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Abstract— This paper concerns lung tissue classification using
asymmetric—margin support vector machine (ASVM) to handle
the imbalance of the positive and negative classes in a one—
against—all multiclass classification problem. The hyperparam-
eters of the algorithm are obtained using an optimization of
the upper bound of the leave—one—out error of the ASVM. The
ASVM is applied on the dataset with its original distribution
and oversampled so that the ratio of the examples is equal to
the prevalence of patients having the tissue in the database.
The two versions of the ASVM models were compared with a
model build with a conventional SVM. The ASVM improved the
results obtained with a conventional SVM. The incorporation
of prior knowledge concerning the prevalence of the patients
improved the results obtained with ASVM.

|. INTRODUCTION Fig. 1. Construction of the block instances from manuallyrdsited ROls.

Interstitial lung diseases (ILD) form a heterogeneous grou

of diseases containing more than 150 disorders of the lu gnosis (CAD) was proposed several times for HRCT of
tissue. Many of_the disea_lses are rare and present unspe IS lung (3], [4], [5], [6] [7], [8], [9], [10]. The typical
symptgms: D“”.”g the d|agno§t|c process, all avalla'lblel Ihéipproaches use supervised machine learning to draw decisio
formatmn_mcludmg the patlgnts personal data, medogti boundaries in feature spaces spanned by texture attributes
past medical history, hOSt risk factors anq Iaboratoryste_strhe reported performance of these approaches suggests that
(e.g. pulmonary functl|on tests_,, hematocnt, ) are MetiGhese systems have the potential to be valuable tools in clin
ulously analyzed to f'n(.j ar,1y md,cator of the presence anI routine by providing second opinions to the clinicians
an ILD. Beside the patient's C“n'.cal. daFa, imaging of thq—|owever, the CAD system must include a sufficient number
chest allows to re§olve an gmblguny in a large numbeéf classes of lung tissue to cover the heterogeneous visual
O.f cases by enabling the V|s_ual _assessme_nt of th? Iurﬁﬂdings associated with ILDs. A CAD system, which aims
tissue [1]. The most common imaging modality used is thSt detecting one single lung tissue pattern is of limited use

chest X—_ray becagsg of its low cost and radiation do;e. I_t 55 the radiologist still needs to look for other patholobica
of sometimes of limited usefulness for the charactenzatlolung tissue patterns in the image series

of lung tissue as these are overlaid with other anatomi-

cal structures, making the reading sometimes difficult. The A major performance prOb'eF" of mult|—_class_ CAD sys-
tems is the challenge of learning from highly imbalanced

gold standard imaging technique used in case of doubt i . ) .
. . . datasets. In a given dataset of HRCT images of patients
the high-resolution computed tomography (HRCT), whic %ffected with ILDs, the instances consist of manually de-

provides three—dimensional images of the lung tissue Witilneated regions of interest (ROI) showing examples of the
high spatial resolution. Most of the histological diagreose . 9 Wing P
lung tissue patterns that are cut out into square blocks that

of ILDs are associated with a given combination of image . . o
findings (i.e. abnormal lung tissue) [2]. The most common'®Y overlap or not (see Figure 1). The resulting distriotio

ung tssue paterns smmphysemagroung glssfoss 1 1 0BSSes re depenino both on e prevence o
micronodulesand consolidation These are characterized by 9 9

distinct texture properties in HRCT imaging. The detectiofl> 2 consequence be highly imbalanced. Although equal

and characterization of the lung tissue patterns in HRCT ;ssensmvny an_d specmc!ty are nee_ded among the classest, mo
: : : . f the machine learning techniques favor performance of
time—consuming and requires experience. In order to reduge

. . . . : e majority class and research efforts are needed to ensure
the risk of omission of important tissue lesions and to emsu'balanced erformances amond all classes
the reproducibility of image interpretation, computedeal ) P } 9 ) T )

In this article, support vector machines with asymmetric
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3 details the materials and the classification method usexdly the points on both sides of the margin or support vectors

followed by the presentation of the results in Section 4(pointsz; for which «; > 0) to build a model.

A discussion of the results is found in Section 5 and a For a non—-separable training data set, penalty variables

conclusion and future ideas in Section 6. &; are introduced to soften the constraints of the maximum

margin formulation (1). The penalty variablés are drawn

as follows:0 < ¢; < 1 if the points are on the correct side of
After a short review of the techniques to handle imbalihe hyperplane and > 1 if the point is on the wrong side.

anced datasets the SVM algorithm is introduced followed by cost variableC is also introduced to control the trade—

details on the built—in dataset imbalance management angf petween the width of the margin and the points within

method to estimate the SVM/ASVM hyperparameters.  the margin. The final goal of the SVM classifier is then to

A. Imbalanced learning approaches in the literature maximize the margin while minimizing the total sum of the
%enalties and thus equation (1) becomes:

II. LEARNING IMBALANCED DATA SETS WITH ASVM

Two main approaches were proposed in the literature
manage imbalanced datasets: the resampling strategy and min (wTw)+C Y, & 3)
the algorithm—based strategy [11]. The first one is a data- st yi(wla; +0)>1-&,& >0
driven strategy and performed by down-sampling the ma-
jority class or oversampling the minority class. This metho The primal formulation of the SVM can be solved us-
has many variants with respect to the resampling techniqu®d [19] for separable cases (Eq. (1)) and [20] and for non—
resampling at random, undersampling by removing reduseparable cases (Eq. (2)). However, the dual problem is ofte
dant or noisy majority examples [12], oversampling witrsolved because the duality theory provides a convenient way
synthetic examples drawn using clustering algorithms [13P deal with the constraints. The dual optimization problem
and [14], oversampling positive examples located near tf@n also be written in terms of the dot products permittireg th
decision function [15]. A comparative study of the avaitabl Use of the kernel functions. The kernel trick allows to apply
resampling strategies was carried out by [16] with the Cc4.He maximum margin algorithm to a transformed version of a
algorithm and the random undersampling and oversamplifffn—separable dataset (feature space) via a mappingdancti
methods outperforming all resampling strategies. Thersgco®- The related dual problem can be expressed as
strategy (algorithm—driven) consists of_ altering the ria_isc maz, 2aTe —aT (G(K) + %In) (4)
sification cost of the classes such as in [17] or altering the T
data representation to achieve a high separability of tie da st @20, aly=0
(see for example [18]). A comparison of the resampling an@heree is the n—vector of onesy € R", G(K) the Gram
cost-sensitive strategy with SVM can be found in [14]. Isthi matrix is defined byG,;(K) = [Kijyiy; = k(xi,%X;)¥:y;,
comparative study, the SVM with asymmetric margins wag,, which is a diagonal matrix of 1 and > 0 means
used and it outperformed the resampling technique (coma; > 0, i = 1,...,n. The transformation function is
bination of undersampling and oversampling with artificiaintegrated into the definition of the Gram matrix. According
examples generated with the-means algorithm). to Mercer's theorem, (3) can be expressed by transforming
the input data withy and taking the dot product to define

) ] - ] the kernel or taking directly any kernel and using it without
A maximum margin classifier looks for an optimal hyper'knowing the functiong. One kind of such kerels can

plane separating the training dataset such as the distdnce,@ he Gaussian kernel (also called radial basis functions
the training points to the optimal hyperplane is maximize 'RBF) kernel) expressed a& (z;,2;) = 6(zi) d(xj) =
This assumes that the training data are separable. FiniBg t,—|z;—;?/(20*) Eor such a kernJeI the misclassification
optimal hyperplane is equivalent to resolving the follo@in qqt ang the kernel hyperparameterequire optimization.
quadratic optimization problem: The graph (A) of Figure 3 illustrates the data classification
min (wTw) s.t. yi(wai +b)>1 (1) Wwith SVM in a feature space.

Many researchers consider SVMs as one of the best classi-

fication algorithm due to its theoretical foundation based o

B. Support Vector Machines

where w is a vector perpendicular to the hyperplaneis

adscalar value{z;, y;};L, are the training pointsa¢ €  gtryctural risk minimization implying a better generatina
R, yi € {=1,1}, N the number of examples anthe num- o tormance [21]. However, SVMs may provide bad results
bers of variables). If certain conditions hold and using thg j; js ysed with the wrong parameters. The usual way to find
Lagrangian formulation, the previous problem is equivilenpe parameters of SVMs is to scan a range of possible values
to its dual, which is a quadratic optimization problem ang the parameters, evaluate the classifier with a dataisglitt
which can be solved using several optimization techniques;,ch as cross—validation or a bootstrapping procedure and
mazeso Ola) = S0 — 13, >, cigyiy el ey (2) then select those providing the b.est.performance. A b_etter
s.t. S gy = 0 method to measure the generalization performancc—_:- is to
v evaluate SVMs with the leave—one—out procedure during the
where ; are the Lagrangian multipliers. A support vectorgrid search. These processes are expensive with respect to
machine (SVM) is a maximum margin classifier, which usesomputation time because they require an SVM resolution



f A SVM Symmetrical
at each step. A more efficient way to choose the SVM Margin Classifier  sypport vestors

parameters is to take advantage of the underlying theory a=C
using the bound of the leave—one—out error.

For the SVM with an RBF kernel and in the case of non—
separable training data (hard margin SVM), Vapnik showed
that the leave—one—out error is upper bounded By ||w||*

(the radius margin bound) [21]R is the radius of the
smallest sphere containing al(x;) and is the solution of
the following optimization problem:
Y Hypw.x+b=+1
maxg 1-pTKp
st 0<Bii=1,....n oo @ . ——
efp=1

support vectors
O< a <C

This bound of the leave—one—out error can be used to
estimate the parameter of the RBF kernel and the soft
margin paramete€. The readers are referred to [22] for a Fig. 2. Illustration of an SVM.
survey of the SVM error bounds estimation.

SVMA symmetrical ~ support vector
Margin Classifier , =C

C. SVM with Asymmetrical Misclassification Cost

The SVM formulations above (Eq. 2) mean that the
misclassification cost of positive and negative examples (i -
the case of a binary classification) are the same. This SVM ”W”/
formulation may be incongruous for problems with high )
imbalance between classes or those whose error penalty is
not the same for each class.

H, & SVM Symmetrical Margin
support vectors(SVs)

p*distance from
SVM Symmetrical Margin

Classifier SVs
The SVM algorithm implements natively a cost—sensitive
strategy. For this purpose, two misclassification coéts ( Hiyaw xt b= +1
for y; = +1 and C~ for y; = —1) are introduced. In this 4 HwWxe b=0

case, the primal formulation of the SVM is:

Hyw.x+b'= -1

Origin
. +1\2 _ —\2 support vectors
minwpe (w,w) +C* Dici (&) +C7 Xiei (£7)°(9) ®) 0<a, <C
st yil{w, ®(x;)) +b) 21 -&F, i€y

yi((w, q:a(xi)> + b) < —-1- 5;7 = Fig. 3. lllustration of the asymmetric—margin SVM on a toy cifisation
. problem. Squares represent positive and circles negatisenges; dark
§i=>0,i=1,...,n symbols stand for training and grey for test examples. Thehg(ap shows
the decision boundary induced by a conventional SVM. TheplyréB)
Wherez'+ — {Z|yl — +1} andi_ = {Z|yz — _1} shows t_he new boun_dary obtained py introducing two cost ttpy:pamt_e?ers
. . respectively for positive and negative examples. Notice tthe positive
The correspondlng dual form is: examples (grey squares), which are misclassified in (A) andeciy

classified in (B) and also the direction of the vectof perpendicular to
maz, 2aTe—aTl (G(K) + C%[TT + C%[;) (6) the separating hyperplane in the graph (B).

st a >0, aTy

wheree, o andG(K) has the same expression as in (Eq. 2+ Radius margin bound
andlt (resp.I;}) is a diagonal matrix composed by 1 foe As stated above, the radius margin bound (RMB) proposed
i+ (resp.i € i_) and O elsewhere. It is important to highlightby Vapnik is for hard—margin SVMs. To obtain the radius
that for an identical misclassification cost for positivedan margin bound of the soft-margin SVM, the soft-margin
negative examples, we obtain the formulation (Eqg. 1) witlkhould be casted into the hard margin formulation which is
(Eq. 3). Figure 3 illustrates the differences between SVMchieved using the following change:
and ASVM.

Other approaches were proposed in the literature to handle W= [ w }
imbalanced datasets with SVMs. A naive post—processing cg
method consists of shifting the separating hyperplane fanq set the i—th training data as
away from the positive examples. Another one, proposed in
[17], applies a conformal transformation in the featurecspa [ o(;) }

to achieve a high separability of the training data. NG



Algorithm for model selection using the gradient descent algorithm

The kernel function become& (z;,z;) = K(zi,x;) +
9;;/C, whered;; =1 if i = j and O otherwise. The new | 1. Initialize SVM hyperparaneters
radius margin bound i%? |||, where R? is the objective | 2 SIO' ve ISXM problemusing a standard SVM
al gorithm
value of 3. Mnimze the RMB according to the val ues
1 T 1 of the Lagrangian nultipliers with a
mazg 1+ & — &) (K + 5) B (7) gradi ent descent al gorithm
. 4. CGo to step 2 or stop when the m ni num of
st 0<Byi=1L...,n the RVMB is reached
eTp=1

To solve the asymmetric—-margin problem, all SVM solvers

use only one value of and balance the misclassificationwherevt is the t-th parameter of the L2-SVM.
with weights to obtain the value ¢f ™ and C~. To exploit For V = (C,0?),

the radius—margin for asymmetrical misclassification ,cost

we introduce the following relationC = C*T + C~ = 8||w\|2 B S 620
wiC +w_C andw; + w_ = 1 i.e. the cost asymmetry oc i=1""

is taken only into account during the SVM optimization d||wl? n Oho(s ;)
problem resolution. We also use the heuristic proposed by Jo2 Zi,jzl QG YilY 507
Morik et al: the potential total cost of the false positives OR2 " )
equals the potential total cost of the false negatives he. t 0 i1 Bi(1=5;)/C
costsCt and C~ conform to the relation in Eq. 6 [23]. OR2 . k(i)
Thus, we obtain the value aby = 5= andw_ = 5 502 = =1 PifiT e
whereN_,N_ andN are respectively the number of positive, 8];(” z;) ~ L
negative and all training examples. With these weights, it % = k(xi,a:j)”“;ﬁf”

is now possible to introduce a higher cost when the SVMs 7

misclassify positive examples compared to a misclassificat Il. M ATERIAL AND METHODS

of negative examples. This section introducea the dataset we are using for the

C*  number of negative training example ~ N- experimentations, the software used for the _extraction of
- = — — =7 (8) features, the SVM software, the features build from the
C™  number of positive training examples N HRCT images and the learning process. The latter includes
E. Gradient descent algorithm and SVM model selection the implementation of the resampling methods, the model

Optimization is generally concerned with the minimizatiorsélection process and the details of the metric used tossses
(or maximization) of a function of which parameters ardhe quality of the classification.
subject to one or more functional constrairft.is named
A. Dataset

a continuously differentiable function. A gradient dedcen o ) )

It looks iteratively (until a stop criterion is reached) far multimedia collection of cases at the University Hospitals

directiond;, € ®" andd;, # 0 from a starting point, € ®» Of Geneva (HUG). The diagnoses of each ILD cases was
satisfying: confirmed by a biopsy or an equivalent test (e.g. bron-

choalveolar lavage, tuberculin skin test, Kveim test, Egr
Vk > 1,3¢ > 0 such as Vf(xg)dr < —€||Vf(xx)| [ldrl (9) each collected patient, 99 clinical parameters associaitixd
13 of the most frequent diagnoses of ILDs were collected
from the electronic health record (EHR), describing the
patient’s clinical state at the time of the stay when the HRCT
d = =V2f(x) 'V f(xr) (10) image series were acquired. The lung tissue patterns delate
. o . to the ILD diagnosis were manually delineated in HRCT
The computation of the second derivative (Hessian)fof jo,qes series (Imm slice thickness, no contrast agent) by
is computationally expensive. The quasi-Newton methogq exnerienced radiologists at the HUG. The distributions
approximates the Hessian at each iteration. The algorithm g¢ i g most represented tissue sorts are detailed in Table |
the hyperparameter selection using the quasi Newton methpd s of number of ROIs. volumes and number of block

is shown below as introduced in [22]. _ instances obtained as shown in Figure 1. The size of the
The radius margin bound of the L2-SVMg € 2 in (3))  pocks is32 x 32 x 1 pixels.

with the RBF kernel being continuously differentiable with
respect to the parametefsando. Thus, the optimal param- B. Software

eter can be computed using the gradient descent algorithmyhe jmage processing algorithms include wavelet-based
according to the following: features and grey—level histograms and were implemented

OBramr2  o(R|w|?) | 20/ | paolwl®) (11 in Java. The classification task is carried out with libSVM
v, v, — = [wll” gy + v, (1) implementing the SVM-L2 for binary classification [24].

There are many ways to define the descent directjorOne
strategy, known as the Newton method, is to use




TABLE |

resampling level is based on the prevalence of the patient in
DISTRIBUTION OF THE CLASSES IN TERMS OROIS, VOLUMES AND

the database (see Table I). If the ratio of the tissue is hess t

BLOCKS. THE NUMBER OF INSTANCES CORRESPONDS TO THE NUMBER .
the prevalence, the examples of this class are oversampled

OF BLOCKS. . . . .
(consolidation emphysemafibrosis ground glasy If the
_ _ ratio of the tissue is greater than the prevalence, the ihajor
label ROIs  volume (liters) blocks patients . . . .
healthy 100 515 ] 3043 7 will be oversampled so that the ratio of positive and negativ
emphysema| 66 1151 422 5 cases is equal to the prevalenchealthy micronodules
ground glass| 427 4911 2313 37
fibrosis 473 8.45 | 3113 38 E. Model selection
micronodules| 297 16.06 | 6133 16 . . . .
consolidation| 196 0.69 | 90 14 The selection of the model was inspired by the experimen-
Total 1559 36.38 1 15114 87 tal setup proposed in [28]. We have chosen 5 starting points

for the gradient descent. These 5 starting points wereeppli
to 5 random training files. The parameters obtained with
an initialization point providing the least hyperparamete
) variance are considered. The median is taken as a new
The features used to characterize the texture propertlgt%ming point and is evaluated on the whole training sehby t
of the 6 lung tissue patterns are derived from grey—level hi$yeans of a leave—one—patient—out (LOPO) procedure [29].
tograms and tailored wavelet transforms (WT). The resultinghe final parameters are the median of those obtained from
feature space has a dimension of 46. this last step. We analyze the error rate, the sensitivity, t
1) Grey-level histogramsThanks to Hounsfield Units gpecificity and the precision of the prediction on test sets.

(HU), the pixel values in HRCT images corresponds univoas we are in a multi—class classification, we use the one—
quely to the density of the observed tissue and thus Contaé@ainst—all procedure.

essential information for the characterization of the lung
tissue. To encode this information, 22 histogram bins df. Model comparisons
grey—levels in the interval-1050; 600 are used as texture |n many classification projects, the accuracy is chosen as
features. An additional feature related to the number of ajhe main performance criterion of a model. With imbalanced
pixels is computed as the number of pixel values below -10Q¢atasets, we have to take into account the ability of the
HU. classifier to predict the examples of each class (sengitivit
2) Wavelet-based featurediear affine—invariant texture specificity and precision). These four metrics are used to
features are derived from a tailored WT. A frame tranSfOfrﬁ]easure the performance of each model. To assess the mul-
is used to ensure translation—invariant descriptions ef thidass performance of the a|gorithm5, the geometric mean i
lung tissue patterns [10], [25]. Based on the assumpticdbmputed as follows:
that no predominant orientations are contained in the lung
tissue patterns a rotation—invariant nonseparable WT is im-
plemented using isotropic polyharmonic B-spline scaling H A, (12)
functions and wavelets [26], [27]. At last, an augmented i=1
scale progression is obtained using the quincunx lattice fevith V..., the number of classes ant} the class—specific
upsampling the filters by a factor af2 at each iteration accuracies.
of the WT. Within each unique subbang the wavelet  To evaluate the best strategy for our dataset, we carried out
coefficients are characterized by a mixture of two GaussiaasMcNemar test with Bonferroni correction on the prediction
with fixed meansu; , = p* and distinct variancesi ,. 24 results. This test measures if the predictions made with 2
wavelet-based features are thus generated by 8 iteratfonsngodels are significantly different from the statistical rgoi
the WT. of view. We also use the area under the receiving operator
curve (AUC) to rank the three strategies. Each strategy is

D. Imbalance management assigned a score from 3 to 1 (best to worst) according to the
The datasets we are using contain imbalance with respeqt/C value.

to the class distribution. Three strategies were implestnt

to handle the imbalance. The first strategy implements the IV. RESULTS

data—driven method (BAL). A random down—sampling of the Results of the model selection and associated classifica-
majority class is carried out to obtain 50% of the positiveion performance obtained with the various techniques are
and negative cases during the model selection. The secaiekcribed in this section.

strategy uses the cost—sensitivity method (ASVM). Theorati . . )

of the original dataset is kept during the model selectiof- Model selection using the gradient descent

process and the values of the cost hyperparameters werd-or the model selection, we used five starting poiftss()
adjusted according to the imbalance rate of the positive amth five random training sets: (1,1), (5,5), (5,1), (1,5) and
negative cases. The third strategy uses a combination of t{k9,1). Among these five initialization points, the first fou
resampling and cost—sensitive methods (ASVM + RES). Theonverged around the same region but a few initialization

C. Texture features

A9¢0m — Neiass



TABLE Il TABLE VI

PERFORMANCE ONconsolidationvs. ALL CLASSES. PERFORMANCE ONhealthyvs. ALL CLASSES.
Consolidation| BAL | ASVM [ ASVM + RES Healthy | BAL | ASVM | ASVM + RES
Error 0.02 0.02 0.02 Error 0.24 0.23 0.23
Sensitivity | 0.39 | 0.40 0.40 Sensitivity | 0.95 | 0.95 0.95
Specificity | 0.99 | 0.99 0.99 Specificity | 0.71 | 0.72 0.72
Precision 0.16 0.16 0.16 Precision | 0.45 0.46 0.46
F-measure | 0.23 | 0.23 0.23 F-measure| 0.61 | 0.62 0.62

AUC 0.69 0.69 0.69 AUC 0.83 0.83 0.84
TABLE 1l TABLE VII

PERFORMANCE ONemphysemas ALL CLASSES. PERFORMANCE ONmicronodules/s. ALL CLASSES.

Emphysema] BAL | ASVM | ASVM + RES Micronodules| BAL | ASVM [ ASVM + RES
Error 0.22 0.22 0.22 Error 0.31 0.32 0.30
Sensitivity | 0.45 | 0.46 0.46 Sensitivity | 0.55 | 0.53 0.45
Specificity | 0.79 0.79 0.78 Specificity 0.79 0.79 0.87
Precision | 0.06 0.06 0.06 Precision 0.64 0.63 0.69
F-measure| 0.10 0.10 0.10 F—-measure | 0.59 0.57 0.54
AUC 0.62 0.62 0.62 AUC 0.67 0.66 0.66

points provide high variance of'. The median of these for SVM hyperparameters estimation. The computation time
20 intermediate parameters was used as a starting poféipends primarily on the size of the training set. During
on a LOPO cross—validation to obtain the final parameterthe model selection process i.e. LOPO cross—validatia, th
The algorithm converges after 7 to 18 iterations and th&\yms were run only 2 times per fold and the algorithm
computation of these parameters varies from 10 minutes &nverged after 7 to 18 iterations.
24 hours depending on the size of the resampled trainingth respect to the multiclass performance, the geometric
data. mean ranked the third strategy (ASVM+RES) as the best
B. Classification performance ]Egoicg for thz Ing ti?jiuelc;:agsification e?pecially 1;or r:he
The Tables II, lll, IV, V, VI and VIl summarize the [0roSiS ground glassindhealthytissues (see for example the

classification results obtained using the three models. AUf ure 4). The McNemar statistical test on each pair of these

X . . . . rategies indicates that there are no significant di n
obtained with the various techniques are summarized Fn ategies indicates that there are no signific diffese

. . -~ 1n the results obtained with the three strategies for the-cla
geom
Figure 4. The bestl value O.f 0.752 was obtained USING ification of consolidationand emphysemaThe McNemar
the ASVM+RES approach. It is followed by ASYM with - A X
. i ) test also indicates no significant difference between ASVM
Agee™ = (.749 and worst performance is obtained with BAL d for the classification diealthy fi
with A9eom — ( 746 and ASVM+RES or the cassylcatlon ealthy tissue. '
U Table VIII summarizes the ranking of the three strategies
V. DISCUSSION according to the value of the AUC for four tissue types.
The convergence of the four initialization points to the The choice of the AUC to rank the strategies was taken
same region indicates a consistency of the use of the RMiEcause it takes into account the sensitivity and the spiegifi
of the classifier i.e. the ratio of true positive and true neg-
ative cases. Depending on the final use of the classification
models, the ranking in Table VIII may not hold anymore.
For instance, if the f-measure was used to rank the three

TABLE IV
PERFORMANCE ONfibrosisvs. ALL CLASSES.

Fibrosis | BAL | ASYM | ASVM + RES strategies as in Table VI, the ASVM and ASVM+RE$
Error 0.21 | 0.19 0.20 strategies would have the same rank. A ranking according
gens!lf!"'g 8-38 8-;; 3'5738 to the f-measure would agree with a ranking based on AUC
pecifici . . . . . .
Precision | 050 | 0.53 051 except forfibrosis where ASVM has the h!ghest f-measure
F—measure] 0.61 | 0.63 0.62 (i.e. would be ranked as the best) even if it has the lowest
AUC 079 | 0.79 0.80
TABLE V TABLE VIII
PERFORMANCE ONground glass/s. ALL CLASSES. RANKING OF THE THREE STRATEGIES ACCORDING TO THAUC
VALUES.
Ground glass| BAL | ASVM | ASVM + RES
Error 0.46 | 0.46 0.45 BAL | ASVM | ASVM+RES
Sensitivity 0.86 0.87 0.88 fibrosis 1 2 3
Specificity 0.48 0.48 0.5 ground glass 1 2 3
Precision 0.23 0.23 0.24 healthy 1 2 3
F—measure | 0.36 0.37 0.38 micronodules| 3 2 1
AUC 0.67 0.68 0.69 Total ranking 6 8 10
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Fig. 4. AUC values obtained with the various techniques. fibezontal Fig. 5. Projection of theconsolidationvs all dataset on the first three
bars at the top of the histogram indicate if the two resultsi@significant  principal component axes. Thewnsolidationexamples are labelled as +1.
difference according to the McNemar statistical test.

o sification results. Theonsolidatiorntissues, for examples, are
sensitivity. _ from younger patients compared to the other patients in the
The BAL strategy outperforms than other strategies for thgaiahase. Another avenue for future investigation is tg pla

classification ofmicronodules The asymmetric-margin of \\ith the oversampling ratio. The computational speed of the
the SVM altered the sensitivity of the model. The addition Obradient descent method (compared to a fine—grained grid—

synthetic majority examples combined with an asymmetricsgaych) and the stability of the model will allow us to carry

margin SVM has further deteriorated the sensitivity of they,t more experimentations with respect to the oversampling
model but improved the precision and the specificity of theatig of the minority classes. The addition of clinical fets
classifier. A possible explanation of this phenomenon is thgy 4150 increase the performance of the classification. The
existence of outliers in thenicronodulesexamples, which se of kernel-based algorithm to transform the input space
were mlscla§S|f|ed with t.h.e. ASVM and AS,V_M+RES andinyo a linearly separable dataset did not provide good t&sul
thus decreasing the sensitivity and the precision. and it is possible that the RBF kernel is not well-suited for
The results obtained in the classificationhefalthytissue e classification of these tissues. Other approachesiatiow

is of particular interest in clinical practice where thee#r e selection of the appropriate kernel also figures in tte i
models have sensitivity equal to 95%. Indeed, an ASVMN future works 130].

model for the classification of healthy tissue can be used to
detect abnormal tissue types in HRCT. VI. CONCLUSIONS
Table 1l highlights the question of using the accuracy as a . . .
performance metric in the classification of imbalanced data W€ Presented in this paper the effectiveness of
sets. According to this table, the accuracy is around 9g@#symmetric-margin SVMs for imbalanced lung tissue clas-
but the algorithm correctly classified 99% of the negativé!fication. The introduction of prior knowledge of the preva
examples while the sensitivity and precision on positiveEnCe Of the patients in the database to correct the ratioeof t
examples are low. examples improved the results with the algorithm. Artificia
The precision for the classification abnsolidatiop em- cases were created according to the k-means algorithm.
physemandground glassare very low and more investiga- The conventional SVM was only better in the classification

tions are needed to improve the results. This is probabff Micronodulesdue to the presence of outliers in the
due to the characteristics of these tissues: they are rgf@mples. While the results obtained with ASVM for the
very specific according to a discrimination measure of thegassification offibrosis and healthytissues are satisfactory,
tissues against the rest. The latter was carried out with tif&°re investigations are needed for the classificationoof
Rayleigh quotient (ratio of the between—class variance ar?t?l'dat'c,m emphysemaground glassand glsomlcronodules .
the within—class variance) on the dataset projected into tCreasing the number of cases, varying the oversampling
principal component axis. The figure 5 highlights the higﬁatlo, addition of clinical features and selection of agprate

disparity of the consolidation in the principal componenté‘emel_ for_each classification are the most important farrkit
space. Investigations.

Many investigations will be carried out in the future to
improve the classification of the three lung tissues cited in
the previous paragraph. Increasing the number of examplesThis work was supported by the Swiss National Sci-
of these tissues may provide better improvement of the clasnce Foundation (FNS) with grant 200020-118638/1 and
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