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Abstract. Registration of brain scans with pathologies is difficult, yet
important research area. The importance of this task motivated researchers
to organize the BraTS-Reg challenge, jointly with IEEE ISBI 2022 and
MICCAI 2022 conferences. The organizers introduced the task of align-
ing pre-operative to follow-up magnetic resonance images of glioma. The
main difficulties are connected with the missing data leading to large,
nonrigid, and noninvertible deformations. In this work, we describe our
contributions to both the editions of the BraTS-Reg challenge. The pro-
posed method is based on combined deep learning and instance optimiza-
tion approaches. First, the instance optimization enriches the state-of-
the-art LapIRN method to improve the generalizability and fine-details
preservation. Second, an additional objective function weighting is intro-
duced, based on the inverse consistency. The proposed method is fully
unsupervised and exhibits high registration quality and robustness. The
quantitative results on the external validation set are: (i) IEEE ISBI 2022
edition: 1.85, and 0.86, (ii) MICCAI 2022 edition: 1.71, and 0.86, in terms
of the mean of median absolute error and robustness respectively. Future
work could transfer the inverse consistency-based weighting directly into
the deep network training.

Keywords: Deep Learning · Image Registration · BraTS · BraTS-Reg
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1 Introduction

Registration of brain scans acquired using magnetic resonance imaging (MRI) is
an active research area. Numerous works addressed the challenge by enforcing
diffeomorphic deformations, using both classical [1], as well as deep learning-
based (DL) approaches [4, 3, 8, 7]. However, it is still unclear what is the best
approach for registering scans containing pathologies.

To answer this question, a Brain Tumor Sequence Registration (BraTS-Reg)
challenge was organized in conjunction with IEEE ISBI 2022 and MICCAI 2022
conferences [2]. The challenge organizers proposed a task dedicated to registra-
tion of pre-operative MRI scans of patients diagnosed with a brain glioma, to
follow-up scans of the same patient acquired after the treatment.

The surgical resection introduces the problem of missing data where the
structure of interest is absent in one of the registered images. The problem of
missing data in the registration of brain scans induces two main challenges: (i)
large, nonrigid deformations caused by the tumor resection (depending on its
size), and (ii) non-invertibility of the displacement field in the tumor area (the
displacement field is unable to create new structures).

Contribution: In this work, we present our contribution to both the editions
of the BraTS-Reg challenge [2]. We propose an unsupervised, hybrid approach,
based on a deep neural network followed by an instance optimization (IO) at-
tempting to address the challenge connected with large, nonrigid deformations.
We introduce an additional, unsupervised inverse consistency-based weighting
of the objective function. We present our motivations behind the method design
and show the high quality of the registration in terms of the median absolute
error (MAE) and robustness.

2 Methods

2.1 Overview and preprocessing

The proposed method consists of the following steps: (i) calculating the initial
displacement field using a modified version of the LapIRN [9], (ii) tuning the
displacement field by the instance optimization (IO) based, nonrigid registration
method [11], and (iii - MICCAI edition only) an objective function weighting
based on the inverse consistency. The ISBI 2022 pipeline is shown in Figure 1
and the MICCAI 2022 pipeline is shown in Figure 2.

The basic preprocessing was performed offline by challenge organizers and
consisted of resampling the images to the same resolution. The processing pipeline
starts with creating the source and target tensors. The tensors are created by con-
catenating all available modalities in the channel dimension, for both the source
and target images. This results in two 4x240x240x155 volumes. The volumes are
normalized channel-wise to [0-1] intensity values. We use the pre-operative scan
as the source volume and the follow-up scan as the target volume. The challenge
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design requires to warp the landmarks annotated in follow-up scans and we de-
cided to not attempt to invert the noninvertible displacement fields, neither to
voxelize the landmarks.

Fig. 1. The IEEE ISBI 2022 registration pipeline. Please note that some connections
between LapIRN are omitted for the presentation clarity.

Fig. 2. The MICCAI 2022 registration pipeline. Please note that some connections
between LapIRN are omitted for the presentation clarity. Note that during the 2nd
edition of the challenge the pipeline starts with an initial affine registration.
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2.2 Deep Network - LapIRN

The preprocessed volumes are directly passed to a slightly modified LapIRN [9].
The LapIRN is a multi-level network based on resolution pyramids to enlarge
the receptive field. We decided to use the LapIRN because it won two editions of
the Learn2Reg challenge by a huge margin and confirmed its ability to recover
large, nonrigid deformations [6].

We use the LapIRN to optimize the following objective function:

OREG(S, T, u) =

N∑
i=1

1

2(N−i)
(NCC(Si ◦ ui, Ti) + θiReg(ui)), (1)

where Si, Ti are the pre-operative and follow-up scans at i-th resolution level
respectively, ui is the calculated displacement field, θi denotes the regulariza-
tion coefficient at i-th level, NCC denotes the channel-wise normalized cross-
correlation, Reg is the diffusive regularization, ◦ denotes the warping operation,
and N is the number of pyramid levels.

We have reimplemented the network to have full control over the training
process. We added group normalization due to the small batch size and deleted
the scaling and squaring layers because we did not want to force diffeomorphic
properties, nor to oversmooth the displacement fields. Even though it would
be reasonable to calculate diffeomorphic displacements outside the tumor area,
the smoothness of the deformation field was not taken into account to rank the
submissions.

2.3 Instance Optimization

The LapIRN alone does not provide satisfactory results. Therefore, the displace-
ment field calculated by LapIRN is passed as an initial transformation to a
multi-level nonrigid instance optimization (IO) module. The module fine-tunes
the displacement field by an iterative optimization implemented using PyTorch
autograd. In the original formulation, the method optimizes the same cost func-
tion as the LapIRN.

We decided to use the IO because: (i) it improves the ability to register fine
details since the displacement fields are optimized for each case separately, (ii)
only the unsupervised objective function is used during LapIRN training, and
(iii) the registration time is not scored during the challenge. The IO increases the
registration time by several seconds which is usually acceptable in applications
not requiring real-time alignment.

2.4 Inverse Consistency-based Weighting

To keep into account the missing data, we introduce an objective function weight-
ing based on the inverse consistency. After the initial registration pipeline, the
source and target images are bidirectionally registered again. The registration
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is performed by several iterations of the IO. Then, the displacement fields are
composed and the inverse consistency is calculated.

The inverse consistency is normalized to [0-1] range, raised to a given power,
negated and smoothed using Gaussian filter with a predefined sigma. Both the
sigma and the power are hyperparameters of the method. An exemplary visual-
ization of the exemplary weighting mask is shown in Figure 3. Importantly, the
weighting mask is applied both to the similarity measure and the regularization
term. We decided to weight the regularization term because the displacement
field is supposed to model tumor resection by the volume contraction which is
prohibited by large values of the regularization coefficient.

Fig. 3. Visualization of the objective function weighting. Note that small values of the
weighting function are close to the tumor.

The intuition behind this approach is connected with the fact that regions
without direct correspondences should have large values of the inverse consis-
tency error. Thus, the information can be used to unsupervisedly detect non-
corresponding regions and utilize this information in the objective function
weighting.

2.5 Dataset and Experimental Setup

The multi-institutional dataset was curated and pre-processed retrospectively by
the challenge organizers [2]. The dataset consists of pre-operative and follow-up
pairs (of the same patient) diagnosed and treated for glioma. There are four
MRI sequences for each pair: (i) T1-weighted (T1), (ii) contrast-enhanced T1-
weighted (T1-CE), (iii) T2-weighted (T2), and (iv) fluid-attenuated inversion
recovery (FLAIR).

The training set consists of 140 pairs annotated with landmarks varying from
6 to 50 per pair. The landmarks are defined using anatomical markers e.g. midline
of the brain, blood vessel bifurcations, and anatomical shape of the cortex. We
separated 5% of the training set as an internal validation set not used during
the network training.

The external validation set consists of 20 pairs, following the structure of
the training set, however, without releasing the landmarks for the pre-operative
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scans. The evaluation on the external validation set is possible using the challenge
infrastructure only. There is also an external test set, however, unavailable for
the challenge participants. The test set results will be published in the follow-up
challenge summary publication based on container submissions. Therefore, in
this paper, we report results for the external validation set only.

All experiments are implemented in PyTorch, extended by PyTorch Light-
ning [5]. The LapIRN is trained using three pyramid levels. First, the first level is
trained until convergence (with frozen weights of the remaining levels), followed
by unfreezing the second level, and then finally the third level. We pre-train
the network by registering the pairs in a cross-case manner, resulting in almost
18,000 training pairs. The network is then fine-tuned using the pairs representing
scans of the same patient. Each iteration consists of registering 100 pairs with a
batch size equal to 1. The weighted sum of local channel-wise NCC and diffusive
regularization are used as the objective function. The pretraining is performed
with a window size equal to 7 pixels, then changed to 3 pixels during the fine-
tuning. The regularization coefficients are equal to 1000, 2000, and 4000 in the
1st, 2nd and 3rd pyramid level respectively. The initial learning rate is 0.003 and
decays by a factor of 0.99 per iteration. No information about the anatomical
landmarks is used during training.

The instance optimization, following the DL-based registration, is run us-
ing two resolution levels, for 40 and 20 iterations respectively. All the IO runs
share the same hyperparameters. The objective function is the same as during
training LapIRN and the hyperparameters are as follows: (i) NCC window size
is equal to 3 pixels, (ii) the regularization coefficients are equal to 12500 and
25000 respectively, (iii) the initial learning rate is equal to 0.003. During the last
instance optimization call, the inverse consistency is used to perform the similar-
ity measure weighting. The sigma and the power of the inverse consistency map
postprocessing are both equal to 2. The source code is openly available at [10].

3 Results

The registration is evaluated quantitatively in terms of robustness and median
absolute error (MAE) between the anatomical landmarks. The robustness is
defined as the ratio of landmarks with improved alignment after registration to
all landmarks. The challenge organizers decided to not score the registration
time and the deformation field smoothness is used only in case of tie [2].

We show the MAE and robustness statistics on the external validation set in
Table 1 and Table 2 for the IEEE ISBI and MICCAI editions respectively. We
present the results before the registration, after the affine registration, for the IO
and DL-based registration applied separately, for the proposed hybrid approach,
and for the hybrid approach extended by unsupervised cost function weight-
ing. These results come from the challenge evaluation platform. An exemplary
visualization of the registration results are shown in Figure 4.

The proposed method scored the first place during the IEEE ISBI 2022 edi-
tion (however, without statistically significant differences compared to the re-
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maining methods on the podium). Currently, the proposed method scores the
second or third place on the external validation leaderboard for the MICCAI
2022 edition of the challenge depending on the evaluation run, without signifi-
cant differences compared to the UZL team.

Fig. 4. Exemplary visualization of the registration results. Please note that the inverse
consistency-based weighting improves the qualitative results close to the tumor volume.
The tumor volume decreases and the quality of registration of fine-details around the
tumor is improved. This improvement is not captured by the quantitative results based
on the target registration error.

4 Discussion and Conclusion

The results confirm that the proposed hybrid approach, based on both deep
learning and instance optimization (IO), improves the quantitative results com-
pared to the methods used separately. Interestingly, the IO alone (extended by
the IO-based affine registration) provides slightly better results than the LapIRN
without any further tuning. This is expected because the IO optimizes each case
separately and we do not use any supervision other than the unsupervised ob-
jective function to guide the training process. Interestingly, the worst robustness
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Table 1. Quantitative results on the external validation set during the IEEE ISBI
2022 edition (MAE - Median Absolute Error).

Case Initial IO LapIRN LapIRN + IO

ID MAE Robustness MAE Robustness MAE Robustness MAE Robustness
141 13.50 - 2.06 1.00 2.78 1.00 1.94 1.00
142 14.00 - 4.13 0.86 3.14 0.86 2.82 1.00
143 16.00 - 2.00 1.00 4.51 1.00 1.76 1.00
144 15.00 - 3.54 1.00 5.20 1.00 4.12 1.00
145 17.00 - 1.54 1.00 2.96 1.00 1.19 1.00
146 17.00 - 2.26 1.00 3.56 1.00 2.24 1.00
147 1.50 - 2.08 0.40 2.41 0.50 1.79 0.45
148 3.50 - 1.30 0.90 1.99 0.85 1.63 0.80
149 9.00 - 1.66 1.00 1.91 1.00 1.62 1.00
150 4.00 - 1.66 0.63 2.34 0.68 1.32 0.63
151 3.00 - 1.40 0.80 1.39 0.70 1.17 0.80
152 5.00 - 1.43 0.95 1.68 0.95 1.46 0.95
153 2.00 - 1.47 0.67 1.61 0.67 1.96 0.67
154 2.00 - 2.09 0.55 2.12 0.45 2.03 0.55
155 2.00 - 1.93 0.47 2.34 0.42 1.92 0.53
156 7.00 - 1.74 1.00 2.14 1.00 1.80 1.00
157 10.00 - 2.20 1.00 2.17 1.00 1.22 1.00
158 4.50 - 1.43 0.90 1.81 0.90 1.19 1.00
159 6.00 - 2.46 1.00 2.57 1.00 2.18 1.00
160 4.00 - 1.59 0.90 2.39 0.90 1.75 0.90

Mean 7.80 - 2.00 0.85 2.55 0.84 1.85 0.86
StdDev 5.62 - 0.72 0.20 0.95 0.20 0.67 0.19
Median 5.50 - 1.83 0.92 2.34 0.92 1.77 1.0

1st quartile 3.38 - 1.52 0.77 1.96 0.70 1.42 0.77
3rd quartile 13.63 - 2.12 1.00 2.82 1.00 1.98 1.00

is reported for cases with a low initial error, suggesting that the unsupervised
registration cannot improve the results more.

The objective function weighting further improves the results. From the quan-
titative perspective the difference is not significant, however, it is connected with
the characteristic of target registration error (TRE). The TRE is not dedicated
to the evaluation of the image registration with missing data because the corre-
sponding points cannot be annotated directly in the missing volume. Therefore,
the correlation between the TRE and the qualitative results nearby the tumor
is limited.

Our method has several limitations. First, we do not use information about
sparse landmarks during training. We think that it would be possible to use the
landmarks as a weak-supervision, however, with MAE at the level of 1.71 pixel,
there is not much space for further improvements, and such a method would
probably learn only the annotators’ preferences. Second, we did not extensively
explored the use of different modalities. Probably the use of modality used for
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Table 2. Quantitative results on the external validation set during the MICCAI 2022
edition (MAE - Median Absolute Error). The initial errors are reported in Table 1.

Case Affine LapIRN LapIRN + IO LapIRN + IO + IC

ID MAE Robustness MAE Robustness MAE Robustness MAE Robustness
141 4.39 1.00 2.62 1.00 1.82 1.00 1.82 1.00
142 6.13 0.88 3.12 1.00 2.79 1.00 1.92 1.00
143 8.50 0.88 3.07 1.00 2.56 1.00 1.88 1.00
144 9.46 0.88 2.99 1.00 2.31 1.00 2.62 1.00
145 4.99 1.00 2.15 1.00 1.10 1.00 1.08 1.00
146 6.40 1.00 2.33 1.00 1.73 1.00 1.66 1.00
147 2.17 0.15 2.34 0.35 2.11 0.45 1.64 0.45
148 2.86 0.80 2.00 0.85 1.57 0.80 1.67 0.90
149 2.34 1.00 2.10 1.00 1.65 1.00 1.61 1.00
150 3.99 0.37 2.78 0.47 1.34 0.63 1.28 0.63
151 2.10 0.60 1.71 0.60 1.30 0.85 1.31 0.85
152 2.14 0.95 1.65 0.84 1.43 0.89 1.51 0.89
153 1.90 0.50 2.00 0.42 1.74 0.67 1.66 0.75
154 2.45 0.30 1.99 0.45 2.03 0.40 1.98 0.45
155 2.88 0.22 2.91 0.42 2.01 0.42 2.03 0.42
156 3.29 1.00 2.79 1.00 1.48 1.00 1.53 1.00
157 5.86 0.90 2.99 1.00 1.52 1.00 1.58 1.00
158 3.75 0.40 2.56 0.80 1.16 1.00 1.16 1.00
159 7.78 0.36 2.75 1.00 2.30 1.00 2.37 1.00
160 2.72 0.80 2.66 0.70 1.79 0.90 1.80 0.90

Mean 4.31 0.70 2.48 0.70 1.79 0.85 1.71 0.86
StdDev 2.32 0.30 0.46 0.25 0.46 0.22 0.38 0.21
Median 3.52 0.84 2.59 0.93 1.74 1.00 1.66 1.00

1st quartile 2.42 0.39 2.08 0.57 1.47 0.77 1.53 0.83
3rd quartile 5.93 0.96 2.82 1.00 2.05 1.00 1.89 1.00

the annotation would slightly improve the quantitative results. What is more,
tuning the hyperparameters to just a subset of the available modalities could
possibly further improve the results. Moreover, the inverse consistency weight-
ing significantly increases the registration time (from several seconds to almost
one minute). However, we think that future work could introduce the objec-
tive function weighting directly into the deep network training and significantly
decrease the registration time.

In our opinion, several decisions regarding the challenge setup should be
rethought. First, the MAE and the related robustness should not be used as the
only evaluation criteria for image registration with missing data. The evalua-
tion landmarks cannot be chosen directly within the tumor volume because it is
missing in the target scan. Additional metrics, based e.g. on the relative tumor
volume [11] could be used to evaluate the registration quality. Second, it could
be considered to score the submissions using the displacement field smoothness
outside the tumor volume (and the recurrences), as well as the registration time.
Moreover, uploading the displacement fields directly instead of the transformed
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landmarks would enable the organizers to calculate all the statistics automati-
cally using the challenge evaluation platform.

To conclude, we proposed a hybrid approach based on the DL and IO as
a contribution to the BraTS-Reg challenge. We have shown that the proposed
method improves the alignment for majority of the external validation cases with
high robustness. The proposed objective function weighting based on the inverse
consistency further improved the results. The method could be further extended
by directly incorporating the unsupervised objective function weighting during
the deep network training.
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