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Abstract. Although for many diseases there is a progressive diagnosis
scale, automatic analysis of medical images is quite often addressed as
a categorical or even binary classification problem, missing the finer dis-
tinction and intrinsic relation between the different possible stages or
grades. Ordinal regression (or classification) considers the order of the
values of the categorical label and thus takes into account the order of
grading scales used to asses the severity of different medical conditions.
This paper presents a probabilistic deep learning ordinal regression model
for medical image classification that takes advantage of the representa-
tional power of deep learning and of the intrinsic ordinal information
of disease stages by means of a differentiable probabilistic regression
method. Approaching the problem as an ordinal regression task not only
improves the final accuracy of the model, but also the interpretabil-
ity of the results by means of a prediction uncertainty quantification,
when compared to conventional deep classification and regression archi-
tectures.
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1 Introduction

Stages of a disease are not categorical. The progress of the degenerative process
of a disease is not a jump from one class to another but the advance along a con-
tinuous route [24]. The possible stages of a disease are then the result of an effort
by specialists to discretize a continuous behaviour. While not completely accu-
rate, this information is of great utility in the generation of automatic systems
if a model with the appropriate descriptive capability is used. The grade-based
labelling of a disease contains information that is obviously discarded if a multi-
class categorical classification model is used. The way to exploit the information
of the grades of a disease is therefore through a regression modelling. If, in ad-
dition, a probabilistic regression model is used, the model predictions can be
interpreted as probability distributions over the domain of the labels. With this,
more general models can be achieved, with the capability to infer the disease



2 S. Toledo-Cortés et al.

stage in a non-categorical way, and the capability to offer more information
about the prediction by means of the uncertainty quantification.

Deep convolutional neural networks (CNN) represent the state of the art in
the analysis of visual information [35]. Their advantage is based on the structure
that gives them their name: convolutional filters, of which the parameters are
learned and that make it possible to recognise geometric patterns in images.
These patterns become increasingly complex as the model becomes deeper. In
this way, we end up with models capable of recognising specific complicated ob-
jects, or in the case of medical images, capable of classifying an image according
to a disease, or localizing a region of interest. On top of the convolutional blocks,
a set of dense layers of neurons makes the model suitable for a classification task,
using in the output layer as many neurons as there are categories, and cross-
entropy as loss function. For a regression task, a single neuron output is needed,
using a loss function derived from the absolute error.

In the medical field, deep CNN’s have been shown to be effective for analysing
images and visual content of all kinds. From X-rays to diagnose osteoporosis,
to MRI’s to diagnose brain diseases. Although many diseases present different
stages on a progressive scale and in many cases this information is available, a
binary labelling is usually favoured [24]. While binarizing these diagnosis tasks
may have sense from a treatment-oriented decision, two drawbacks arise: first,
the ordinal information of the grades is not taken into account for the training
process. Second, the model predictions, usually subject to a softmax activation
function in a neural network model, cannot be interpreted as a probability dis-
tribution [42].

In this paper we present the Deep Quantum Ordinal Regressor (DQOR), a
deep probabilistic model that combines a CNN with a differentiable probabilis-
tic regression model, the Quantum Measurement Regression (QMR) [12]. This
approach allows us to:

1. Predict posterior probability distributions over the grades range. Unlike
other probabilistic methods such as Gaussian processes, these are explicit
discrete distributions.

2. In the case of patch-based analysis, integrate patch posterior distributions
into a single whole-slide image distribution in a simple, yet powerful probability-
based manner.

3. Quantify the uncertainty of the predictions. This enriches the model as a
diagnostic support tool, which in safety-critical applications, provides the
method with a first level of interpretability.

4. Improve a prognosis-oriented binary diagnosis, based on an ordinal-label
end-to-end training.

To show the effectiveness of our proposal, we test it on two stage-based di-
agnosis tasks: prostate cancer (PCa) diagnosis, and Diabetic retinopathy (DR)
diagnosis. PCa is currently the second most common cancer among men in Amer-
ica. Early detection allows for greater treatment options and a higher chance of
treatment success, but while there are several methods of initial screening, a



Medical Image Grading with DQOR 3

concrete diagnosis of PCa can only be made with a prostate biopsy [9]. Tis-
sue samples are currently recorded in high-resolution images, called whole-slide
images (WSIs). In these images the pathologists analyze the alterations in the
stroma and glandular units and identify the present Gleason patterns in a scale
from 1 to 5. The sum of the two most dominant Gleason patterns gives the
final Gleason score. Then the possible range for this Gleason score is from 2 to
10. However in practice the specialists only care about the highest five grades,
from 6 to 10, as for low grades below 3 biopsies are not taken [22]. The higher
the grade, the more advanced the cancer. Although the CNN implementation in
automatic classification models for PCa has been widely studied, there is still
much research to be done in relation to the diagnostic process in histopathology
[37], and the usual approach is as a multi-class or a binary classification of low
risk (6-7 GS) vs high risk (8-10 GS) cases [19].

Something similar happens with DR, which is a consequence of diabetes
mellitus (DM), one of the most prevalent diseases worldwide [23]. Early DR
diagnosis allows to prevent most of the severe consequences of the disease, in-
cluding complete blindness [46]. One method for early and effective diagnosis
of DM consist of the inspection of the retinal tissue. This is made by means
of an eye fundus image, an RGB photo of the inner back of the eyeball that
allows to detect specific lesions that are a direct consequence of the alterations
caused by diabetes. These lesions include microaneurysms, neovascularization,
hemorrhages, exudates, etc. From the count of these lesions, an ophthalmologist
specialist in retina can give a diagnosis of the disease, on a five-level severity
scale from zero to four (0→4), being zero (0) a negative case of DR, and four (4)
a case of proliferative DR (see Figure 1) [3]. Many approaches have treated the
problem from a multi-class classification perspective, or simple as a binary task,
where a diagnosis of 0 or 1 grade corresponds to a case of non-referable DR and
a case of 2, 3 or 4 grade corresponds to a case of referable DR [36].

Fig. 1. Five possible grades for DR diagnosis. No DR cases correspond to grade 0.
Grades 0 and 1 correspond to non-referable DR cases, while grades 2, 3 and 4 corre-
spond to referable DR. Samples extracted from EyePACS dataset [8].
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The paper is organized as follows: Section 2 presents a brief overview of the
related work. Section 3 presents the theoretical framework of the DQOR, and
Section 4 presents the experimental set up. In order to validate our approach,
we compare our performance with state of the art deep learning-based methods
[19] [40], and with closely related classification and regression methods. Sec-
tion 5 presents the experimental results and finally in Section 6 we present the
conclusions of this work.

2 Related Work

Ordinal regression tasks are not exclusive to the medical field. Therefore the
development of ideas for dealing with this kind of label structure has occurred
alongside the development of the rest of machine learning algorithms, as an
intermediate field between regression and classification models. According to
Gutierrez et al. [14], a taxonomy of the methods previously proposed for this
goal can be made as follows: first, näıve approaches, which are basically standard
machine learning models for nominal classification or metric regression. Second,
ordinal binary decomposition approaches, which break down the problem into
several binary sub-problems [10]. And third, in which our proposal is framed,
threshold models, which are based on a predictor that yields a real value, which
is then approximated to an integer value. Depending on the particular problem,
different models may perform better than others, so there is not a best overall
ordinal regression approach [14].

In the medical field, while it is true that there have been some applications
of ordinal regression models, there is no clear and well-defined trend. Recently,
for instance, the ordinal regression by binary classifiers has been applied to
Facial Age Estimation [28] [38], and diagnosis of Alzheimer’s disease [21], taking
advantage of the inherent ordinal severity of brain degeneration. However, in
addition to the value of prediction, something closer to a real diagnosis given
by a specialist, is to be able to obtain a concrete probability distribution over
the possible stages of the disease. And as a matter of fact, the distribution
describing the probability of belonging to a disease stage has to be unimodal,
so it makes sense to use unimodal distributions in ordinal classification tasks
[6]. Models have already been used where predictions are forced to follow a
Poisson or binomial distributions over the possible outputs [6], showing that,
when needed, the ordinal approach improves results when compared to a cross-
entropy approach. Beckham and Pal used the same idea in [5], where the last
layer of a neural network is interpreted or forced to behave like a Gaussian
distribution, and the final prediction value is the expected value of the neural
network.

Regarding our particular interest of application, most of the recent work for
PCa is focused on classifying Whole Slide Images (WSI) by low and high GS
[19]. To train a model on WSIs, it is required to divide each image into multi-
ple patches and then to summarize the information of the patches by different
methods, hence obtaining a prediction of the WSI. In [15], the authors clas-
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sify patches between low, and high GS, using various CNNs, and summarizing
the patches to a WSI by a GS majority vote. Another approach by Tolkach et
al. [41] uses a NASNetLarge CNN, and summarizes the GS of the patches by
counting the probabilities per class. In Karimi et al. [16] they proposed training
three CNNs for patches of different sizes, and summarizing the probabilities by
a logistic regression.

Some other CNN architectures for GS grading include a combination of an
atrous spatial pyramid pooling and a regular CNN as in [22], an Inception-v3
CNN with a support vector machine (SVM) as in [25] and a DeepLabV3+ with
a MobileNet as the backbone [18]. In [27], the authors use an InceptionV3 with a
k-nearest-neighbor classifier to summarize the heatmap. Other techniques for GS
grading include, Support Vector Machine Feature-Recursive Feature Elimination
[33], and learning features from bag-of-words features [45].

On the DR side, much work has focused on a binary diagnosis based on deep
neural networks [29]. Toledo-Cortés et al. [40] used the model proposed in [43]
to extend a neural network-based binary classifier into a grading regressor by
means of a Gaussian process. Tian et al. [39] also use a deep CNN as backbone
for a model trained to optimize a combination of a metric loss and a focal loss
function for soft labels, in an attempt to use the ordinal information of the DR
stages. For their part, Teresa Araujo et al. [4] propose DR|GRADUATE, a deep
learning based model in which the last layer has as many neurons as classes,
a Gaussian filter is performed on that output, and the model is trained with a
loss function that controls the entropy of the classification on the one hand, and
the standard deviation of the distribution on the other. This allows not only
to infer the DR grade, but also to measure the uncertainty associated with the
prediction.

Related to the ordinal regression, uncertainty quantification was analysed in
many studies with the aim of obtaining more interpretable models in circum-
stances where it is necessary to gain the trust of the end user [34]. Studies were
conducted on the uncertainty of machine learning algorithms for organ classifi-
cation [26] and estimation of tissue parameters in the operating room [2]. Also,
estimating the uncertainty of a model’s prediction is of interest as it helps to
avoid the consequences of blind use of the model’s inference [17]. This is particu-
larly true in medical settings, where misdiagnosis can have serious consequences
for patients. With this in mind, Leibig et al. [20] analysed uncertainty informa-
tion from deep neural networks for DR detection. The authors tested dropout-
based Bayesian uncertainty estimation against alternative techniques, such as
direct analysis of the softmax output of the network, claiming that Bayesian
approaches perform better for uncertainty estimation and also showing that
uncertainty-aware decisions can improve the overall grading process.

3 Deep Quantum Ordinal Regressor

The overall architecture of the proposed Deep Quantum Ordinal Regressor (DQOR)
is described in Figure 2. We use a deep CNN as a feature extractor. The extracted



6 S. Toledo-Cortés et al.

features are then used as inputs for the QMR method [12]. QMR uses density
matrices for regression problems and works as a non-parametric density estima-
tor. It requires an additional feature mapping from the inputs to get a quantum
state-like representation. This is made by means of a random Fourier features
approach [30]. The regressor yields a discrete posterior probability distribution
from which we get the final grade prediction and an uncertainty measure.

Fig. 2. Overview of the proposed DQOR method for medical image analysis. A deep
CNN is used as feature extractor for the input image. Those features are the input for
the QMR regressor model, which yields a posterior probability distribution over the
possible grades of the disease.

3.1 Feature Extraction

Automatic image analysis regardless of the source, medical or not, relies on deep
convolutional networks. The representational power of these models has allowed
remarkable advances in computer vision and therefore we will use them as a basis
for feature extraction [13]. Regardless of the used CNN, there is a basic structure
that is always maintained: an input layer of the image, followed by a series of
convolutional blocks and a pooling layer that summarises all the information
extracted by the convolutions. Usually, this layer is followed by a series of dense
layers that take care of the final classification of the image. We take the output
of the pooling layer as a representation of the image.

3.2 Random Fourier Features

The random Fourier features (RFF) method [30] creates a feature map of the
data z(x) : Rn → RD in which the dot product of the samples in the RD
space approximates a shift invariant kernel k(x − y). The method works by
sampling i.i.d. w1, · · · , wD ∈ Rn from a probability distribution p(w) given by
the Fourier transform of k(x − y), and sampling i.i.d. b1, · · · , bD ∈ R from a
uniform distribution in [0, 2π]. In our context, the shift invariant kernel is the
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Radial Basis Function (RBF) given by, kRBF(x−y) = e−γ‖x−y‖
2

, where gamma
γ and the number D of RFF components are hyper-parameters of the models.
In our model the RFF works as an embedding layer that maps the features from
the deep CNN module to a representation space that is suitable for the quantum
measurement regression layer.

3.3 Quantum Measurement Regression (QMR)

QMR [12] is a differentiable probabilistic regression model that uses a learnable
density matrix, ρtrain, to represent the joint probability distribution of inputs
and labels. A QMR layer receives a RFF encoded input sample |ψx〉, and then
builds a prediction operator π = |ψx〉 〈ψx| ⊗ IdHY where IdHY is the identity
operator in HY , the representation space of the labels. Inference is made by
performing a measurement on the training density matrix ρtrain:

ρ =
πρtrainπ

Tr[πρtrainπ]
. (1)

Then a partial trace ρY = TrX [ρ] is calculated, which encodes in ρYrr, with
r ∈ {0, . . . , N − 1}, the posterior probability over the labels. The expected value

represents the final prediction ŷ =
∑N−1
r=0 rρYrr.

A gradient-based optimization is allowed by a spectral decomposition of the
density matrix, ρtrain = V †ΛV , in which the number of eigen-components of the
factorization is a hyper-parameter of the model. The model is trained by min-
imizing a mean-squared-error loss function with a variance term whose relative
importance is controlled by hyper-parameter α:

L =
∑

(y − ŷ)2 + α
∑
r

ρYrr(ŷ − r)2. (2)

3.4 Patch-based Analysis Summarization

Patch-based image analysis is preferred or rather needed for some applications.
This is the case for the WSI analysis used for the prostatic cancer diagnosis. This
implies an additional stage, as a summarizing is required to reach a whole image
prediction. The simplest procedure would be a majority vote (MV), as reported
in most of previous works. In the majority vote, the prediction for an image is
decided according to the grade with the highest number of predictions among
the patches of the image. DQOR allows, however, a probability vote procedure
(PV): since each patch can be associated with a probability distribution, the
normalized summation yields a distribution for the whole image. More formally,
thanks to the law of total probability, given an image I, composed by n patches,
each patch denoted by pi, the posterior probability of the grade r is,

P (r|I) =
P (r, I)

P (I)
=

∑n
i=1 P (r|pi, I)P (pi|I)P (I)

P (I)
=

1

n

n∑
i=1

P (r|pi). (3)

The final prediction value may corresponds to the grade with highest probability
or to the expected value of the distribution.
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4 Experimental Set Up

The specific details of the experimental procedure carried out for each of the
tasks are described below.

4.1 Prostate Cancer

The specific set up of the DQOR applied for Prostate cancer image analysis is
described in Figure 3.

Fig. 3. Overview of the proposed DQOR method for prostate tissue grading. A Xcep-
tion network is used as feature extractor for the image patches. Those features are the
input for the QMR regressor model that yields a posterior probability distribution by
patch over the Gleason scores. Then, those distributions are summarized into a single
discrete probability distribution for the WSI.

Dataset We use images from the TCGA-PRAD dataset, which contains samples
of prostate tissue with GS from 6 to 10. This data set is publicly available via
The Cancer Genome Atlas (TCGA) [15]. In order to directly compare our results
with our baseline [19] we use the same subset and partition for train and test,
which is detailed in Table 1. The patch extraction details are described in [15].

The training of the model is made at the patch level. In order to obtain
predictions at the WSI level, a process of summarization is carried out. Therefore,
each patch is assigned the GS of the WSI of which it is a part. Although it makes
no sense to say that a GS can be assigned to a single patch, the focus of our
research is to show the effectiveness of the regression approach by comparing
with previous work that handles labels in the same way, beyond specifically
determining a Gleason pattern in each patch.

Feature Extraction The model presented in [19] is used as feature extractor.
It is publicly available and consists of an Xception network trained on ImageNet
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Table 1. Details of the subset and final partition of the TCGA dataset used for training
and testing. This is the same partition used in [19].

Risk Gleason Score Train Samples Validation Samples Test Samples

Low 6 11 4 4
Low 7 53 17 17
High 8 23 8 8
High 9 50 17 16
High 10 4 2 1

and fine-tuned on prostate tissue image patches. This network was originally
used for an automatic information fusion model for the automatic binary (low-
high) classification of WSIs. The augmentation procedure and training details
are described in [19]. Taking the output of the last average pooling layer of the
model we got a 2048-dimensional vector representing each image patch.

Quantum Measurement Regression For the QMR, hyper-parameter tuning
of the model was performed by generating 25 different random configurations.
As result, we created an embedding with 1024 RFF components, 32 eigenvalues
and γ was set to 2−13. For the loss function (See eq. (2)), α was set at 0.4, and
we set a learning rate of 6× 10−5.

Baseline An extension of the feature extractor model was set up as baseline for
this work. Called DLC-PCa hereafter, it consists on 1024 neurons with ReLU as
the activation function and a dropout of 0.2, followed by 5 neurons with a soft-
max activation function for the output. The learning rate was set to 10−7, as in
the baseline [19]. We also explored two closely related methods to QMR: Density
Matrix Kernel Density Classification (DMKDC) [12] and Gaussian processes.
DMKDC is a differentiable classification method, which applies a RFF feature
map to the input sample, and then computes the expected value of the input
with a density matrix of each class, returning a posterior probability distribution,
which can be optimized with a categorical cross entropy loss function. All the
previous experiments were performed in Python using the publicly available
Keras-based implementation presented in [12].

We also explored a closely related method, a Gaussian process (GP) [31]
which is another powerful Bayesian approach to regression problems. By means
of a kernel covariance matrix, the GP calculates and iteratively updates the
probability distribution of all the functions that fit the data, optimizing in the
process the kernel parameters. In our case, we set the kernel as the RBF. The
prediction process consists in marginalizing the learned Gaussian distribution
of which the mean would be the actual prediction value and its standard devi-
ation an uncertainty indicator. We performed experiments with GP using the
Scikit-Learn implementation in Python. We also explored deep Gaussian pro-
cesses (DGP), using the implementation proposed in [7], which also uses RFF
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to approximate the covariance function. For those experiments, another hyper-
parameter random search was made, finally setting the number of RFF to 1024
and the learning rate to 2× 10−12 in a single layer schema.

4.2 Diabetic Retinopathy

The specific set up of the DQOR applied for eye fundus image analysis is de-
scribed in Figure 4.

Fig. 4. Overview of the DQOR for diabetic retinopathy grading. An Inception-V3
network is used as feature extractor for the eye fundus image. These features are the
input for the QMR regressor model, which yields a posterior probability distribution
over the DR grades.

Datasets In order to directly compare the DQOR performance with state of the
art baseline, we worked with EyePACS [8] and Messidor-2 [1] datasets. EyePACS
is one of the largest publicly available datasets of eye fundus images. Each sample
is labeled in a five grade scale from 0 to 4, where 0 stands for a healthy case, 1
for mild non-proliferative DR, 2 for moderate non-proliferative DR, 3 for severe
non-proliferative DR and 4 for proliferative DR. In order to compare with our
baseline [44] [40], we kept the same set up for training and test partitions, which
are described in Table 2. Regarding Messidor 2, it has become an standard
dataset in the field for testing. It consists of 1748 eye fundus images. While DR
grades are not provided, we will use it to show the effectiveness of our proposal
for a purely binary diagnosis. Details of Messidor-2 are described in Table 3.

Feature Extraction For the DR grading we use the model presented in [40],
which is also publicly available, and consists of an Inception-V3 network trained
on ImageNet and fine-tuned on eye fundus images from the EyePACS dataset.
This network was originally used as feature extractor in a model for an automatic
DR grading. In such a model, the training was made in two independent stages,
one for the Inception-V3 and another for the Gaussian process. However, the
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Table 2. Details of the subset and final partition of the EyePACS dataset used for
training and testing. This is the same partition used in [40] and in [44].

Referable Grade Train Samples Test Samples

No 0 37209 7407
No 1 3479 689
Yes 2 12873 0
Yes 3 2046 0
Yes 4 1220 694

Table 3. Details of Messidor-2 dataset used for testing. Messidor-2 is used to compare
the performance of the model in a purely binary task (referable / non-referable).

Referable Test Samples

No 1368
Yes 380

Inception-V3 was trained for the binary referable / non-referable DR diagnosis.
Taking the output of the last average pooling layer of the Inception-V3 we got
a 2048-dimensional vector representing each eye fundus image.

Quantum Measurement Regression Again, three hyper-parameters need to
be chosen for the QMR stage: γ andD for the RFF layer and the number of eigen-
components for the Quantum Measurement layer. We performed a random search
for the QMR hyper-parameters fixing the Inception-V3 stage and generating
25 different random configurations. As result, we choose an embedding with
128 RFF components, 8 eigen-components and γ was set to 2−11. For the loss
function (Eq. 2), α was set at 0.6.

Baseline Similar to the baseline used in [40], an extension of the feature ex-
tractor model with two dense layers was set up as baseline for this work. The
model, called DLC-DR hereafter, has a single neuron output and was trained
end-to-end for classification. The Gaussian process approach corresponds to the
model presented in [40]. And also, as we did for the PCa diagnosis case, we
report results from the deep Gaussian process [7] and the DMKDC model[12].

5 Experimental Results and Discussion

To measure the performance of an ordinal regression method implies to take
into account the severity of the misclassified samples. Although there is quite
a variety of metrics, Mean Absolute Error (MAE) is currently a widely used
measure in ordinal regression, both for evaluation and for the loss function of
the models [11]. Therefore we also measured MAE on the test sets. As we also
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want to measure the impact on the respective binary classifications, in each
application a direct binarization of the results is made and compared with the
performance reported by models trained for this purpose in the state of the art.

5.1 Prostate Cancer

WSI scores were summarized by a MV and PV. The prediction methods at WSI-
level were also applied to the baseline models. In the dense layer classifiers from
the softmax output, as in [41]. In the DMKDC, the prediction methods were
easily applied because the model outputs a probability distribution. For GP and
DGP only MV was calculated, since we have no access to an explicit discrete
posterior distribution. The results are reported in Table 4 and Table 5. In terms

Table 4. Patch-level results of the dense layers classifier models DCL, Gaussian pro-
cesses GP, DGP, and density matrix-based models DMKDC, DQOR.

Method Accuracy Macro F1 MAE

DLC-PCa [19] 0.593 0.359 0.698
GP [31] 0.399 0.255 0.777
DGP [7] 0.265 0.169 1.013

DMKDC [12] 0.584 0.377 0.717

DQOR 0.515 0.317 0.6807

of accuracy at the patch level, the DLC-PCa model obtained the highest results.
This makes sense as this model is trained to optimize a categorical cross-entropy
loss function. The difference with the regression approach is perceptible in the
MAE, for which DQOR reached the best performance.

The best accuracy at the WSI level was also reached with the DLC-PCa
model and with the DMKDC with probability vote. Regarding the regression
performance, the DQOR obtained the lowest MAE at the WSI level, showing
that the model takes advantage of the probability distributions and the inherent
ordinality of the GS grades.

By directly categorizing the results in the test set, where a GS of 6 or 7 is
marked as low, and a GS of 8, 9 or 10 as high, we binarized the results and
calculated the accuracy to make a direct comparison with previous work using
the same dataset. The results are reported in Table 6. The results reported in
[15], [32] are obtained by means of CNN’s directly trained with binary labels.
The model presented in [19] is a multimodal approach, which uses the additional
information obtained from the free text reports of the WSI’s to enrich a model
that makes inferences from visual information alone. Such training also uses
binary labels.

Overall, this shows that in addition to performing better on the gradation
task, our approach offers a consistent benefit for the subsequent binary task.
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Table 5. WSI-level results. For each model, two summarization procedures are applied,
majority vote (MV) and probability vote (PV).

Method Accuracy Macro F1 MAE

DLC-PCa MV [19] 0.608 0.354 0.7173
GP MV [31] 0.391 0.233 0.739
DGP MV [7] 0.174 0.059 0.935

DMKDC MV [12] 0.608 0.354 0.717

DQOR MV 0.587 0.361 0.695

DLC-PCa PV [19] 0.608 0.354 0.717
DMKDC PV [12] 0.608 0.354 0.717

DQOR PV 0.587 0.356 0.652

Table 6. Results at WSI-level of low risk vs high risk.

Method Accuracy

Google LeNet [15] 0.7352
Modified AlexNet[32] 0.769

M-LSA [19] 0.770

DQOR 0.782

5.2 Diabetic Retinopathy

The results for DR grading on the EyePACS test set are reported in Table 7.
Again, while the methods evaluated in this work generate a continuous pre-
diction interpretable at five levels, binarization of these results can be done in
a straightforward manner by defining a threshold on the prediction value. Al-
though the sensitivity and specificity values will depend on this threshold, the
ROC-AUC is independent of it and we report it in order to directly compare
it with the state of the art. For Messidor-2 we only report binary classification
performance in Table 8.

Table 7. Comparison on EyePACS test partition results. Sensitivity, specificity and
AUC for binary classification and MAE for grading.

Description Sensitivity Specificity AUC MAE

DLC-DR [40] 0.7867 0.9643 0.9471 1.1011
Voets 2019 [43] 0.906 0.847 0.951 –

GP [40] 0.9323 0.9173 0.9769 0.7750
DGP [7] 0.3703 0.6196 0.4947 1.3566

DMKDC [12] 0.6473 0.8787 0.9135 0.4051

DQOR 0.8660 0.9809 0.9805 0.2871
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Table 8. Comparison on Messidor-2 results. Sensitivity, specificity and AUC for binary
classification.

Description Sensitivity Specificity AUC

DLC-DR [40] 0.6105 0.9715 0.8624
Voets 2019 [43] 0.818 0.712 0.853

GP [40] 0.7237 0.8625 0.8787
DGP [7] 0.4026 0.5782 0.4960

DMKDC [12] 0.3894 0.5307 0.4581

DQOR 0.8289 0.9356 0.9329

It is evident that for both the grading task and the binary diagnosis task,
our proposed DQOR improves the performance of the previous models, justifying
once again the importance of using disease stage information.

5.3 Uncertainty Quantification

Beyond the classification and regression performance of the methods, DQOR
allows an uncertainty quantification based on the variance of the predicted dis-
tribution for each sample. For the prostate cancer diagnosis, we analyzed the
statistical behavior of the predicted variance on the test set at the WSI-level,
grouping the samples according to whether or not they were correctly classified
in the binary task (see Figure 5). A similar procedure was performed for the DR
diagnosis (see Figure 6). As expected, DQOR predicts low uncertainty levels on
well classified samples when compared with the miss-classified samples. In the
case of DR diagnosis, it is remarkable the fact that, for different datasets (Eye-
PACS and Messidor-2) the range of the variance is directly comparable, and the
general statistical behavior is quite similar. This attribute provides the method
with an interpretable means for the specialist, who may decide whether to trust
or not in the model prediction.

6 Conclusions

In this work we present a novel pipeline for medical image analysis that combined
the representational power of deep learning with the Quantum Measurement
Regression method, which uses density matrices and random features to build a
non-parametric density estimator.

We tested our approach in two different tasks: the diagnosis of prostate cancer
and diabetic retinopathy diagnosis. In both cases the diagnosis is based on a
gradation by progressive levels, although it is normal that in the end a binary
diagnosis is taken into account, mainly related and justified by the prognosis of
the disease. The training of the models was performed using the five available
grades, and we report both regression and binary classification results.

Comparing with similar regression and classification schemes, the results
show consistently that the DQOR allows to obtain better results in terms of
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Fig. 5. Box plot of the predicted uncertainty on TCGA test samples at WSI-level,
grouped by classification status on the low risk vs. high risk GS diagnosis task.

Fig. 6. Box plot of the predicted uncertainty on EyePACS test samples (left) and
Messidor-2 (right), grouped by their classification status on the referable / non-referable
diagnosis task.
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MAE, which for medical applications implies a great advantage, given the sen-
sitivity to the magnitude of classification errors that a purely categorical metric
does not have. Furthermore, by directly binarizing the results, we show that a
training using the information of the grades allows to improve the final binary
classification performance.

Furthermore, unlike methods based solely on neural networks and other prob-
abilistic models, DQOR predicts for each sample a discrete probability distri-
bution over the range of labels. This allows for the robust integration of results
in applications requiring patch-based analysis, and more importantly, it allows
for uncertainty measurement to be involved during training. In test cases, we
show that this uncertainty is significantly higher in misdiagnosed cases, and fur-
thermore that the statistical behavior of this measurement is consistent across
different datasets. This means that the method is able to tell us the level of
confidence of its inference and can help in the identification of misclassified sam-
ples. This is a highly valued ability in medical applications, where the aim is to
prevent false positives and especially false negatives in a diagnostic process.

Overall we demonstrate that unlike single deep learning architectures and
standard classification models, the combination of deep CNNs and Quantum
Measurement Regression allows us to use the ordinal information of a disease
grades and provides a better theoretical framework to combine the patch-level
inference into a single prediction and to quantify uncertainty in safety-critical
applications.
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brid Deep Learning Gaussian Process for Diabetic Retinopathy Diagno-
sis and Uncertainty Quantification. In: Ophthalmic Medical Image Analysis.
OMIA 2020. Lecture Notes in Computer Science, vol 12069. Springer, Cham.
pp. 206–215 (2020). https://doi.org/https://doi.org/10.1007/978-3-030-63419-321,
https://doi.org/10.1007/978-3-030-63419-321

41. Tolkach, Y., Dohmgörgen, T., Toma, M., Kristiansen, G.: High-accuracy
prostate cancer pathology using deep learning. Nature Machine Intelli-
gence 2(7), 411–418 (jul 2020). https://doi.org/10.1038/s42256-020-0200-7,
https://www.nature.com/articles/s42256-020-0200-7

42. Vaicenavicius, J., Widmann, D., Andersson, C., Lindsten, F., Roll, J., Schön,
T.: Evaluating model calibration in classification. In: Chaudhuri, K., Sugiyama,
M. (eds.) Proceedings of Machine Learning Research. Proceedings of Ma-



20 S. Toledo-Cortés et al.

chine Learning Research, vol. 89, pp. 3459–3467. PMLR (16–18 Apr 2019),
http://proceedings.mlr.press/v89/vaicenavicius19a.html

43. Voets, M., Møllersen, K., Bongo, L.A.: Reproduction study using public data of:
Development and validation of a deep learning algorithm for detection of dia-
betic retinopathy in retinal fundus photographs. PLoS ONE 14(6), 1–11 (2019).
https://doi.org/10.1371/journal.pone.0217541

44. Voets, M., Møllersen, K., Bongo, L.A.: Reproduction study using public data of:
Development and validation of a deep learning algorithm for detection of diabetic
retinopathy in retinal fundus photographs. PLoS ONE 14(6), 1–11 (2019)

45. Wang, D., Foran, D.J., Ren, J., Zhong, H., Kim, I.Y., Qi, X.: Exploring auto-
matic prostate histopathology image gleason grading via local structure model-
ing. Proceedings of the Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society, EMBS 2015-Novem, 2649–2652 (2015).
https://doi.org/10.1109/EMBC.2015.7318936

46. Wells, J.A., Glassman, A.R., Ayala, A.R., Jampol, L.M., Bressler, N.M., Bressler,
S.B., Brucker, A.J., Ferris, F.L., Hampton, G.R., Jhaveri, C., Melia, M., Beck,
R.W.: Aflibercept, Bevacizumab, or Ranibizumab for Diabetic Macular Edema
Two-Year Results from a Comparative Effectiveness Randomized Clinical Trial.
Ophthalmology 123(6), 1351–1359 (2016)


