fig. 2) need to be traversed separately for each target class in
case the fingerprint properties relevant for the respective subprocess differ. Although not common
in current validation practice, this may - in theory - lead to different validation metrics for different
classes. We speak of class-specific metric pools in this case, which are generated in addition to the
multi-class metric pool.

Primary and secondary metrics. In general, the biomedical interest cannot be captured with a
single metric. The framework has therefore been designed to recommend multiple complementary
metrics for a given task. We assume two primary use cases of metrics in this paper. In comparative
benchmarking studies (e.g. competitive challenges), multiple algorithms or algorithm variants
are compared on identical data sets. This requires the ranking of the competing algorithms according
to performance. Typically, multiple complementary validation metrics are applied in this use case,
resulting in either multiple rankings or a merged ranking that takes all or several metric values into
account, as detailed in App. H. We refer to the metrics that contribute to the (primary) ranking(s)
as primary metrics. Secondary metrics can additionally be applied for comprehensive reporting,
for example because they reflect complementary properties of interest (e.g. compute time, carbon
footprint), or for providing performance measures that are comparable across publications. The
computer vision community, for example, typically reports the Intersection over Union (IoU) rather
than the DSC. While our recommendation focuses on the recommendation of primary metrics,
users are invited to complement them by further secondary metrics according to their specific needs.
The second use case of metrics addressed by our framework are validation studies centered
around a single algorithm that focus on comprehensive diagnostics rather than comparative
assessment. In this case, it is often desired to report as many complementary metrics as possible
in order to comprehensively analyse the properties of an algorithm. If a user of our framework is
interested in this second type of study, the notion of primary and secondary metrics can be ignored.



Metrics reloaded 29

Global decision rule. The proposed framework offers different strategies for validation of multi-
class problems including application of multi-class metrics, aggregation of per-class scores (iterated
e.g. in a “one versus rest” fashion), or selection of different metrics per class. In this context, it is
important to note that a system in practice will typically convert the raw algorithm output into
meaningful information that can be interpreted by a domain expert in a straightforward manner.
For example, a diagnosis system will typically be designed to output one of multiple options rather
than the continuous class scores of the algorithm. From a validation perspective, this implies
that global cutoff strategy needs to be defined to avoid pitfalls such as the one shown in Fig. 7.
Most importantly, even when a per-class validation is performed, this global strategy needs to be
applied to avoid overestimation of algorithm performance. To address this important aspect, our
recommendation shown in Fig. 2 comprises the step "Determine global decision threshold" before
the metrics are applied to a given data set.

Notation. The notation for our recommendations have been based on BPMN?. The individual
components used in the recommendation diagrams are explained in Fig. 6. Please note that we do
not strictly follow BPMN to improve clarity of presentation.

Terminology. Terminology may differ substantially across communities. For example, the statistics
community prefers the term Positive Predictive Value (PPV) over Precision, as the latter can be
confused with the confidence of an output. In the medical domain, the term validation is used
for an independent assessment (untouched test set) of an algorithm, while the machine learning
community commonly uses a validation set for hyperparameter tuning. To avoid confusion resulting
from unclear terminology, we follow the general terminology of [72] and have included a glossary
in the App. J.

Shttps://www.omg.org/spec/BPMN/
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Pitfall: Reporting AUROCS for multiple classes conceals the future need for a suboptimal

global cutoff

Class 1 counting metrics

Class 2 counting metrics

Sensitivity = 0.00
PPV =NaN

F, Score =0.00
MCC=0.00
Kk =0.00

Class 1: 0.80 Class 1: 0.30 Class 1: 0.45
Class 2:0.10 Class 2:0.10 Class 2: 0.55
Class 3:0.10 Class 3:0.60 Class 3:0.00
Class 1:0.45 Class 1: 0.90 Class 1: 0.45
Class 2: 0.50 Class 2:0.10 Class 2:0.00
Class 3:0.05 Class 3:0.00 Class 3: 0.55
Class 1:0.30 Class 1: 0.85 Class 1:0.43
Class 2: 0.40 Class 2:0.05 Class 2:0.05
Class 3:0.30 Class 3:0.00 Class 3:0.52
Class 1 ROC curve Class 2 ROC curve
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Fig. 7. Reporting the Area under the Receiver Operating Characteristic Curve (AUROC) for multiple
classes may convey overly optimistic classifier performance. This is because any classifier upon
application requires a global decision rule, which can not be optimized w.r.t to each class individually
(see paragraph Global decision rule). Thus, in practice, Receiver Operating Characteristic (ROC)
curves for most classes will be subject to a suboptimal cutoff. In the depicted example, an AUROC of
1.0 for each class allowing for individually optimized cutoffs. In contrast, the (realistic) application
of a global cutoff does not lead to good performance for the classes it has not been optimized on.
Used abbreviations: Positive Predictive Value (PPV), Negative Predictive Value (NPV), Matthews
Correlation Coefficient (MCC), Cohen’s Kappa k and Balanced Accuracy (BA).

Class 3 counting metrics

Sensitivity = 0.00
PPV =NaN

F, Score = 0.00
MCC=0.00
k= 0.00
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D Problem Fingerprinting

The problem fingerprints encapsulate the properties of the driving biomedical problem that are
relevant for metric selection. The problem fingerprinting begins with the step of mapping a given
problem with all its intrinsic and data set-related properties to the corresponding problem category
via the category mapping shown in Fig. 8. Next, the user needs to instantiate the category-specific
fingerprint provided in Figs. 10/11 (image-level classification), Figs. 12/13 (semantic segmentation),
Figs. 14 - 16 (object detection) and Figs. 17 - 19 (instance segmentation).

It may not always be straightforward to instantiate a fingerprint item because of their bi-
nary/categorical nature. To address this issue, the Metrics Reloaded tool comprises a "Why are we
asking this question?" button in each branch based on a fingerprint that may not be straightforward
to instantiate. Furthermore, some fingerprint items depend on user preferences and/or deserve
particular attention. These are the following:

F2.6: Cutoff on predicted class scores. Modern algorithms output (continuous) predicted class scores.
To classify cases in an actual biomedical application (i.e. to make actual decisions), however, setting
a cutoff value on the scores is required. Currently, the available strategies are not transparently
motivated or distinguished in common practice. They are:

Target-value based Sometimes, the underlying problem provides a specific target metric value
to be reached (e.g. Sensitivity of 0.95), requiring a corresponding cutoff value. In this case,
we use the notation <Metricl>@<Metric2>, for example Specificity@Sensitivity, denoting
the Specificity for a Sensitivity matching the target value (here 0.95).

Optimization-based If no specific target value is provided, a data-based cutoff can also be
achieved by optimizing a primary metric (e.g. F; Score) using a dedicated data set for hyper-
parameter tuning.

Argmax-based An alternative widely used strategy is to simply determine the cutoff based
on the "argmax" operation, which boils down to a threshold of 0.5 in binary classification
problems.

Risk-based (for binary problems) In case the predicted class scores express the risk associ-
ated with a case belonging to a certain class (see F2.7), and there is a task-related risk threshold
provided (e.g., only treat patients with cancer risk >10%), one can apply this threshold directly
to the scores without data-driven optimization. Notably, provided risk thresholds correspond
to a cost ratio of TP versus FP (e.g., not more than 10 FP per 1 TP should be treated). The
Net Benefit (NB) metric considers this cost ratio as an inherent part of performance measure.
This option is not suited for multi-class problems.

No cutoff A complementary strategy is to abstain from validating algorithms at a certain cutoff
and exclusively report results on multi-threshold metrics (averaging over various cutoffs)
instead.

The deciding factor for choosing whether or not to use a cutoff should be how much focus is to be
put on a certain application at hand versus general and application-agnostic algorithm assessment.
While some communities have converged to cutoff-based validation (e.g. cell instance segmentation
[17]), recent clinical initiatives advocate for cutoff-agnostic validation arguing that cutoffs are
often over-optimized on a specific data set and that associated results are not transferable across
study cohorts (e.g. with differing disease prevalence) and clinical applications (e.g. with differing
cost-benefit trade-offs for patients) [10, 67, 90]. We handle this controversy in current practices
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by making validation at certain cutoffs optional (for all tasks except semantic segmentation) and
encoding user preferences in this fingerprint.

F2.7: Interpretability of predicted class scores requested. : When validating classification methods,
it is often crucial for the predicted class scores themselves to be interpretable. This holds especially
true for problems that involve direct human read-out. Interpretability is commonly achieved by
requesting an algorithm to be well-calibrated. This is the case if p percent of all predictions reported
at probability p are true [77]. In a clinical setting, for example, this would imply that out of all
patients that are assigned a score of 0.9, 90% should actually belong to the target class (e.g. have a
certain disease). In practice, many methods are overconfident, meaning that less than p percent of
all predictions reported at probability p are true. Calibration is commonly measured by the Expected
Calibration Error (ECE). An alternative to achieve interpretability are Proper Scoring Rules (PSR)
[34], such as Brier Score (BS) and the Logarithmic Score (LS), which validate discrimination and
calibration in a single score.

F4.2 Class prevalences reflect the population of interest. Class prevalences and their differences
across data sets are highly important, although this aspect is often ignored in common validation
practice. This can best be explained with the example of diagnostic tests (e.g. image-based classifi-
cation of a disease). While several metrics, such as Sensitivity and Specificity, are independent of
the occurrence of the target class and measure the inherent properties of the test, other metrics,
such as Accuracy, measure the performance of the tests for the specific prevalence of the test set.
This is not problematic if the class prevalences of the provided test set reflect the population of
interest but can lead to problems otherwise. This fingerprint should hence be set to true if either
the validation interest is constrained to the data set at hand (no future comparison to data sets with
different class prevalences is desired) or no variation of prevalences is expected in other cohorts
and upon application of the method.
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Fig. 8. Subprocess S1 for selecting a problem category. The Category Mapping maps a given research
problem to the appropriate problem category with the goal of grouping problems by similarity of vali-
dation. The leaf nodes represent the categories: image-level classification, object detection, instance segmen-
tation or semantic segmentation. F3.1 refers to fingerprint 3.1 (see Fig. 13). An overview of the symbols used

in the process diagram is provided in Fig. 6.
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Pitfall: Comparing wrong boundaries

Reference Prediction (SS) Prediction (IS)

=0 ?>>0

EE Al s

RI

R missed
Poor segmentation of R2

Fig. 9. Boundary-based metrics in semantic/instance segmentation problems. If multiple
structures of the same type can be seen within the same image (here: reference objects R7 and R2),
it is generally advisable to formulate the problem as instance segmentation (IS; right) rather than
semantic segmentation (SS; left) problem. This way, issues with boundary-based metrics resulting
from comparing a given structure boundary to the boundary of the wrong instance in the reference,
can be avoided. In the provided example, the distance of the red boundary pixel to the reference, as
measured by a boundary-based metric in SS problems, would be zero, because different instances of
the same structure cannot be distinguished. This problem is overcome by formulating the problem
as an IS problem. In this case, (only) the boundary of the matched instance (here: R2) is considered
for distance computation..
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IMAGE-LEVEL CLASSIFICATION (ILC) PART 1

Class | Image-level classification (ILC): assignment of one or multiple category labels to
1.1 Image processing category the entire image.
identified by category mapping Class 2 Example: disease screening; deciding on the presence or absence of a certain

condition/pathology without localizing the phenomenon.

nterest-related properties (p

2.5 Penalization of errors There may be a preference for certain types of errors from a domain perspective.
There is a preference for one or several of the classes. As a consequence, it may be
desirable to give more weight to the more important classes when aggregating
2.5.1 Unequal interest across class-specific scores.
classes Klﬂ E‘P Note that multi-class metrics have been designed for an equal interest across

classes and are thus not recommended if this property holds.

Example 1: In cell classification scenarios, it may be more important to correctly clas-
sify tumor cells compared to correctly classifying muscle cells or connective tissue.
Example 2: in full surgical scene segmentation for autonomous robotics; critical
structures, such as nerves or vessels, should be localized more accurately compared to
fatty tissue.

Any class can be confused with another, but certain mismatches are more severe
than others, from a domain point of view.

Example 1 (binary): polyp detection; a FN (missed polyp) is clinically much more
severe than a FP.

Example 2 (multi-class): Depending on the application, confusing different kinds of
immune cells is more problematic compared to confusing an immune cell with a
tumor epithelial cell.

Example 3 (multi-class): lung tumor categorization T1-T5 depends largely on
structure size, implying an ordinal scale of classes. Thus, penalization of class
confusions should reflect this ordinal scale.

2.5.2 Unequal severity of class
confusions

Severe class imbalances might impede interpretability and objective assessment
of method validation and e.g. lead to overly optimistic conclusions. Some metrics
compensate for such effects and thus enable unbiased interpretability and objec-
tive assessment.

Example 1 (multi-class classification with one dominant class): Accuracy would reflect
this imbalance and allow for high scores of an uninformed classifier, which impedes
interpretability of scores. BA and MCC, on the other hand, compensate for this effect
by re-scaling metric scores of an uninformed classifier to fixed

2.5.3 Compensation for class values (BA: 1 divided by the number of classes, MCC: 0) irrespective of the class

imbalances requested gl@ T + 1 gl@ imbalance.
Example 2 (binary classification with the negative class being o 7] d in the

form of “easy to classify” TN): Metric scores considering balanced discrimination of
two classes (e.g. LR+ or AUROC) might be dominated by TN and thus give an overly
optimistic picture of the performance, especially if practical interest lies with the posi-
tive class, such as in retrieval tasks or particular diagnostic tasks (e.g. cancer detection
out of a cohort with mostly healthy patients). Metrics not considering TN (e.g. F‘3 Score
or AP) compensate for this effect and enable focusing on the discrimination of the
positive class.

Fig. 10. Fingerprint for image-level classification (Part 1). In the case of binary fingerprints, the blue col-
umn shows examples for which the property is true while the red column shows counterexamples. Categorical
fingerprints are only shown in blue.
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IMAGE-LEVEL CLASSIFICATION (ILC) PART 2

Domain interest-related properties (part 2)

Modern algorithms output continuous class scores. Making a classification
decision requires setting a cutoff value on the scores, thereby generating a
(cutoff-specific) confusion matrix. This matrix enables the computation of popular
single-threshold counting metrics, such as sensitivity, PPV and F, Score.
Depending on domain interest the cutoff can be set in multiple ways:
value-b 2
The cutoff represents the threshold for which a specific target metric value (e.g.
Sensitivity = 0.95) is achieved. Other metric values (e.g. Specificity) are then
reported for this specific threshold.
2.6 Cutoff on predicted The cutoff is inferred by optimizing a target metric, such as the F, Score, on a
class scores dedicated data set provided for hyperparameter tuning.
Argmax-based:
If no target value is defined, no separate data split for optimization is available, or
there are concerns w.r.t generalization of data-based cutoff optimization, a
common option is to pick the hypothesis that is most probable (this strategy is
also referred to as argmax and is the principle behind a Bayes classifier).

Options:
- Target value-based
- Optimization-based
- Argmax-based

- Risk-based Risk-based:
- No cutoff In case the predicted class scores express the risk associated with a case belong-

ing to a certain class (see F2.7), and there is a task-related risk-threshold provided
(e.g., only treat patients with cancer risk >10%), one can apply this threshold
directly to the scores without data-driven optimization. Notably, provided risk
thresholds correspond to a cost ratio of TP versus FP (e.g., not more than 10 FP per
1 TP should be treated). The Net Benefit metric considers this cost ratio as an
inherent part of performance measure.

No cutoff:

Examples for no interest in validating a method at a certain cutoff are (1) focus on
general methodological performance across many tasks and data sets without
application interest, or (2) concerns regarding the comparability of results based
on a single cutoff that is fixed across varying study cohorts (see also F4.2).

When validating classification methods - particularly those with applications that
bied involve direct human read-out - it is often crucial for the predicted class scores
' themselves to be interpretable. This property should be set to true if the predict-
ed class scores should match the true probability of interest (e.g. the probability
of a patient to develop a certain disease in prediction problems).

Target structure-related properties

3.4 Possibility of multiple labels Class | e Multiple categories may be assigned to one image.
per unit (pixel or image) Class 2 - Examples: image classified with multiple pathologies during a screening process.

Data set-related properties

The class prevalences differ substantially.

2.7 Interpretability of predicted
class scores

Aat as . bt e
" o Example: In a screening application, the positive class (e.g. cancer) may occur extremely
a A4 AA ’
4.1 High class imbalance R ‘ as rarely. In this case, prevalence-dependent metrics, such as Accuracy, may be extremely
Aaaa ia aa iclondi

The class prevalences are representative of the prevalences to be expected in the
population of interest.
i if either the validation interest is constrained

This property should be set to true
. TP FN 215>, to the data set at hand or no variation of prevalences is expected in other cohorts
4.2 Provided class prevalences — @ and upon application of the method.

reflect the population of S22 The property should be set to false if variation of prevalences is expected to occur

interest beyond the current data set and, at the same time, comparability across study
cohorts or estimation of method performance upon future application are
requested. In this case, only prevalence-independent metrics will be
recommended.

The test cases are hierarchically structured, indicating non-independence of test

4.5 Non-independence of asbam
test cases Examples: multiple images of the same patient, hospital or video.

Algorithm output-related properties

Modern algorithms in biomedical image classification output continuous class
scores, which are often interpreted as predicted class probabilities. These scores
contain relevant information about the performance of a model and are thus

crucial for comprehensive and meaningful validation.

If no predicted class probabilities are available, this property is set to false.

Pred Pred

5.1 Availability of predicted
class scores ||

5.3 Possibility of invalid algorithm e Fred (25 G

output (e.g. Prediction is NaN)

The files representing the algorithm output can contain invalid output. Note that
an invalid prediction differs from an empty prediction.

Fig. 11. Fingerprint for image-level classification (Part 2). In the case of binary fingerprints, the blue col-
umn shows examples for which the property is true while the red column shows counterexamples. Categorical
fingerprints are only shown in blue.
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Semantic segmentation (SS): assignment of one or multiple category labels to

1.1 Image processing category eaChP;xeL ol - ey
identified by category mappin Example: surgical scene seg for robotics; assigning each pixe
Yy gory pping the c ponding struc gan/pathology label.

o,

The biomedical application requires exact structure boundaries.
le: ion for radioth: lanning; k of exact structure

Py p
2.1 Particular importance of ; - boundaries is crucial to destroy the tumor while sparing healthy tissue.
structure boundaries A Important: Overlap-based metrics do not measure shape agreement. In the case
of complex shapes (high boundary-to-volume ratio) it is therefore typically
advisable to set this property to true.
i
2.3 Particular importance of structure t t | The biomedical application requires accurate knowledge of structure centers.
ERE (@) e, v E E . Example: cell centers are subsequently used for cell tracking and cell motion
g v SSESEESESI pEREERME: characterisation, so false center movement should be suppressed.

[4493%¢

Any class can be confused with another, but certain mismatches are more severe

: : than others, from a domain point of view.
2.5.2 Unequal severity of class 2 Example 1 (binary): polyp detection; a FN (missed polyp) is clinically much more
confusions < severe than a FP.
Example 2 (multi-class): Depending on the application, confusing different kinds of
immune cells is more probl ic compared to confusing an il cell witha

tumor epithelial cell.

Example 3 (multi-class): Lung tumor categorization T1-T5 depends largely on
structure size, implying an ordinal scale of classes. Thus, penalization of class
confusions should reflect this ordinal scale.

Spatial outliers are FP predictions that feature a large distance to the reference.
They can be handled in three different ways:

- : Outliers should be heavily
penalized as a function of the distance to the reference.

-| : Outliers should be penalized as
a function of the distance to the reference, but the assessment should focus on
the general contour ag rather than individual outliers.

i - ization: The existence of spatial outliers should be

penalized irrespective of their distance to the reference.

2.5.4 Handling of spatial outliers

Distance-based penalization is not possible when either the reference or the
prediction is empty. In applications in which many such cases potentially occur,
we therefore recommend an existence-based penalization.

Fig. 12. Fingerprint for semantic segmentation (Part 1). In the case of binary fingerprints, the blue col-
umn shows examples for which the property is true while the red column shows counterexamples. Categorical
fingerprints are only shown in blue.
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Target structure-related properties

3.1 Small size of structures relative
to pixel size

3.3 Target structures feature
tubular shape

such a way that a smgle pixel makes up at least several percentage points of the
structure volume.

Example: multiple sclerosis lesions in magnetic resonance imaging (MRI) scans.

The target structures feature a tubular shape.

3.5 Possibility of overlapping or
touching target structures
(e.g. medical instruments or cells)

4.1 Presence of class imbalance

4.3.1 High inter-/intra-rater
variability

4.5 Non-independence of test cases

Algorithm output-related properties

5.2 Possibility of algorithm output

not containing the target
structure(s) -...H

vessels, neurons, microtubules.

Dlﬂ’erent instances of a class can overlap or touch each other.
lapping cells or lapping medical instruments in
laparoscopy.

The class prevalences differ substantially.

Example: In a screening application, the positive class (e.g. cancer) may occur extremely
rarely. In this case, prevalence-dependent metrics, such as Accuracy, may be extremely
misleading.

The reference can be assumed to be noisy due to high inter-rater variability.

The test cases are hierarchically structured, indicating non-independence of test
cases.
Examples: multiple images of the same patient, hospital or video.

The algorithm may yield output images only comprising the background class.

Fig. 13. Fingerprint for semantic segmentation (Part 2). In the case of binary fingerprints, the blue col-
umn shows examples for which the property is true while the red column shows counterexamples. Categorical

fingerprints are only shown in blue.
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OBJECT DETECTION (OD) PART 1

1.1 Image processing category
identified by category mapping

Object detection (OD): detection and localization of structures of one or multiple
categories.

Example: detection and bounding box-based localization of polyps in colonoscopy
sequences.

Domain interest-related properties (part 1)

2.3 Particular importance of structure
center (e.g. in cells, vessels)

2.4 Desired granularity of
localization

classes

2.5.2 Unequal severity of class
confusions

imbalances requested

2.5.6 Penalization of multiple
predictions assigned to the
same reference object
requested

2.5.7 Penalization of multiple
reference objects assigned to
same prediction requested

2.5 Penalization of errors There may be a preference for certain types of errors from a domain perspective.

2.5.1 Unequal interest across &P

2.5.3 Compensation for class 1*1

P TP
RehE] Ref
P ignored

ignored

The biomedical application requires accurate knowledge of structure centers.
Example: cell centers are subsequently used for cell tracking and cell motion
characterisation, so false center movement should be suppressed.

The granularity of required localization can vary in object detection tasks. We
distinguish two main categories:

Only position: given an n-dimensional image, the object is represented by its
position, encoded in n degrees of freedom (e.g. xy/xyz coordinates of center
point).

Rough outline: a rough outline of the object is provided, typically given by simple
geometric approximations such as bounding boxes or ellipsoids.

It should be noted that if a substantial fraction of objects are tiny (F3.1), any
outline-based localization becomes very noisy. In such cases, users might want to
consider al localizati such as a center point-based
localization.

There is a preference for one or several of the classes. As a consequence, it may be
desirable to give more weight to the more important classes when aggregating
class-specific scores.

Example 1: In cell classification scenarios, it may be more important to correctly clas-
sify tumor cells compared to correctly classifying muscle cells or connective tissue.
Example 2: in full surgical scene segmentation for autonomous robotics; critical struc-
tures, such as nerves or vessels, should be localized more accurately compared to
fatty tissue.

Any class can be confused with another, but certain mismatches are more severe
than others, from a domain point of view.

Example 1 (binary): polyp detection; a FN (missed polyp) is clinically much more
severe than a FP.

Example 2 (multi-class): Depending on the application, confusing different kinds of
immune cells is more problematic compared to confusing an immune cell with a
tumor epithelial cell.

Example 3 (multi-class): Lung tumor categorization T1-T5 depends largely on
structure size, implying an ordinal scale of classes. Thus, penalization of class
confusions should reflect this ordinal scale.

Severe class imbalances might impede interpretability and objective assessment
of method validation and e.g. lead to overly optimistic conclusions. Some metrics
compensate for such effects and thus enable unbiased interpretability and objec-
tive assessment.

Example (binary classification with the negative class being overrep d in the
form of “easy to classify” TN): Metric scores considering balanced discrimination of
two classes (e.g. LR+ or AUROC) might be dominated by TN and thus give an overly
optimistic picture of the performance, especially if practical interest lies with the posi-
tive class, such as in retrieval tasks or particular diagnostic tasks (e.g. cancer detection
out of a cohort with mostly healthy patients). Metrics not considering TN (e.g. Fy Score
or AP) compensate for this effect and enable focusing on the discrimination of the
positive class.

Object detection algorithms involve the step of assigning predicted objects to
reference objects. This may result in more than one prediction being assigned to
the same reference. This fingerprint property should be set to true if all but one
prediction of such an assignment should be penalized as FP, and set to false if
these spare predictions should be ignored during validation.

Object detection algorithms involve the step of assigning reference objects to
predicted objects. This may result in more than one reference being assigned to
the same prediction. If such an assignment should be penalized, this fingerprint
property should be set to true.

Fig. 14. Fingerprint for object detection (Part 1). In the case of binary fingerprints, the blue column
shows examples for which the property is true while the red column shows counterexamples. Categorical

fingerprints are only shown in blue.
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interest-related properties (part 2)

When validating classification methods - particularly those with applications that
involve direct human read-out - it is often crucial for the predicted class scores
themselves to be interpretable. This property should be set to true if the predict-
ed class scores should match the true probability of interest (e.g. the probability
of a patient to develop a certain disease in prediction problems).

2.7 Interpretability of predicted
class scores

Structures of the provided class are consistently small relative to the grid size in
3.1 Small size of structures relative T such a way that a single pixel makes up at least several percentage points of the
to pixel size HHE H structure volume.
& Example: multiple sclerosis lesions in magnetic resonance imaging (MRI) scans.

3.3 Target structures feature : The target structures feature a tubular shape.
tubular shape les: vessels, neurons, microtubules.

3.6 Possibility of disconnected A given structure appears disconnected in the given image.

Examples: neurons in 2D microscopy of a slice of tissue; single tomographic image
slice depicting complex vessels. vv

target structure(s)

Fig. 15. Fingerprint for object detection (Part 2). In the case of binary fingerprints, the blue column
shows examples for which the property is true while the red column shows counterexamples. Categorical
fingerprints are only shown in blue.
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4.1 Presence of class imbalance

4.3.1 High inter-/intra-rater
variability

4.4 Granularity of provided reference
annotations

4.6 Possibility of reference without
target structure(s)

Data set-related properties

5s prevalences differ substantially.

:In a screening application, the positive class (e.g. cancer) may occur extremely
this case, prevalence-dependent metrics, such as Accuracy, may be extremely

ng.

The reference can be assumed to be noisy due to high inter-rater variability.

The granularity of the reference can vary in object detection problems. We
distinguish three main categories:

Only position: Given an n-dimensional image, the object is represented by its
position, encoded in n degrees of freedom (e.g. xy/xyz coordinates of center point)
Rough outline: A rough outline of the object is provided, typically given by simple
geometric objects such as bounding boxes or ellipsoids.

Exact outline: The object is outlined exactly.

5.1 Availability of predicted
class scores

5.3 Possibility of invalid algorithm
output (e.g. Prediction is NaN)

Modern algorithms in biomedical image classification output continuous class
scores, which are often interpreted as predicted class probabilities. These scores
contain relevant information about the performance of a model and are thus
crucial for comprehensive and meaningful validation.

In object detection, predicted class probabilities are typically available for each
detected object.

If no predicted class probabilities are available, this property is set to false.

The files representing the algorithm output can contain invalid output. Note that
an invalid prediction differs from an empty prediction.

Fig. 16. Fingerprint for object detection (Part 3). In the case of binary fingerprints, the blue column
shows examples for which the property is true while the red column shows counterexamples. Categorical
fingerprints are only shown in blue.
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Instance segmentation (IS): detection and delineation of each distinct object of a
particular class. It can be regarded as delivering the tasks of object detection and
semantic segmentation at the same time. In contrast to object detection, in-
stance segmentation also involves the accurate marking of the object boundary.
In contrast to semantic segmentation, it distinguishes different instances of the
same class.

le: cell ion with a

1.1 Image processing category
identified by category mapping

goal of cell counting.

Domain interest-related properties (part 1)

The biomedical applicatlon requlres exact structure boundaries.
for of exact structure
boundaries is crucial to destroy the tumor while sparing healthy tissue.

2.1 Particular importance of structure
boundaries Important: Overlap-based metrics do not measure shape agreement. In the case
of complex shapes (high boundary-to-volume ratio) it is therefore typically

advisable to set this property to true.

The biomedical application requires accurate knowledge of structure centers.
cell centers al used for cell tracking and cell motion
characterisation, so false center should be

2.3 Particular importance of structure
center (e.g. in cells, vessels)

Any class can be confused with another, but certain mismatches are more severe
than others, from a domain point of view.

Example (binary): polyp detection; a FN (missed polyp) is clinically much more severe
thanaFP.

2.5.2 Unequal severity of class

confusions Speﬂﬁcally ininstance segmentatlon problems, the property needs to be set
a) for detection for the vali of the (a) d ion (relevant decision guide: 4.4)
b) for segmentation and (b) segmentation performance (relevant subprocesses: 7, 8). At object level,

FNs (missed instances) are sometimes more severe than FPs, while FNs (e.g.
undersegmentation) and FPs (e.g. oversegmentation) may be equally important
at pixel level.

(per instance)

Spatial outliers are FP predictions that feature a large distance to the reference.

They can be handled in three different ways:

Distance-based penalization with outlier focus: Outliers should be heavily

penalized as a function of the distance to the reference.
(s | Distance-based penalization with contour focus: Outliers should be penalized as
afunction of the distance to the reference, but the assessment should focus on
the general contour agreement rather than individual outliers.

-based ion: The exi: of spatial outliers should be

penalized irrespective of their distance to the reference.

2.5.4 Handling of spatial outliers

Illllll!
»

Distance-based penalization is not possible when either the reference or the
prediction is empty. In applications in which many such cases potentially occur,

we dan -based

Fig. 17. Fingerprint for instance segmentation (Part 1). In the case of binary fingerprints, the blue column
shows examples for which the property is true while the red column shows counterexamples. Categorical
fingerprints are only shown in blue.
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Domain interest-related properties (part 2)

Instance segmentation algorithms often involve the step of assigning predicted

o : objects to reference objects. This may result in more than one prediction being
prre:m“f”:s :SSIQT’?d;o 2 assigned to the same reference. This fingerprint property should be set to true if
SEING [ELEEECle2 all but one prediction of such an assignment should be penalized as FP, and set to|
requested false if these spare predictions should be ignored during validation.

2.5.6 Penalization of multiple

Modern algorithms output continuous class scores. Making a classification
decision requires setting a cutoff value on the scores, thereby generating a
(cutoff-specific) confusion matrix. This matrix enables the computation of popular
single-threshold counting metrics, such as sensitivity, PPV and F, Score.
Depending on domain interest the cutoff can be set in multiple ways:

Target value-based:

The cutoff represents the threshold for which a specific target metric value (e.g.
Sensitivity = 0.95) is achieved. Other metric values (e.g. Specificity) are then
reported for this specific threshold.

2.6 Cutoff on predicted class scores

Options:
- Target value-based
- Optimization-based
- Argmax-based
- No cutoff

The cutoff is inferred by optimizing a target metric, such as the F, Score, on a
dedicated data set provided for hyperparameter tuning.

If no target value is defined, no separate data split for optimization is available, or
there are concerns w.r.t generalization of data-based cutoff optimization, a
common option is to pick the hypothesis that is most probable (this strategy is
also referred to as argmax and is the principle behind a Bayes classifier).

Examples for no interest in validating a method at a certain cutoff are (1) focus on
general methodological performance across many tasks and data sets without
application interest, or (2) concerns regarding the comparability of results based
on a single cutoff that is fixed across varying study cohorts (see also F4.2).

Structures of the provided class are consistently small relative to the grid size in
such a way that a single pixel makes up at least several percentage points of the
structure volume.

Example: multiple sclerosis lesions in magnetic resonance imaging (MRI) scans.

3.1 Small size of structures relative
to pixel size

3.3 Target structures feature
tubular shape

The target structures feature a tubular shape.
B les: vessels, neurons, microtubules.

p

3.5 Possibility of overlapping or
touching target structures
(e.g. medical instruments or cells) 'L

Different instances of a class can overlap or touch each other.

cells or lapping medical instruments in

laparoscopy.

Fig. 18. Fingerprint for instance segmentation (Part 2). In the case of binary fingerprints, the blue column
shows examples for which the property is true while the red column shows counterexamples. Categorical
fingerprints are only shown in blue.
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4.1 Presence of class imbalance

4.3.1 High inter-/intra-rater
variability

5.1 Availability of predicted
class scores

5.3 Possibility of invalid algorithm
output (e.g. Prediction is NaN)

4.5 Non-independence of test cases

Data set-related properties

The class prevalences differ substantially.
Example: In a screening application, the positive class (e.g. cancer) may occur extremely
rarely. In this case, prevalence-dependent metrics, such as Accuracy, may be extremely

misleading.

The reference can be assumed to be noisy due to high inter-rater variability.

The test cases are hierarchically structured, indicating non-independence of test
cases.
Examples: multiple images of the same patient, hospital or video.

Algorithm output-related properties

Modern algorithms in biomedical image classification output continuous class
scores, which are often interpreted as predicted class probabilities. These scores
contain relevant information about the performance of a model and are thus
crucial for comprehensive and meaningful validation.

Instance segmentation problems in the biomedical domain are often approached
by adding a post-processing step (e.g. connected component analysis) to a
semantic segmentation algorithm. In this process, predicted class probabilities
often get lost.

If no predicted class probabilities are available, this property is set to false.

The files representing the algorithm output can contain invalid output. Note that
an invalid prediction differs from an empty prediction.

Fig. 19. Fingerprint for instance segmentation (Part 3). In the case of binary fingerprints, the blue column
shows examples for which the property is true while the red column shows counterexamples. Categorical
fingerprints are only shown in blue.



Metrics reloaded 45

E Metric Selection

Based on the problem fingerprinting (App. D), the user is guided through the process of selecting an
appropriate set validation metrics from different families while being made aware of potential pitfalls
related to individual choices. As a foundation for this process, the Metrics Reloaded consortium
compiled a set of common reference-based validation metrics that are recommended (Tab. 2). A
comprehensive introduction and discussion of the individual metrics can be found in the sister
publication of this work [72]. Here, we focus on which metric(s) to recommend under which
circumstances. The Results section summarized the core of our recommendations. The following
Figures detail the subprocesses that are referenced in Fig. 2 of the main paper.

Table 2. Overview of recommended reference-based metrics. For each metric, a name, acronym, syn-
onyms, reference to the definition and illustration, range and corresponding problem categories are provided.
The direction of each arrow in the column range indicates whether higher (up) or lower scores (down) are better.
A detailed introduction and discussion of the metrics can be found in the sister publication of this work [72].
ILS: image-level classification; SS: semantic segmentation; OD: object detection; IS: instance segmentation.

Metric Acronym Synonyms Definition Range Recommended for
ILC SS oD IS

Counting Metrics

Accuracy [37, 85] [0,1] 7 X
Balanced Accuracy BA [37, 85] [0,1] T X
Weighted Cohen’s Kappa WCK Cohen’s Kappa Coefficient, Kappa Statis- [28] [-1,1] 7 X
tic, Kappa Score
Center line Dice Similarity Coeffi- clDice [79] [0,1] T X X
cient
Dice Similarity Coefficient DSC Serensen-Dice Coefficient, F1 Score, Bal- [32] [0,1] T X X
anced F Score
Expected Cost EC [14] (-00, ) | X
Fp3 Score [24] [0,1] T x X X X
False Positives per Image* FPPI [8, 89] [0, ) | X X
Intersection over Union ToU Jaccard Index, Tanimoto Coefficient [44] [0,1] T X X
Matthews Correlation Coefficient MCC Phi Coefficient [63] [1,1] 7 X
Panoptic Quality PQ [51] [0,1] T X
Net Benefit NB [90] (-00,00) T X
Negative Predictive Value* [13, 85] [0,1] 7 X
Positive Likelihood Ratio LR+ Likelihood Ratio Positive, Likelihood Ra- (6] [0, ) T X
tio for Positive Results
Positive Predictive Value* PPV Precision [13,37, 85] [0,1] 7 X X X
Sensitivity* Recall, Hit Rate, True Positive Rate (TPR) [13, 37, 85] [0,1] 7 X X X
Specificity* Selectivity, True Negative Rate (TNR) [13, 37, 85] [0,1] 7 X

Multi-threshold Metrics

Area under the Receiver Operating ~ AUROC Area under the curve (AUC), AUC Re- [39] [0,1] 7 X
Characteristic Curve ceiver Operating Characteristic (ROC), C-
Index, C-Statistics
Average Precision AP [57] [0,1] 7 X X X
Free-Response Receiver Operating  FROC Score [8, 89] [0,1] 7 X X

Characteristic Score

Distance-based Metrics

Average Symmetric Surface Distance ASSD [94] [0, ) | X X
Boundary Intersection over Union Boundary IoU [21] [0,1] 7 X X
Hausdorff Distance HD Hausdorff Metric, Pompeiu-Hausdorff [42] [0, 00) | X X
Distance, Maximum Symmetric Surface
Distance
Mean Average Surface Distance MASD [11] [0, 00) | X X
Normalized Surface Distance NSD Normalized Surface Dice, Surface Dis- [70] [0,1]1 T X X
tance, Surface Dice
Xh Percentile HausdorfF Distance xth Per- [42] [0, ) | X X
centile HD
Calibration Metrics
Proper Scoring Rules PSR [35] varying** X X X
Expected Calibration Error ECE [38] [0,1] T X X X

*: This metric is best used in combination with another metric using a predefined target value (see "Target value-based
cutoff” in the definition of F2.6: Cutoff on predicted class scores (App. D).
**: The range depends on the chosen Proper Scoring Rule.
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Fig. 20. Subprocess S2 for selecting multi-class metrics (if any). Applies to: image-level classification
(ILC). In the case of presence of class imbalance and no compensation of class imbalance being requested,
one should follow the ’no’ branch. Decision guides are provided in App. F.2.
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Fig. 21. Subprocess S3 for selecting a multi-threshold metric (if any). Applies to: image-level classifica-
tion (ILC), object detection (OD) and instance segmentation (IS). Decision guides are provided in App. F.3.
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Fig. 22. Subprocess S4 for selecting a per-class counting metric (if any). Applies to: image-level clas-
sification (ILC), object detection (OD) and instance segmentation (IS). Decision guides are provided in
App. F.4.
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Fig. 23. Subprocess S5 for selecting the localization criterion. Applies to: object detection (OD) and
instance segmentation (IS). Definitions of the localization criteria can be found in [72]. Decision guides are
provided in App. F.5.
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Fig. 24. Subprocess S6 for selecting the assignment strategy. Applies to: object detection (OD) and
instance segmentation (IS). Assignment strategies are defined in [72]. Decision guides are provided in
App. F.6.
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Fig. 25. Subprocess S7 for selecting overlap-based segmentation metrics (if any). Applies to: semantic
segmentation (SS) and instance segmentation (IS). Decision guides are provided in App. F.7.
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Fig. 26. Subprocess S8 for selecting a boundary-based segmentation metric (if any). Applies to: se-
mantic segmentation (SS) and instance segmentation (IS). Decision guides are provided in App. F.8.
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F Decision Guides

F.1  Decision guide Overview Mapping.

DM.1: Select calibration metric

There are two main concepts for measuring whether predicted class scores of a classifier correctly
express the probability of class membership.

e Expected Calibration Error: A calibrated model outputs predicted class scores that match
the empirical success rate (e.g. outputs with score 0.8 for a specific class empirically belong to
this class in 80% of the cases). Measuring whether a model is calibrated is commonly done by
dividing the scale of class scores into bins and subsequently (1) plotting the empirical success
rate over bins for visual assessment (see [38]) and (2) computing the expected calibration
error (ECE), i.e. the calibration error per bin averaged over bins. Crucially, calibration should
generally not be assessed without validating a model’s discrimination ability in parallel. This
is because a model might be perfectly calibrated but provide no discrimination (e.g. always
output score 0.5 on a dataset with two balanced classes), which reduces the value of the
model to stating the class prevalence of the data set (i.e. the expressed class membership
probability per case is correct but not useful).

e Proper Scoring Rules: PSR allow to validate discrimination and calibration in a single score.
Specifically, these metrics require predicted class scores to match the true posterior probability
in each individual case. Example metrics are the Brier score (BS) and the Logarithmic Score

(LS)).

Calibration and class prevalence: Crucially, calibration errors as well as PSR are generally
prevalence-dependent metrics. Thus, if the prevalence of the data set does not represent the
population of interest (see F4.2), the quality of the risk expressed by predicted class scores is not
comparable across data sets and needs to be re-validated on each new study cohort (see Fig. 27).
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Pitfall: Prevalence-dependent metrics cannot be compared across data sets with different
prevalences

Inherent properties of a method: Sensitivity = 0.90, Specificity = 0.80

Application to data
Prevalence = 0.50 sets with different Prevalence = 0.90

class prevalences

PREDICTED PREDICTED
Positive  Negative Positive  Negative
gl FN glTp FN
2 E 45 5 2 § 81 9
G, S,
< Z|F8 ™ < Z|FP ™
& 10 40 SN 2 8
z z
BA=0.85 BA=0.85
EC*=0.15 EC*=0.15
* Prevalence-corrected
Accuracy = 0.85 < Accuracy = 0.89) Prevalence
MCC=0.70 >> MCC=0.56 dependent

Fig. 27. Effect of prevalence dependency. An algorithm with specific inherent properties (here:
Sensitivity of 0.9 and Specificity of 0.8), may perform completely differently on different data sets if
the prevalences differ (here: 50% (left) and 90% (right)) and prevalence-dependent metrics are used
for validation (here: Accuracy and Matthews Correlation Coefficient (MCC)). In contrast, prevalence-
independent metrics (here: Balanced Accuracy (BA) and the prevalence-corrected Expected Cost (EC))
can be used to compare validation results across different data sets. Used abbreviations: True
Positive (TP), False Negative (FN), False Positive (FP) and True Negative (TN).
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F.2 Decision guide S2.

D2.1: Weighted Cohen’s Kappa (WCK) versus EC

The following aspects should be taken into account when deciding between WCK and EC: Both
metrics allow for incorporating task-specific penalties for confusions between individual pairs of
classes. Common use cases for this property are tasks with ordinal classes or diagnostic decisions
with errors of varying clinical severity. However, there are substantial differences between the two
metrics:

e Symmetry: Kappa statistics in general and WCK in particular were originally proposed to
compare annotations/guesses of two raters on an ordinal scale, which is a symmetric problem
by nature. Application of such measures to benchmarking studies is hence problematic
because these involve the comparison of a prediction to a reference, which is considered
to be/approximate the truth (asymmetric setting). Therefore, WCK does conceptually not
match the comparison we are attempting to make and could thus lead to misleading results.
EC does not suffer from this problem.

e Interpretability: WCK is arguably hard to interpret. The fact that the "agreement by chance"
is subtracted to account for class imbalances seems intuitive, but the behaviour of resulting
scores is not independent of class imbalances (leading to generally higher scores for more
balanced data). EC, on the other hand, constitutes an intuitive extension of Accuracy where
customized penalties for individual class confusions can be integrated. Further, class priors
(i.e. expected class prevalences in the target population) in EC can be adapted if known [56].

e Undesired behaviour in practice: Using WCK with quadratic weights, as often done for
ordinal tasks, has been found to lead to "paradoxical results" [92].

e Popularity: WCK is often used in the biomedical domain, whenever customized penalties
for class confusions are required. EC, on the other hand, is currently mostly found either in
statistical text books or in non-related domains such as speech recognition.

e Theoretical foundation: EC comes with a comprehensive theoretical foundation based on
Bayesian decision theory. As a consequence, it is possible to analytically derive the optimal
cutoff on the predicted class scores. As this requires calibrated scores (i.e. the scores are
expected to represent posterior probabilities of the class given the data), any performance
mismatch between the theoretical threshold and an empirical threshold on the final test data
can be interpreted as a calibration error.

D2.2: Accuracy and BA versus MCC

Accuracy and BA can both be seen as an instantiation of EC. Accuracy, in turn, is identical to
BA in the case of balanced classes (F4.1 = FALSE). In the provided decision tree (Subprocess S2,
Fig. 20), the decisions to be made thus primarily boil down to deciding between BA and MCC. In
this context, the following aspects should be taken into account:

o Commonalities: It is well-known that some metrics, such as Accuracy, can yield an unrea-
sonably high score for an uninformed classifier when class imbalance is high [72]. BA and
MCC both compensate for this effect by re-scaling metric scores of an uninformed classifier
to fixed values (BA: 1 divided by the number of classes, MCC: 0) irrespective of the class
imbalance, thereby enhancing interpretability. Accuracy, in turn, is identical to BA in the
case of balanced classes. Note that we recommend Accuracy only if there is no class balance
(F4.1 = FALSE) or the class imbalance should not be compensated for (F2.5.3 = FALSE).

e Prevalence dependency: A main difference between BA and MCC is the integration of the
predictive values from the confusion matrix: While BA only averages the recalls for each
class (e.g. TPR and TNR in the binary case), MCC takes into account the predictive values
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(e.g. PPV and NPV) in the binary case) as well. This makes MCC a prevalence-dependent
metric and thus unsuited for comparison between datasets with different prevalences (Fig. 27).
We therefore recommend MCC only if the provided class prevalences reflect the population
of interest (F4.2 = TRUE). On the other hand, the integration of the predictive values can
also be seen as an advantage. In fact, MCC is a comprehensive measure that only yields high
scores if all basic rates ( TPR, TNR, PPV, NPV in the binary case), (and thus also F; Score,
Accuracy and BA) yield high scores [23]. In other words, low MCC scores can be interpreted
as a warning that at least one of the related metrics must be low as well.

Interpretability: BA is the macro-averaged TPR and can thus be interpreted as the chance for
correct prediction if the classes have a uniform prior. If this uniform prior is also representative
for the underlying medical application (F4.1 = FALSE), BA and Accuracy are identical and and
represent the fraction of correctly classified samples, which is straightforward to interpret.
The discrepancy of the actual BA and the theoretical value for an uninformed classifier (1
divided by the number of classes) constitutes an objective estimation of the "randomness"
of a classifier irrespective of class prevalences [23]. MCC always maps such an uninformed
"random" classifier to 0 and a perfect classifier to 1. Values below 0 indicate a performance
worse than the simple uninformed classifier. However, the interpretation of intermediate
MCC values is more difficult. It can not be used to measure the "closeness" to random
guessing[23, 97]. Finally it should be noted that the behavior of MCC has been mostly studied
for the binary case and the literature is lacking broad comparison for the multi-class context.
Bias: It has been shown that MCC can be expressed in terms of BA with an additional factor
depending on class prevalence and model bias [23]. One interpretation of this formula for
the binary case is, that MCC favors models whose predictions are biased towards one class,
where BA only cares about the mean of TPR and TNR. At the same time, this bias enforces a
higher average of PPV and NPV, thus increasing the predictive performance of the model.
Example: Imagine a breast cancer screening program with a dominance of negative cases,
where FN indicate a missed cancer case and FP lead to unnecessary biopsy and stress for the
patients. Both need to be avoided, butFP (even considerable amounts) might go unnoticed in
BA because the large amount of TN dominates the TNR. Thus, in order to detect these FP it
is crucial to check for a high PPV. MCC addresses this problem by considering all basic rates
including PPV and NPV.

Popularity: BA and Accuracy are far more popular than MCC, probably because of the
easier interpretability and the possibility to compare across datasets.
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F.3  Decision guide S3.

D3.1: Average Precision (AP) versus Free-Response Receiver Operating Characteristic
(FROC) Score

The following aspects should be taken into account when deciding between AP and FROC Score:

e Community preferences: While AP constitutes the undisputed standard metric for object
detection and instance segmentation in the computer vision community, the FROC Score
is often favoured in the clinical context due to its easier interpretability despite its lack
of standardization (employed False Positives per Image (FPPI) Scores vary across studies
[10, 47, 78]). Thus, the decision between the two metrics often boils down to a decision
between a standardized and technical validation versus an interpretable and application-
focused validation.

e Data set size awareness: In contrast to AP, the FROC Score takes into account the total
number of images in the data set (see also Fig. 28). This property does not affect relative
method comparison and can be related to the underlying question "at which scale are matched
objects (cardinalities) aggregated/counted?". We discuss this question and implication for
associated metrics in [72]. While AP originally (i.e. in the computer vision community) counts
matched objects over the entire data set (as opposed to per image), [72] demonstrates how to
apply AP and other object detection metrics to (e.g. clinical) scenarios requiring per image
aggregation. FROC score is a hybrid metric in this context, where Sensitivity is computed per
data set while FP are averaged over single images (FPPI).

e Dealing with low-confidence predictions: It is often desired to filter low confidence pre-
dictions (e.g. objects with high confidence of being background) prior to metric computation.
For AP computation, this requires a cutoff on the confidence score or upper limits of consid-
ered predictions per image or per data set. For FROC, however, with typical values of FPPI,
such low-confidence predictions naturally go unconsidered, thus allowing to avoid additional
filtering measures.

e FPPI: Different FPPI values are used in the field for computing the FROC Score, yielding
non-standardized results (see Fig. 29). A potential default are the values 1/8, 1/4, 1/2, 1, 2, 4, 8,
as used for multiple popular benchmarks [78, 89]. Here, lower FPPI values (smaller than one)
are weighted equally to higher FPPI values (greater than 1; four values each). Deviation from
this weighting might be appropriate depending on the application, but should be explained.
In the biostatistics community, areas under the curve are sometimes computed constraining
the FPPI range to [0,1] [74].
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Pitfall: Average Precision (AP) disregards total number of images

Fig. 28. Effect of the number of images per data set on the metric scores. The Average Precision (AP)
metric does not take into account the total number of images, yielding the same score for data sets
D1 and D2. The Free-Response Receiver Operating Characteristic (FROC) curve plots the average
number of False Positives per Image (FPPI) against the Sensitivity, therefore accounting for the
number of images. The FPPI is lower for D2, yielding a higher FROC score.
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Pitfall: Free-Response Receiver Operating Characteristic (FROC) not standardized
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Fig. 29. Effect of defining different ranges for the False Positives per Image (FPPI) used to draw the
Free-Response Receiver Operating Characteristic (FROC) curve for the same prediction (top). The
resulting FROC Scores will change for different boundaries of the x-axis.
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F.4 Decision guide 54.

D4.1: PPV @Sensitivity versus FPPI@Sensitivity

The decision between PPV@Sensitivity and FPPI@Sensitivity relates to most aspects described
in D3.2 (AP versus FROC Score): While PPV is a generic metric applied in various communities,
FPPI originated in the medical community and features improved interpretability. One important
difference is that PPV is typically computed once over the entire data set, while FPPI counts FP per
image and subsequently averages over the data set. In [72] we discuss the implications of these two
aggregation strategies and further present an approach on how to apply various object detection
metrics (including PPV) in the context of per-image aggregation.

D4.2: How to determine f in Fz Score
The Fg Score is defined as:

PPV - Sensitivity =~ (1+p8%) - TP )
(f? - PPV) + Sensitivity (1 + f2) - TP + 2 - FN + FP
The most common choice is to set  to 1 resulting in equal weighting of FP and FN penalties. If
unequal penalization of class confusions is desired (see F2.5.2), higher values of f§ result in higher

weights on FN penalties compared to FP penalties and thus imply a focus on Sensitivity compared
to PPV.

D4.3: F Score versus Panoptic Quality (PQ)

The Fg Score is a pure detection metric counting TP, FP, and FN detections on instance level (specif-
ically, it represents the harmonic mean of PPV and Sensitivity, see also [72]. The “segmentation
aspect” of IS is here only incorporated via a prior cutoff on the localization criterion operating on
pixel level (e.g. “IoU > 0.5”). In case shifting the focus of validation more towards the segmentation
quality of successfully matched (TP) instances is desired, there are two options:

Fﬁ=(1+ﬂ2)-

(1) Complementary segmentation metric: One option is to select separate segmentation
metrics (in addition to object detection metrics such as Fg Score) on a per-instance basis (e.g.
“DSC per TP-instance”). This selection is enabled by following the IS path in Fig. 2 traversing
the SS subroutines S7 (Fig. 25) and S8 (Fig. 26).

(2) Hybrid metric: An alternative is to select PQ instead of F4 Score, which allows expressing
both interests (detection performance and segmentation quality) in a single score. Essentially,
PQ is a modified F; Score, where TP instances do not count as “1” in the calculation, but the “1”
is replaced with the associated DSC score (range [0,1]) of the instance. While combining the
two aspects in a single score might be desirable, e.g. for method benchmarking or ranking, on
the downside, such combined metrics make it harder to trace back performance to individual
aspects (in this case: object detection versus segmentation; see Fig. 30).
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Pitfall: Assessing segmentation and detection quality simultaneously

Reference Prediction | Prediction 2
EEEE—— e Em—————
MM Instances 1,2,3 .. Instances 1,2,3,4,5 B Instances 1,2,3
TP TP
FP
: B o m e
TP TP
s rP
Segmentation quality Segmentation quality 3¢
Detection quality 3¢ Detection quality
PQ = 0.75 = PQ = 0.75
Fig. 30. Effect of assessing segmentation and detection quality in a single score. Prediction 1 achieves
a high segmentation but low detection quality (with several False Positive (FP) predictions); vice versa
for Prediction 2 (only predicting True Positive (TP) instances; no FP but low segmentation quality).
However, both yield the same Panoptic Quality (PQ) score.
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F.5 Decision guide S5.

D5.1: Mask IoU versus Boundary IoU versus Intersection over Reference (IoR)

The following aspects should be taken into account when deciding between Mask IoU, Boundary
IoU, and IoR in instance segmentation problems. We will first focus on the more subtle distinction
between Mask IoU and Boundary IoU, and finally discuss scenarios for potential usage of IoR:

Boundary versus Mask IoU

e Boundary focus: While Mask IoU measures the overlap of structures in general, Boundary
IoU allows to focus on the correctness of boundaries (F2.1, see Fig. 31). Note that the focus
on boundaries also comes with pitfalls. Boundary IoU can even be fooled to result in a
perfect value of 1.0 despite an imperfect prediction (see Fig. 32).

e Small structures: Mask IoU over-penalizes small structures in tasks with high variability
of structure sizes (F3.2) because boundary pixels increase linearly (or quadratically) with
size, while total pixels increase quadratically (or cubically) with size. Boundary IoU [21]
addresses this issue by selecting only pixels with a maximum distance of “d” with regard
to the boundary for validation (see Fig. 31).

e Hyperparameters: For the computation of Boundary IoU, the distance “d” constitutes an
additional and sensitive hyperparameter to be determined. It can be determined based on
inter-rater variability, for example.

o Popularity: While Mask IoU represents an established concept that is well-known to the
community, Boundary IoU is a recently proposed modification [21] that might thus require
specific introduction when used in validation.

IoR In the case of a high ratio of touching reference objects, “non-split errors” (one prediction
overlaps with multiple reference objects) might occur frequently. While the IoU criterion
can potentially heavily penalize this scenario resulting in FN and multiple FP, a less severe
penalization might be desired (check F2.5.7), e.g. in the form of the Intersection over Reference
(IoR) [64]. IoR essentially considers the ratio of the area of a reference object that is covered by
a prediction (see Fig. 33), allowing for multiple TP matches of the same prediction. Appropriate
penalization in these cases is then ensured either by separating such errors as "merge errors"
[18], or by means of additional segmentation metrics. IoR shares the behaviour of Mask IoU
regarding the above discussions on boundaries and small structures. Wide-spread usage
ofloR is currently limited to the field of cell segmentation, where images with high density
of structures are present [64].
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Pitfall: Effect of small structures on localization criterion

Fig. 31. Compared to the Mask Intersection over Union (loU), the Boundary loU (third and fourth
column, representing two different thresholds) (1) specifically penalizes errors in the boundaries and
(2) is more invariant to structure sizes (top: large; bottom: small).
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Pitfall: Perfect Boundary IoU for imperfect prediction

Fig. 32. Example of a perfect Boundary Intersection over Union (loU) score for an imperfect prediction.
Overlapping pixels from the reference and prediction are shown in light blue. For a prediction with a
hole in the middle, the Boundary loU may result in a score of 1.00 if the distance to border contains
all mask pixels (here: distance = 2). However, the Mask loU spots the problem and yields a lower
score.
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Pitfall: One prediction assigned to multiple reference objects

Fig. 33. In case of one prediction assigned to multiple reference objects, an assignment strategy
needs to be chosen. This may be based, for example, on the Intersection over Union (IoU)>0.5 strategy,
which may result in a heavy penalty (two False Negatives (FN) and one False Positive (FP)). Another
option is to use the Intersection over Union (loU)>0.5 strategy, which examines whether the prediction
was successfully assigned to the reference objects. In an additional step, the "non-split errors" will be
penalized. Used abbreviations: False Negative (FN), False Positive (FP) and True Positive (TP).
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D5.2: Discarding information of provided annotations

Selecting a localization criterion operating on a lower/coarser resolution with regard to provided
reference annotations effectively discards spatial information and should be well motivated by the
given task (see Fig. 34). For instance, Box IoU is sometimes employed despite access to pixel-mask
annotations (F4.4) because associated models (object detectors) are considered simpler approaches
(compared to instance segmentation models). Such simplification may cause problems if structures
are not well-approximated by a box shape (especially for 3D shapes, boxes usually constitute poor
approximations), or if structures can overlap (F3.5), causing multi-component masks (see Fig. 35).

Discarding information of provided annotations

Information loss Information loss
RS
Mask/Boundary loU Box loU Center point criterion
Fig. 34. Selection of a localization criterion that discards spatial information should be well motivated
by the given task.
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Pitfall: Effect of annotation type
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Fig. 35. Bounding boxes are not well-suited for representing complex (top) and disconnected (bottom)
shapes. Specifically, they are not well-suited for capturing multi-component structures. Predictions 1
and 2 would both end up in a True Positive (TP) detection, as the Box Intersection over Union (loU)
is larger than the threshold 0.3. However, Prediction 1is not hitting the real objects at all, as the given
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D5.3: Localization without outlining of structures
When choosing a localization criterion for tasks where the mere existence of objects is of interest
(as opposed to the outlining of objects), the following aspects should be considered:

e Loose criterion: The intuitive choice of a very loose IoU criterion (e.g. “IoU > 0 or “at least
one pixel overlap”) comes with the pitfall that the size of the predicted structure is in theory
unbounded, i.e. the predicted location can be ambiguous (see Fig. 36).

o Point-based criteria: A preferable alternative for the case of pure localization (without
interest in outlines) is to constrain the prediction to a single coordinate. A common criterion
for this scenario is the distance to the center point of the structure (which can also be of
explicit interest, see F2.3, Fig. 37). The center point*, however, might not be a good reference
for tubular structures (check F3.3) or disconnected structures (check F3.6). In such cases (and
if annotations are provided in the form of masks), a binary “Point inside Mask” criterion
might be the better choice. On the other hand, the “Point inside Mask” criterion does not
allow for a variation of the criterion’s strictness (i.e. threshold). Application despite this
shortcoming should be well-justified.

Pitfall: Loose Intersection over Union (IoU) criterion

loU > 0: True positive (TP)
loU = 0: False positive (FP)

Reference Prediction
Reference 1] Prediction

loU=005>0TP ¥

Fig. 36. Effect of a loose Intersection over Union (loU) criterion. When defining a True Positive (TP)
by an loU > 0, the resulting localizations may be fooled by very large predictions.

“Depending on what kind of information the center point is derived from, different definitions are possible, for instance:
(1) geometric center of the box/approximation shape, (2) geometric center of a binary mask (i.e. average of positions of all
pixels), (3) center of mass of a binary mask overlaid with the original image, i.e. weighted average of positions of all pixels
with weight equal to (or derived from) the intensity of a particular pixel.
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Pitfall: Problems of center distance-based criteria

(a)
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Center Distance Point inside Mask
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Fig. 37. Pitfalls of the Center Distance. (a) Ignoring overlap between objects. Both predictions
have the same distance to their corresponding reference center. The Center Distance, which requires
a threshold distance 7 between center points not be exceeded, does not take into account the overlap
between objects. However, the right prediction does not overlap with the reference and should,
thus, not be considered a True Positive (TP). (b) Tubular structures. The Center Distance is not an
ideal criterion because it implies that the prediction at the top would result in a False Positive (FP),
although it is hitting the elongated structure. This could be overcome by a Point inside Mask criterion.




70 Maier-Hein/Reinke et al.

D5.4: Box IoU versus IoR
The following aspects should be taken into account when deciding between Box IoU and IoR:

e Default choice: The default choice in this setting is Box IoU.

¢ Touching structures: In the case of a high ratio of touching reference objects, “non-split
errors” (one prediction overlaps with multiple reference objects) might occur frequently.
In this case, the Intersection over Reference (IoR) [64], where only the ratio of a reference
object’s area covered by a prediction is measured, might be considered as an alternative to
IoU (see Fig. 33).

D5.5: Choose localization threshold

Note that most localization criteria require a threshold to be set (e.g. IoU > 0.5 counts as detected).
However, such cutoff renders the validity of results limited to the specific threshold. To increase
robustness of reported metrics, it is common practice in the computer vision community to average
metrics over multiple cutoff values (default for IoU criteria: from 0.5 until 0.9 in steps of 0.05). On
the other hand, certain properties of the problem at hand may limit the relevance of cutoff values
to lower or higher values.

The following properties might warrant validation with lower thresholds: interest in the existence
of objects rather than their precise localization, small size of structures (F3.1), high variability of
structure sizes (F3.2), 3D input images (as volume increases cubically with size, the desired overlap
ratio might require adaptation), uncertainties in the reference (F4.3.1). Conversely, these properties
typically warrant validation at higher thresholds: interest in precise localization, dense distribution
of structures in images (F3.5).

It should be noted that no threshold is needed for the Point inside Mask/Box/Approx and Mask
IoU > 0 criteria.
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F.6 Decision guide S6.
D6.1: Assignment without predicted class probabilities on instance level
The following aspects should be considered when selecting the assignment strategy:

e "Localization Criterion" > 0.5: If overlapping predictions are not possible (F5.4 = FALSE),
sophisticated matching strategies are often avoided in the biomedical domain by setting the
the threshold for the localization criterion (Mask IoU, Boundary IoU, or IoR) to > 0.5. With
this strategy, assignment ambiguities are inherently avoided. However, if either overlapping
predictions are possible, a non-overlap based criterion is employed, or a criterion with a
threshold above 0.5 is not appropriate, one of the following strategies should be chosen.

e Greedy Matching: A greedy approach can be taken, in which each reference is assigned
to the best matching prediction. If predicted class scores are available (F5.1 = TRUE) this
is typically achieved based on the class score ("Greedy by Score Matching"). In the given
scenario with F5.1 = FALSE, an intuitive alternative is to rank predictions by the localization
criterion score ("Greedy by localization criterion Matching").Assignment is then achieved by
stepping through the ranked list, matching the current prediction with the most overlapping
reference object, and removing the reference object from the assignment process.

e Optimal (Hungarian) Matching: The Hungarian algorithm optimizes the matching be-
tween predictions and reference objects while minimizing a given cost function, such as the
average overlap for all matched pairs. Notably, this optimization generally leads to optimistic
interpretation/validation of ambiguous model outputs, but might not represent the most
realistic approximation of model performance upon applications.
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F.7 Decision guide S7.

D7.1: Dice versus IoU

The DSC is identical to the F; Score on pixel level and closely related to the IoU, which, in turn, is
identical to the Jaccard Index (see equations 2 and 3). The two metrics will yield the same ranking
(of aggregated metric values) in most applications (theoretically, deviations are possible), such that
there is no value in combining them. Commonly, the computer vision community prefers the IoU,
while the medical image community favors the DSC.

DSC 2IoU
= @) DsC = =2 3)
2 - DSC

141U
D7.2: How to determine 8 in F3 Score
The Fg Score is defined as:

IoU =

PPV - Sensitivit (1+ %) - TP
Fp=(+f) el o ; @
(p? - PPV) + Sensitivity (1 + f2) - TP + 52 - FN + FP
The most common choice is to set § to 1 resulting in equal weighting of FP and FN penalties. Higher
values of § result in higher weights on FN penalties (undersegmentation) compared to FP penalties

(oversegmentation) and thus imply a focus on Sensitivity compared to PPV.

F.8 Decision guide S8.
D8.1: NSD and Boundary IoU
The following aspects should be considered when deciding between NSD and Boundary IoU:

o Different research questions: Both metrics set the focus on the boundary/contour of
structures, but fundamentally differ in what they measure: NSD measures the DSC score on
the surface voxels (often interpreted as the ratio of correctly predicted contour), where the
strictness for what constitutes a correct boundary is controlled by a tolerance parameter. This
way, noise in the image, limited resolution (propagating to noise in the reference annotations)
or imprecise reference annotations can be accounted for. Boundary IoU directly measures the
overlap between predicted and reference contours (without tolerance) up to a certain width
(which is controlled by a width parameter). Thus, NSD is preferable if a tolerance accounting
for imprecise annotations is requested. Boundary IoU, on the other hand, is preferable if
errors at the contour are thought of as crucial inconsistencies that should be assessed, or if a
wider area around the contour line is of interest (dynamic transition to the classical IoU).

e Setting the hyperparameter: The NSD and Boundary IoU both require users to manually
set a hyperparameter. NSD: Boundary distances below the tolerance threshold will be con-
sidered TP (deviations do not count as errors). This parameter can be set according to the
inter-rater variability or, if not available, heuristics. Boundary IoU: The distance parameter
determines the thickness of the considered boundary and thus also influences the sensitiv-
ity to contour errors (the smaller the distance, the higher the sensitivity). This parameter
can also be set according to the inter-rater variability (here in order to capture potential
inconsistencies as opposed to disregarding noise like in NSD) or, if not available, heuristics.
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D8.2: Mean Average Surface Distance (MASD) versus Average Symmetric Surface Distance
(ASSD)

The ASSD puts all boundary distances (all distances from boundary A to boundary B and all
distances from boundary B to boundary A) in a list, then takes the mean. Thus, if one boundary is
much larger than the other, this boundary will impact the mean much more. The MASD computes
the sum of the mean distances from boundary A to boundary B and the mean distances from
boundary B to boundary A. Therefore, the reference and prediction boundaries contribute equally
(see Fig. 38). While there are corner cases in which MASD features disadvantages compared to ASSD
as well, (see Fig. 39) we generally recommend MASD because of the aforementioned advantage.

Average Symmetric Surface Distance (ASSD) versus the Mean Average Surface Distance
(MASD)

I

~— Min. distances from boundary
pixels inA to B

= Min. distances from boundary
pixels in B to A
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Fig. 38. Most commonly used distance-based segmentation metrics: (a) the Average Symmetric
Surface Distance (ASSD) and (b) the Mean Average Surface Distance (MASD). The Euclidean distance
between boundary pixels a and b is defined as d(a, b). Only the True Positives (TP) are considered.
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Pitfall: High variability

Reference Prediction

ASSD = 10.23
>>

MASD =5.20

Fig. 39. Effect of one structure being much smaller than the other. If the Prediction is very small (here:
one pixel) and located close to the reference boundary, the Mean Average Surface Distance (MASD)
will be much lower compared to the ASSD.
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D8.3: Hausdorff Distance (HD) versus X' Percentile Hausdorff Distance (X*" Percentile HD)
The HD calculates the maximum of all shortest distances for all points from one object boundary
to the other, which is why it is also known as the Maximum Symmetric Surface Distance [95]. The
X*h Percentile HD calculates the X percentile (e.g. 95% percentile, the Hausdorff Distance 95%
Percentile (HD95)) instead of the maximum, and should therefore be used instead if spatial outliers
should be disregarded (F2.5.4, see Fig. 40).

Pitfall: Noise and artifacts

Fig. 40. Effect of annotation errors/noise. A single erroneously annotated pixel may lead to a large
decrease in performance, especially in the case of the Hausdorff Distance (HD) when applied to
small structures. The Hausdorff Distance 95% Percentile (HD95), on the other hand, was designed to
deal with spatial outliers. Further abbreviations: Dice Similarity Coefficient (DSC), Intersection over
Union (loU), Average Symmetric Surface Distance (ASSD), Normalized Surface Distance (NSD).
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G Expected formats of reference and algorithm output

Image-level Classification: The metric mapping expects the following format for image-level
classification with C classes: For each image I there is a reference annotation yy that is either
indicating the class for the image (y; € {1, ..., C}), or, in the case of multi-label classification,
indicating presence for each class (y; € {0, 1}€). If the algorithm does not provide predicted
class scores (F5.1 = FALSE) the algorithm output should be provided in identical format.
Otherwise, for each image I, the continuous class scores for each of the classes (f; € [0, l]C),
indicating the predicted class probability, should be provided.

Semantic Segmentation We assume the reference annotation and the algorithm output to
be in the same coordinate system with identical spacing. The metric mapping expects the
following format for semantic segmentation with C classes: For each pixel P there is a
reference annotation yp that either assigns a single class to P (yp € {1,...,C}) or, in case
of possible multiple labels per pixel, indicates assignment for each class (yp € {0, 1}€). As
for the algorithm output, for each pixel P there is expected to be either a single prediction
(gp € {1, ...,C}) or, in case of multiple possible labels per pixel, a prediction for each class (jp €
{0, 1}€). Some segmentation metrics require object boundaries. For each class, boundaries are
expected to be provided as a list of boundary pixels for both the reference and the prediction.

Object detection: The metric mapping expects the following format for object detection with
C classes: For each object O the reference consists of a tuple (yo, lo), where yo € {1,..,C}
indicates the class of the object and I is some location information (box, center point, radius,
etc.). The algorithm output for an object prediction O is expected to comprise a tuple (7o, Io)
as well, where o indicates a single predicted class (§o € {1, .., C}) optionally accompanied
by an associated predicted class score (¢o € [0,1]). See F5.1 in case no predicted class
score is provided. lo is expected to provide location information about the prediction in a
similar format as the reference (box, center point, radius, etc.). In case reference objects are
represented by rough outlines (F4.3) we assume that the chosen shapes (e.g. bounding box or
ellipsoid) represent the underlying object adequately. Particular attention needs to be given
to this aspect if objects feature a tubular shape (F3.3) or can potentially appear disconnected
(F3.6).

Instance Segmentation The metric mapping expects the following format for instance seg-
mentation with C classes: For each object O the reference consists of a tuple (yo, mp), where
yo € {1,..,C} indicates the class of the object and mp € {0, 1}}*W is a binary pixel map
per instance matching the size of the image (height H and width W) and indicating pixel-
wise location. The algorithm output for an object prediction O is expected to comprise a
tuple (o, Mmo), where, similarly to object detection, fjo indicates a single predicted class
(Mo € {1,..,C}) optionally accompanied by an associated predicted class score (jo € [0, 1]).
o denotes a binary pixel map per instance analogously to mo. For both the reference and
the predictions, object boundaries should be provided as list of boundary pixels separately
for each instance. Note that annotations from semantic segmentation (not distinguishing
instances of the same class) can be transformed to the instance segmentation format via
connected component analysis (in case of purely non-touching instances).

In case the provided reference annotations deviate from the expected format, matching can be
achieved via various measures (e.g. aggregation of pixel-level reference to required image-level
reference).
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H Recommendations on Metric Aggregation

In the final version of this paper, the recommendations on metric aggregation will be detailed here.
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I Instantiation of the Framework for Concrete Biomedical Problems

We instantiated the framework for several biological and medical image analysis use cases. The list
of use cases with a link to the figures representing the recommendations is provided below:

Image-level classification

The following use cases have been instantiated for image-level classification problems. The metric
recommendations can be found in Fig. 41.

e Frame-based sperm motility classification based on microscopy time-lapse video containing
human spermatozoa [40] (the corresponding traversals through the decision trees are provided
in Fig. 42)

e Disease classification in dermoscopic images [27] (the corresponding traversals through the
decision trees are provided in Fig. 42)

o Classification of the overall autophagy stage for a collection of cells [68, 96]

e Diagnostic standard plane classification in ultrasound images [9]

e Identification of new lesions in brain multi-modal MRI images of patients with Multiple
Sclerosis (MS) [30, 53]
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IMAGE-LEVEL CLASSIFICATION

SCENARIO

Frame-based sperm motility
classification based on microscopy
time-lapse video containing human
spermatozoa

Disease classification in
dermoscopic images

Classification of overall autophagy
stage for a collection of cells

Diagnostic standard plane
classification in ultrasound images

Identification of new lesions in brain
multi-modal MRI images of patients
with MS

ABBREVIATIONS

AP Average Precision

AUROC Area Under the Receiver Operating Characteristic Curve
BA Balanced Accuracy

SAMPLE
INPUT IMAGE

POTENTIAL
OUPUT

Progressive
motility: 0.5
Non-progressive
motility: 0.4
Immotile: 0.1

Dermatofibroma: 0.6
Melanocytic nevus: 0.2
Melanoma: 0.1
Basal cell carcinoma: 0.0
Actinic keratosis: 0.0
Benign keratosis: 0.0
Vascular lesion: 0.1

Sequestration: 0.7
Transport to
lysosomes: 0.2
Degradation: 0.1
Utilization of
degradation
products: 0.0

Spine (sag.): 0.65
Background: 0.165,
Femur 0.01, 3V 0.01,
Spine (cor.) 0.05,
RVOT 0.05, LVOT 0.05

Lesion: 0.9
No lesion: 0.1

RECOMMENDATION

Multi-class counting metric (S2): BA
Multi-threshold metric (S3): AUROC
Output calibration: ECE

Per-class counting metric (54): LR+

Multi-class counting metric (52): MCC
Multi-threshold metric (S3): AUROC
No output calibration

Per-class counting metric (54): LR+
S2:EC

Multi-threshold metric (S3): AUROC

Output calibration needed if used in interactive

imaging guidance mode: ECE

Per-class counting metric (54):
Sensitivity@Specificity

Multi-class counting metric (52): EC
Multi-threshold metric (S3): AP
Output calibration: PSR

Per-class counting metric (S4): F, Score

ECE Expected Calibration Error

LR+ Positive Likelihood Ratio

MCC Matthews Correlation Coefficient

EC Expected Cost

Fig.41. Instantiation of the framework with recommendations for concrete biomedical image-level
classification problems. From top to bottom: (1) Frame-based sperm motility classification based on
microscopy time-lapse video containing human spermatozoa [40]. (2) Disease classification in dermoscopic
images [27]. (3) Classification of the overall autophagy stage for a collection of cells [68, 96]. (4) Diagnostic
standard plane classification in ultrasound images [9]. (5) Identification of new lesions in brain multi-modal

PSR Proper Scoring Rules

MRI images of patients with MS [30, 53]
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Fig. 42. Instantiation of the framework for the problems of frame-based sperm motility classifica-
tion based on microscopy time-lapse video containing human spermatozoa [40] and disease classi-
fication in dermoscopic images [27]. The upper part shows the recommendations. The middle part shows
the traversal through the main path of Fig. 2 based on the generated fingerprint for the specific problem. The
bottom part shows the traversal through the subprocesses S2 (Fig. 20), S3 (Fig. 21) and S4 (Fig. 22) and the
resulting recommended metrics for both use cases.
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Semantic segmentation
The following use cases have been instantiated for semantic segmentation problems. The metric
recommendations can be found in Fig. 43.

e Lung cancer cell segmentation from microscopy images [20] (the corresponding traversals
through the decision trees are provided in Fig. 44)

e Liver segmentation in CT images [2, 80] (the corresponding traversals through the decision
trees are provided in Fig. 44)

o Labeling of invasive/ non-invasive/ benign lesions on breast Whole Slide Imaging (WSI) [3]

e Cortical structure segmentation from 3D MRI images[16]

SEMANTIC SEGMENTATION

SCENARIO SAMPLE RECOMMENDED RECOMMENDATION
INPUT IMAGE OUPUT IMAGE

. =~
Lung cancer cell segmentation from
microscopy images
Overlap-based metric (S7): DSC
Boundary-based metric (S8): NSD
Liver segmentation in CT images Specific property-related metric:
Liver segmentation: Absolute Volume Difference
-

Labeling of invasive/ non-invasive/

N | Overlap-based metric (S7): F, Score
benign lesions on breast WSIs #

No boundary-based metric (S8) recommended
(possibility of overlapping or touching structures)

Cortical structure segmentation
from 3D MRI images

Overlap-based metric (S7): cIDice
Boundary-based metric (S8): NSD

Specific property-related metric:
Local and average cortical thickness

ABBREVIATIONS

cIDice Center line Dice Similarity Coefficient

DSC Dice Similarity Coefficient
NSD Normalized Surface Distance

Fig. 43. Instantiation of the framework with recommendations for concrete biomedical semantic
segmentation problems. From top to bottom: (1) Lung cancer cell segmentation from microscopy images
[20]. (2) Liver segmentation in Computed Tomography (CT) images [2, 80]. (3) Labeling of invasive/ non-
invasive/ benign lesions on breast Whole Slide Imaging (WSI) [3]. (4) Cortical structure segmentation from
3D Magpnetic Resonance Imaging (MRI) images[16].
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Fig. 44. Instantiation of the framework for the problems of lung cancer cell segmentation from
microscopy images [20] and liver segmentation in computed tomography images [2, 80]. The upper
part shows the recommendations. The middle part shows the traversal through the main path of Fig. 2
based on the generated fingerprint for the specific problem. The bottom part shows the traversal through the
subprocesses S7 (Fig. 25) and S8 (Fig. 26) and the resulting recommended metrics for both use cases.
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Object detection
The following use cases have been instantiated for object detection problems. The metric recom-
mendations can be found in Fig. 45.

o Cell detection and tracking during the autophagy process in time-lapse microscopy [68, 96]
(the corresponding traversals through the decision trees are provided in Fig. 46)

e MS lesion detection in multi-modal brain MRI images [30, 53] (the corresponding traversals
through the decision trees are provided in Fig. 46)

e Polyp detection in colonoscopy videos with predefined sensitivity of 0.9 [12, 75]

e Mitosis detection in histopathology images [7]

e Lung nodule detection in CT images [4, 5, 26]
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OBJECT DETECTION

SCENARIO SAMPLE RECOMMENDED RECOMMENDATION
INPUT IMAGE OUPUT IMAGE

Cell detection and tracking during
the autophagy process in time-lapse
microscopy

Localization criterion (S5): Box loU

Assignment strategy (S6):
Greedy (by Score) Matching
MS Lesion detection in multi-modal Set double assignments to FP

brain MRI images Multi-threshold metric (S3): FROC Score

Output calibration:
MS lesion detection: Proper Scoring Rules (PSR)

Per-class counting metric (54): FPPI'@Sensitivity
Polyp detection in colonoscopy videos

with predefined sensitivity of 0.98 ' Polyp detection: the FP are determined per video (= patient),

not per frame (= image level), reflecting clinical interest.

Mitosis detection in
histopathology images

Localization criterion (S5): Center Distance

Assignment strategy (56):
Greedy (by Center Distance) Matching
Set double assignments to FP

No multi-threshold metric (S3) needed
(predicted class scores not available)

Per-class counting metric (S4): Fn Score

Lung nodule detection in computed Localization criterion (S5): Box loU
tomography (CT) images
Assignment strategy (S6):
Greedy (by Score) Matching
Set double assignments to FP

Multi-threshold metric (S3): AP

Per-class counting metric (S4): PPV@Sensitivity

ABBREVIATIONS

AP Average Precision FROC Free-Response Receiver Operating Characteristic

Box loU Box Intersection over Union PPV Positive Predictive Value
FP False Positive PSR Proper Scoring Rules

Fig. 45. Instantiation of the framework with recommendations for concrete biomedical object de-
tection problems. From top to bottom: (1) Cell detection and tracking during the autophagy process in
time-lapse microscopy [68, 96]. (2) Multiple Sclerosis (MS) Lesion detection in multi-modal brain Magnetic
Resonance Imaging (MRI) images [30, 53]. (3) Polyp detection in colonoscopy videos with predefined sensitiv-
ity of 0.9 [12, 75]. (4) Mitosis detection in histopathology images [7]. (5) Lung nodule detection in Computed
Tomography (CT) images [4, 5, 26].
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Fig. 46. Instantiation of the framework for the problems of cell detection and tracking during the
autophagy process in time-lapse microscopy [68, 96] and MS lesion detection in multi-modal brain
MRI images [30, 53]. The upper part shows the recommendations. The middle part shows the traversal
through the main path of Fig. 2 based on the generated fingerprint for the specific problem. The bottom part
shows the traversal through the subprocesses S5 (Fig. 23), S6 (Fig. 24), S3 (Fig. 21) and S4 (Fig. 22) as well as
the resulting recommended localization/assignment methods and metrics for both use cases.
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Instance segmentation

The following use cases have been instantiated for instance segmentation problems. The metric
recommendations can be found in Fig. 47.

¢ Instance segmentation of neurons from the fruit fly in 3D multi-color light microscopy images
[61, 65, 86] (the corresponding traversals through the decision trees are provided in Fig. 48)

e Surgical instrument instance segmentation in colonoscopy videos [60] (the corresponding
traversals through the decision trees are provided in Fig. 48)

e Cell nuclei instance segmentation in time-lapse light microscopy with a subsequent goal of
cell tracking [87]

e MS lesion segmentation in multi-modal brain MRI images [30, 53]
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INSTANCE SEGMENTATION

SCENARIO SAMPLE RECOMMENDED RECOMMENDATION
INPUT IMAGE OUPUT IMAGE

Localization criterion (S5):
Neuron segmentation: Mask loU
Instrument segmentation: Boundary loU

Instance segmentation of neurons
from the fruit fly in 3D multi-color
light microscopy images
Assignment strategy (S6): Greedy (by Score)
Matching, set double assignments to FP

> Multi-threshold metric (S3): AP

Surgical instrument instance

Per-class counting metric (S4): F Score
segmentation in colonoscopy videos

Overlap-based metric (S7): cIDice

Boundary-based metric (S8): NSD

Cell nuclei instance segmentation in Localization criterion (S5): IoR
time-lapse light microscopy with a

subsequent goal of cell tracking Assignment strategy (S6): Matching via loR > 0.5

Set double assignments to FP

No multi-threshold metric (S3) needed
(predicted class score not available)

Per-class counting metric (S4): F Score
Overlap-based metric (S7): loU

No boundary-based metric (58) needed
(no interest in structure boundaries)

MS Lesion segmentation in
multi-modal brain MRl images

Localization criterion (S5): Boundary loU

Assignment strategy (S6): Greedy (by Score)
Matching, set double assignments to FP

Multi-threshold metric (S3): FROC Score

Output calibration: PSR

Per-class counting metric (54): FPPl@Sensitivity
Overlap-based metric (57): DSC
Boundary-based metric (58): NSD

ABBREVIATIONS

AP Average Precision FPPI False Positives Per Image
Boundary loU Boundary Intersection over Union lIoR Intersection over Reference

cIDice Center line Dice Similarity Coefficient loU Intersection over Union

DSC Dice Similarity Coefficient Mask loU Mask Intersection over Union
FROC Free-Response Receiver Operating Characteristic NSD Normalized Surface Distance

FP False Positive PSR Proper Scoring Rules

Fig. 47. Instantiation of the framework with recommendations for concrete biomedical instance
segmentation problems. From top to bottom: (1) Instance segmentation of neurons from the fruit fly in 3D
multi-color light microscopy images [61, 65, 86]. (2) Surgical instrument instance segmentation in colonoscopy
videos [60]. (3) Cell nuclei instance segmentation in time-lapse light microscopy with a subsequent goal of
cell tracking [87]. (4) Multiple Sclerosis (MS) Lesion segmentation in multi-modal brain Magnetic Resonance
Imaging (MRI) images [30, 53].
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Fig. 48. Instantiation of the framework for the problems of instance segmentation of neurons from
the fruit fly in 3D multi-color light microscopy images [61, 65, 86] and surgical instrument instance
segmentation in colonoscopy videos [60]. The upper part shows the recommendations. The middle part
shows the traversal through the main path of Fig. 2 based on the generated fingerprint for the specific
problem. The bottom part shows the traversal through the subprocesses S5 (Fig. 23), S6 (Fig. 24), S3 (Fig. 21), S4
(Fig. 22), S7 (Fig. 25) and S8 (Fig. 26) as well as the resulting recommended localization/assignment methods
and metrics for both use cases.



Metrics reloaded 89

J Glossary

Bounding box: A bounding box is a (typically the smallest) rectangle drawn around and
completely surrounding an object to be detected.

Challenge: A challenge is an international competition, commonly hosted by individual
researchers, an institute, or a professional society, that aims to comparatively assess the
performance of competing algorithms on an identical data set, and thus serves to validate
them. This validation is a crucial step towards the translation of an algorithm into practice.
Classification task: A classification task is the task of giving categorical labels to an image
or parts thereof. We distinguish classification at different scales, e.g. at image level, pixel
level or object level.

Confidence: See Predicted class scores.

Continuous class scores: See Predicted class scores.

Evaluation: See Validation.

FPPI@Sensitivity FPPI at the predefined Sensitivity level, see Metricl@Metric2.
Hierarchical structure of classes/data: A hierarchical structure of classes/data is present
when classes or data are dependent on each other or paired, e.g. when data have been derived
from the same patient, or from the same center. It requires interpretation and statistical
efforts different from those suitable for independent data.

Hyperparameter: A hyperparameter is a parameter whose value is optimized to control
the training of an algorithm. In contrast to other parameters, it is not derived through the
training process itself, but rather set before the training procedure.

Inference: In the context of ML, inference denotes the processing of data by an algorithm to
produce the desired output.

Instance: An instance refers to a dedicated object, structure or entity in an image, such as
an individual cell, tumor or medical instrument.

Image-level classification: Image-level classification is the assignment of one or multiple
category labels to an entire image, as detailed in App. C.

Instance segmentation: Instance segmentation is the detection and delineation of each
distinct object of a particular class in an image, as detailed in App. C.

Instantiation: Instantiation here refers to the act of creating a specific application case of a
general principle/framework.

Macro/micro averaging: Macro averaging is the process of computing a metric (e.g. Sensi-
tivity) for each class and subsequently averaging the metric scores. Micro averaging is the
process of aggregating an average metric score over all classes.

Meta-information: Meta-information refers to data about an image that is not explicitly
contained within the image, e.g. Protected Health Information (PHI) data about the patient
in radiology images.

Metric: Metrics are the measures according to which performance of algorithms is quantified
and validated. Depending on the domain-specific validation goal and property of interest,
we distinguish between different types of metrics, e.g. reference-based (assessment of the
algorithm output in comparison to the image reference) vs. non-reference based (assessment
of complementary properties such as runtime or carbon footprint). Metrics can further be
subdivided into different families based on their mathematical properties.
Metric1@Metric2 (e.g. FPPI@Sensitivity): Once a cutoff value for the predicted class prob-
abilities has been set in such a way that the target metric value is achieved (here Metric 2:
Sensitivity), other metric values (here Metric 1: FPPI) are obtained from the corresponding
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fixed confusion matrix. In the example, this yields the FPPI at the predefined Sensitivity level,
denoted as FPPI@Sensitivity.

NPV @Sensitivity NPV at a predefined Sensitivity level, see Metricl@Metric2.

Object detection: Object detection is the detection and localization of structures of one or
multiple categories in an image, as detailed in App. C.

(Output) Calibration: In application scenarios that involve interpreting the raw algorithm
output (specifically the predicted class scores), output calibration can be used to obtain a
reliable measure of confidence associated with the decision (see description of F2.7 in App. D.
PPV @Sensitivity: PPV at a predefined Sensitivity level, see Metricl@Metric2.

Precision: Precision is a term used differently in different scientific communities. In the
medical community, for example, it commonly refers to the confidence of an output. Here,
we use the term to denote the PPV.

Predicted class scores: Modern neural network-based approaches usually output pre-
dicted class scores (also referred to as continuous class scores, confidence scores or pseudo-
probabilities) between 0 and 1 for every image/object/pixel and class, indicating the probability
of the image/object/pixel belonging to a specific class.

Prediction: Prediction refers to the output of an algorithm. It is not used in the temporal
sense in this paper.

Problem category: Biomedical image analysis problems can be subdivided into problem
categories according to the procedures performed. The category a problem falls into informs
the appropriate choice of metrics. In this paper, we focus on four problem categories: Image-
level classification, Semantic Segmentation, Object Detection, and Instance Segmentation.
Pseudo-probabilities: See Predicted class scores.

Reference / Reference-based metrics: We assume that the validation process is based on
the comparison of the algorithm output and a reference (sometimes called gold standard),
which is assumed to be close or equal to the correct result; the (often forever unknown)
ground truth. In terms of metrics, we distinguish between reference-based metrics [46],
which use the image-based reference, and non-reference-based metrics that assess complemen-
tary properties, such as runtime, memory consumption, or carbon footprint. The reference,
sometimes also referred to as the gold standard, is a value assumed to be close or equal to
the correct result, the (often forever unknown) ground truth.

Semantic Segmentation: Semantic segmentation is the assignment of one or multiple
category labels to each pixel in an image, as detailed in App. C.

Sensitivity @FPPI: Sensitivity at the predefined FPPI level, see Metricl@Metric2.
Sensitivity @Specificity: Sensitivity at the predefined Specificity level, see Metricl@Metric2.
Sensitivity @ PPV Sensitivity at the predefined FPPI level, see Metricl@Metric2.
Specificity @Sensitivity: Specificity at the predefined Sensitivity level, see Metricl@Metric2.
Structure instance: See Instance.

Training/Test case: The data sets used in the process of algorithm development and val-
idation comprise training/test cases. A case refers to the data (typically an n-dimensional
image, possibly enhanced with clinical context information) that is required for an algorithm
to produce one result (e.g. a segmentation or classification). A training case refers to a data
set that includes reference annotations and is thus used for training an algorithm. A test case
refers to a data set that is used for performance assessment

Type 1 and Type 2 error: A type 1 error is a FP result, e.g. a false detection of something
that is not present. A type 2 error is a FN result, e.g. a non-detection of something that is
present.
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e Validation: Validation is the process of assessing that the validated algorithm is effectively
doing what it is expected to do and what it was developed for, for example that a segmentation
method is actually segmenting. Evaluation is the process of assessing that the algorithm is
valuable, i.e. that it brings quantifiable added value for the clinical user in a dedicated clinical
context [43].
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