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Abstract
PICO recognition is an information extraction
task for identifying participant, intervention,
comparator, and outcome information from
clinical literature. Manually identifying PICO
information is the most time-consuming step
for conducting systematic reviews (SR), which
is already labor-intensive. A lack of diversified
and large, annotated corpora restricts innova-
tion and adoption of automated PICO recogni-
tion systems. The largest-available PICO en-
tity/span corpus is manually annotated which
is too expensive for a majority of the scientific
community. To break through the bottleneck,
we propose DISTANT-CTO, a novel distantly
supervised PICO entity extraction approach us-
ing the clinical trials literature, to generate a
massive weakly-labeled dataset with more than
a million “Intervention” and “Comparator” en-
tity annotations. We train distant NER (named-
entity recognition) models using this weakly-
labeled dataset and demonstrate that it outper-
forms even the sophisticated models trained
on the manually annotated dataset with a 2%
F1 improvement over the Intervention entity
of the PICO benchmark and more than 5% im-
provement when combined with the manually
annotated dataset. We investigate the general-
izability of our approach and gain an impres-
sive F1 score on another domain-specific PICO
benchmark. The approach is not only zero-cost
but is also scalable for a constant stream of
PICO entity annotations.

1 Introduction

Primary care physicians rely on systematic reviews
(SRs) for informed decision-making. SRs are con-
ducted to objectively answer clinical questions and
require going through a rigorous process of manu-
ally screening tens of thousands of clinical studies
to identify terms describing PICO. PICO informa-
tion identification is crucial to appraise the rele-
vance of a clinical study for answering the clinical
question at hand. A study is only included for writ-
ing SRs if it mentions relevant PICO information.

Manual PICO information screening for a single
SR consumes more than 12 months of two medical
experts’ time. The process can be automated using
information extraction (IE) by directly pointing the
human reviewers to the correct PICO descriptions.
Automation will accelerate the overall process of
writing SRs while reducing the burden on health
professionals who are required to manually screen
for PICO entities.

Automating PICO entity detection has garnered
lower interest than other biomedical NER tasks
because of the lack of publicly available entity
annotated corpora. The largest publicly-available
PICO entity/span dataset (EBM-PICO) contains
only 5000 annotated abstracts, some of which were
annotated through crowd-sourcing and others by
hired medical experts (Nye et al., 2018). Crowd-
sourcing involves hiring non-expert workers that
require intensive training that is not commonly af-
fordable. Hiring medical experts for annotation is
equally often too expensive. IN GENERAL, ex-
tracting PICO entities/spans is somewhat tricky be-
cause of high disagreement between human anno-
tators on the exact spans constituting the mentions.
This leads to human errors in hand-labeled corpora.
Hand-labeled datasets are static and prohibit quick
manual re-labeling in case of human errors or when
a downstream task requires new entities. For ex-
ample, PICO entities extend to PICOS, where S
denotes the “study type” of included evidence.

Distant supervision (DS) is a data-centric ap-
proach that allows generating massive weakly an-
notated datasets without human annotators and has
previously been used to create large relation ex-
traction corpora for the general and biomedical
domains. To address the challenges above and
democratize PICO entity recognition, we propose
DISTANT-CTO, a distantly supervised and scal-
able approach to obtaining clinical trials annota-
tions. We take an integrative approach combin-
ing methods of semi-supervised learning (SSL)
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and gestalt pattern matching (GPM) to develop
a continuously extensible dataset. We successfully
demonstrate this approach for the “Intervention”
and “Comparator” entity annotations as proof of
concept (POC).

We summarize our contributions as follows:

• We develop a zero-cost, data-centric approach
using DS to obtain “Intervention” and “Com-
parator” entity annotations.

• We develop and make publicly available a
large weakly-labeled dataset from more than
300,000 clinical trials. The dataset offers
about a million sentences with more than
977,682 annotations across 11 semantic types.

• We improve the state-of-the-art by 2% macro-
F1 on the previously most poor-performing
“Intervention” entity extraction on the EBM-
PICO benchmark corpus without using costly
manually labeled data and by 5% when com-
bined with manually labeled data.

2 Related Work

A decade of automatic PICO information extrac-
tion was limited to sentence-level due to the un-
availability of entity-annotated corpora (Boudin
et al., 2010; Huang et al., 2011, 2013; Wallace
et al., 2016; Jin and Szolovits, 2018). The re-
lease of the EBM-PICO corpus paved the way
for the community to improve upon the PICO
entity/span extraction task. (Nye et al., 2018).
The corpus is biased towards pharma intervention
classes overshadowing non-pharma ones leading
to a substandard performance on it in the previous
SOTA fully-supervised PICO entity/span recogni-
tion models (Beltagy et al., 2019; Brockmeier et al.,
2019; Zhang et al., 2020) and weakly supervised
model (Liu et al., 2021). Small-scale annotation
projects cannot capture the range and variation of
the PICO descriptions spanning the entirety of clin-
ical trials literature. At some point, applications
of such static corpora will confront the problem of
insufficient and irrelevant annotations. Manual an-
notation projects are neither affordable nor scalable
for every lab, limiting innovation.

A plethora of DS methods have been previously
explored for large-scale relation extraction but not
for (named) entity extraction (Etzioni et al., 2008;
Smirnova and Cudré-Mauroux, 2018; Adelani et al.,
2020). Entity extraction in high-impact clinical

and biomedical domains largely relies on small
expert annotated datasets. Commonly, obtaining
weak annotations using DS rely on aligning terms
(a word or phrase) from ontologies onto the un-
structured text (Giannakopoulos et al., 2017; Yang
et al., 2018; Peng et al., 2019; Hedderich et al.,
2021). Ontologies are structured, standardized
data sources that do not capture various writing
variations from clinical literature. Weak annota-
tions obtained using custom-built rules like regular
expressions are restricted by either task or worse
even by entity type (Ratner et al., 2017; Safranchik
et al., 2020; Fries et al., 2021). Bootstrapping ap-
proaches like label propagation (LP) still require
an expert annotated dataset to obtain pseudo anno-
tations for previously unlabeled data samples (Bing
et al., 2017). It is hence not zero-cost.

Our work focuses on overcoming the discussed
bottlenecks using a data-centric DS approach to
generate a large clinical entity annotated corpus
and train a downstream NER model to assess if it
yields adequate results. Unlike the reviewed DS
approaches, our approach does not use ontologies
or rules or LP but rather uses GPM for flexibly
aligning structured text in a clinical trials database
to the free-text fields in the same database using an
adaptable internal scoring scheme.

3 Data

ClinicalTrials.gov (CTO hereafter) documents
more than 350,000 human clinical studies con-
ducted around the globe. The trial’s principal inves-
tigator enters and updates information about each
study stored in CTO. It includes the title and de-
scription of the clinical trial, participant’s eligibility
criteria, participant disease and demographics, in-
terventions evaluated, outcomes, etc. CTO allows
programmatic access to this vast amount of infor-
mation in the JSON (JavaScript Object Notation)
format. The information is stored as a combina-
tion of structured tabular and unstructured free-text
(see Figure 1). The ‘OfficialTitle’ and ‘BriefTi-
tle’ tags in the JSON respectively store the official
and shorter version of the study title in an unstruc-
tured free-text format. The ‘BriefSummary’ and
‘DetailedDescription’ tags store study summaries.
Interventions used in the study are stored under the
‘InterventionName’ tag and their synonyms under
‘InterventionOtherName’ tag each of which could
be linked to their broad semantic type (drug, device,
behavioral, procedural, biological, dietary supple-
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ment, diagnostic test, radiation, genetic, combina-
tion product, other) mentioned under the ‘Interven-
tionType’ tag. As each intervention name is linked
to its semantic type, this becomes a structured in-
formation store. The ‘InterventionDescription’ tag
describes intervention administration procedures
often in a detailed passage.

4 Approach

The approach is schematically illustrated in Fig-
ure 2 and is described below.

4.1 Distant Supervision
Distantly supervised (DS) information extraction
(IE) is an efficient SSL method (Etzioni et al., 2008;
Wen et al., 2019). It is used when the task at hand
has 1) some strongly-labeled data, 2) abundant un-
labeled data, and 3) a weak-labeling function that
could sample from this unlabeled data and label
them using a heuristic function. This labeling func-
tion is a heuristic algorithm that uses a heuristic to
label the unlabeled data (Pinto et al., 2003; Greaves,
2014). It results in a weakly-labeled dataset with
potential label noise. DS-IE models can then collec-
tively use this strongly-labeled and weakly-labeled
training data to give the final output.

4.2 Gestalt Pattern Matching
In entity extraction, the most common form of
DS is to heuristically align terms from a struc-
tured information source onto the unstructured
text (Wen et al., 2019). When flexible, this heuris-
tic boils down to a substring matching problem.
The weak-labeling function matches the longest
common substring (LCS) between the structured
term and unstructured text. Gestalt Pattern Match-
ing (GPM), also known as Ratcliff/Obershelp sim-
ilarity algorithm, is a string-matching algorithm
for determining the similarity of two strings. The
similarity between two strings S1 and S2 is mea-
sured by the formula, calculating twice the num-
ber of matching characters Km divided by the to-
tal length |S1| + |S2| of both strings. Matching
characters are identified by the LCS algorithm fol-
lowed by recursively finding matching characters in
the non-matching regions on either side from both
strings (Ratcliff and Metzener, 1988). Similarity
ranges between 0, which means no match, and 1,
which means a complete match of the two strings.

Similarity(S) =
2Km

|S1|+ |S2|
; 0 ≤ S ≤ 1 (1)

Difflib: It is a python module providing a
sequencematcher function that extends the
GPM algorithm for comparing pairs of strings.
sequencematcher finds the longest contiguous
subsequence between the sequence pair without the
“junk” elements such as blank lines or white spaces.
The same idea is then applied recursively to the
flanks of the sequences to the left and the right of
the matching subsequence. This yields matching
sequences that appear normal to the human eye.

4.3 Candidate Generation
We define candidate generation as the process of au-
tomatically generating entity-annotated sentences.

Assumption and Problem formulation: As “In-
tervention” and “Comparator” entities represent
interventions in two different roles in clinical trials
and semantically the same classes, they are clubbed
into a single “Intervention” entity class. Let each
CTO record JSON file be ri ∈ R, i = {1, 2, ..., I}.
Let the intervention terms in ‘InterventionName’
tags and ‘InterventionOtherName’ tags be the in-
tervention source S = {s1, s2, ..., sm} used in
the study ri. Each intervention term si ∈ S is
linked to intervention class from ‘InterventionType’
tag converting it into a tuple of ⟨sclass, sname⟩,
sname = intervention term and sclass = inter-
vention category. sname is a sequence of words
{y1, y2, ..., yn}, n = {1, 2, ..., N}. Let each sen-
tence ti = {x1, x2, ..., xm},m = {1, 2, ...,M}
in the ‘BriefSummary’, ‘DetailedDescription’,
‘BriefTitle’, ‘OfficialTitle’ and ‘InterventionDe-
scription’ be a part of the intervention target set
T . We assume that for each sname in ri there could
exist a mapping to ti meaning sname is possibly
either completely or partially mentioned in the ti
(see Figure 1). Our goal is to build a scalable and
adaptable candidate generation pipeline that maps
each sname from the structured intervention source
S to the target sentences ti ∈ T (if a loose map-
ping exists). In this prototypical work, we focus
on almost direct matches between the sname and ti
and keep the order-free matches for future work.

Approach For each individual CTO record
ri, we extract all sname ∈ S and ti ∈ T from
the locally stored CTO dump. Both S and T
are preprocessed by lower-casing, replacing
hyphens and multiple trailing spaces with a
single space and removal of Unicode characters.
Given a sname and ti, our aim is to identify and
score (if identified) the mapping between both
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Figure 1: An example CTO record (ID - NCT01929356) to demonstrate the information storage format which is a
combination of structured table and unstructured text.

sequences. To map and score alignment from the
sname to ti, we use a distant supervision labeling
function LFds which is a combination of the
sequencematcher function and an internal
scoring function to fetch almost direct annotations.
The sequencematcher function takes as input
sname and ti and outputs several matching blocks
dblock ∈ Dblocks between both strings. These
matching blocks between the two strings are cal-
culated using a modified gestalt pattern matching
algorithm as elaborated in 4.2. Each dblock =
⟨MatchPost,MatchPoss,MatchLen⟩.
MatchPost is the start of the match in ti,
MatchPoss is the start of the match in sname

and MatchLen is number of characters matching
between the both. sequencematcher provides
an internal scoring function called as ratio
that returns a similarity score between the two
sequences being matched. We do not use ratio
because it returns an overall matching score
between the two full sequences sname and ti rather
than a match score for sname and dblock. Instead,
to identify the matching blocks that correspond
to an exact match between an entire sname and a
part of ti, we calculate a match score ds for each
matching block output by sequencematcher
using equation 2 which is dividing the number of
matching characters in the match block dblock by
number of characters in sname.

ds =
MatchLen

|sname|
; 0 ≤ ds ≤ 1 (2)

Any dblock with the ds score of 1.0 is considered as
complete match and then the sname corresponding
to the dblock is mapped onto sentence ti to generate
a positive annotation sentence a+ ∈ A+. Using the
dblock with only the match score 1.0 leads to miss-
ing out on several entities leading to an incomplete
noisy weakly annotated dataset. Taking this into
consideration, we retrieve the dblock matching with

ds score of 0.9 as fairly-accurate partial matches.
We used a validation set to relax the choice of simi-
larity match score ds to 0.9. We relax the labeling
function LFds to match bigrams in source terms to
the targets. In the real-world data, not all sentences
in clinical trial literature mention the intervention
name and therefore in addition to the positive an-
notation sentences we require negative annotation
sentences. We take ti and sname where no parts
of dblock scored ds more than 0.2 to generate the
negative annotation sentences a− ∈ A−. We call
all these sequences comprised of the positive and
the negative entity annotated sentences A+− our
weakly annotated dataset. Next, for all A+− in-
stances we fetch part-of-the-speech (POS) tags us-
ing POS-tagger from NLTK (Natural Language
Toolkit) resulting into A+−POS . We call the re-
sulting dataset DISTANT-CTO set. POS tags are
added as additional features as they have shown to
help model generalization (Augenstein et al., 2017).
difflib in combination with the internal scoring
function are previously unexplored for automatic
entity annotation generation. It has to be noted
that the method depends on availability of short
source texts with the possibility that they will be
mentioned in longer target texts.

4.4 Model Training

We train an end-to-end distant NER model on
A+−POS using the architecture explained below.

1. Feature Extraction: To capture the domain-
specific information, we used SciBERT, which was
continually pretrained and domain adapted on the
scientific literature from semantic scholar (Guru-
rangan et al., 2020). The models used SciBERT to
tokenize the text input A+− into encoded tokens xt
and extract dense, contextual vectors et from xt at
each time-step t (Beltagy et al., 2019). POS-inputs
A+−POS were one-hot encoded into pt vectors.
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Figure 2: DISTANT-CTO approach - I) Distantly-supervised candidate generation approach, and II) Distantly-
supervised NER model architecture.

2. Feature transformation: To further fine-tune
to the training corpus, the model stacked a bidi-
rectional LSTM (BiLSTM) on top of the SciB-
ERT (Hochreiter and Schmidhuber, 1997). A BiL-
STM layer encodes the text into a (

−→
h ) and (

←−
h )

vector using the current token embedding input
et and the previous hidden state ht−1 in both the
directions.

−→
h and

←−
h were shallow concatenated

([
−→
h ;
←−
h ]) into ht and used as the input for the next

layer. Similarly, the one-hot encoded POS-vectors
pt underwent feature transformation and were con-
catenated ([

−→
h POS ;

←−
h POS ]) into POS-features hpt .

3. Self-attention: Next, the model stacked a
single-head self-attention layer that calculated for
each POS-tag feature at time t in the sequence
a weighted average of the feature representation
of all other POS-tag features in the sequence apt
(Vaswani et al., 2017). This improves the signal-to-
noise ratio by out-weighting important POS fea-
tures. Attention-weighted POS features and ht
were shallow concatenated into ([apt ;ht]) vector.

4. Decoder: The attention-weighted representa-
tion ([apt ;ht]) was fed to a linear layer to predict
the tag emission sequence ŷt followed by a CRF
layer that takes as input the ŷt sequence along with

the true tag yt sequence (Huang et al., 2015).

5 Experiments

The experiments were designed to evaluate the per-
formance of the distant NER models trained with
the DISTANT-CTO set alone vs. DISTANT-CTO
set in combination with the EBM-PICO training set.
The EBM-PICO training set is naturally composed
of both positive and negative annotation sentences,
but for the DISTANT-CTO, we artificially gener-
ated the negative sentences A−. To evaluate the
impact of these negative annotation sentences, we
perform ablation experiments, training the mod-
els only with positive annotation sentences A+.
Finally, we also evaluate the performance when
training using the entity annotations with match
score ds = 1.0 alone vs. entity annotations with
ds ≥ 0.9. A simple SciBERT-CRF model trained
using positive annotation sentences A+ was used
as the baseline. Transformer-based models incorpo-
rate sequence order and self-attention components,
so our baseline served to check the impact of re-
moving costly BiLSTM and self-attention modules.
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5.1 Benchmark datasets
We evaluate our weakly annotated dataset and the
NER model on the following PICO benchmarks.

1. EBM-PICO gold. The EBM-PICO dataset
developed by Nye et al. consists of 5000
PICO entity/span annotated documents 1.
It comes pre-divided into a training set
(n=4,933) annotated through crowd-sourcing
and an expert annotated test set (n=191) for
evaluation purposes. We use the training set
for combined training experiments and the test
set for evaluation.

2. Physio set. A test set comprising 153 PICO
entity/span annotated documents from Physio-
therapy and Rehabilitation RCTs (Random-
ized Controlled Trials) was used as an ad-
ditional benchmark to evaluate the general-
ization power of our approach for this sub-
domain (Dhrangadhariya et al., 2021).

5.2 Experimental Setup
We define the following experimental setups based
on the motivations described in section 5:

• Exp 1.0 distant A+− c[1,0.9] wPOS
The setup is composed of SciBERT BiL-
STM CRF trained on the surface form
(text) and attention-weighted POS inputs us-
ing DISTANT-CTO set comprising entity-
annotated sentences A+− with ds ≥ 0.9.

• Exp 1.1 distant A+− c[1] wPOS The setup is
composed of SciBERT BiLSTM CRF trained
on the surface form and attention-weighted
POS inputs using the DISTANT-CTO set com-
prising only the entity-annotated sentences
A+− with ds = 1.0.

• Exp 1.2 distant A+ c[1] wPOS The setup is
composed of SciBERT BiLSTM CRF trained
on the surface forms and attention-weighted
POS inputs using DISTANT-CTO set com-
prising only the ds = 1.0 annotations. The
negative annotation sentences were removed
in this case and the system was trained with
positive annotated candidates A+ only.

• Exp 1.3 distant A+ c[1] POS ¬ BiLSTM
attention The setup is composed of SciBERT
CRF trained on the surface form inputs using

1A single document consists of a title and an abstract.

DISTANT-CTO set comprising only the ds =
1.0 annotations with only positive annotated
candidates A+. Attention weights were re-
moved from the POS inputs. This setup was
used as the baseline.

• Exp 2.0 - Exp 2.3 These experiments are
identical to their series 1.x counterparts except
that the models are trained on a combination
of the DISTANT-CTO with the EBM-PICO
training set. Exp 2.3 using SciBERT-CRF
architecture was used as another baseline.

5.3 Evaluation

To evaluate the quality of automatic annotation
using the DISTANT-CTO approach, we performed
manual annotation of the “Intervention” class over
200 randomly selected samples from the dataset
and compared it to the automatic annotations.

Model evaluation was carried out by predict-
ing the “Intervention” tokens for both benchmarks.
Each experiment was conducted thrice with three
random seeds (0, 1, and 42), and the average met-
rics (Precision, Recall, and F1) over three repeti-
tions were reported. We evaluated the statistical
significance of our best model using the paired
student’s t-test as described in (Dror et al., 2018).
Further experimental details are in the Appendix.

6 Results

This section reports empirical results for the candi-
date generation process, evaluation for the annota-
tion quality of DISTANT-CTO approach using the
validation sets (see Table 2), and the average of the
performance metrics and standard deviation σ over
three random seeds on both benchmark datasets for
the described NER experiments (see Table 4). We
compare the performance of our weakly-supervised
NER models with the previous SOTA fully super-
vised (FS) methods that train on the EBM-PICO
training set and evaluate on EBM-PICO gold and
also a weakly supervised approach (see Table 3).
These models were separately trained for each of
the PICO entities/spans and also clubbed the “In-
tervention” and “Comparator” together.

6.1 Candidate Generation

A total of 360,395 CTO records were downloaded
as of March 2021. From all the downloaded CTO
records, we extract 200,545 unique (391,286 redun-
dant) intervention names from the aforementioned
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intervention sources. Out of the 391,286 interven-
tion terms retrieved, 104,433 terms were success-
fully mapped to one of the target sentences with
the ds = 1.0, and 3084 more were mapped with a
score of 0.9. Adding ds ≥ 0.9 mappings did not in-
crease the total number of annotated sentences, but
it did increase the number of annotations obtained
in each sentence. Table 1 shows the total number
of intervention annotations obtained from mapping
the source terms to target sentences. Metrics for

Annotation level ds = 1.0 1.0 < ds ≥ 0.9

mention-level 943,284 17,199
token-level 1,515,868 43,096

Table 1: Token-level and mention-level intervention
annotations obtained in the weakly annotated DISTANT-
CTO dataset grouped by their ds scores.

the manual evaluation of DISTANT-CTO using the
validation set show that adding annotations with
ds ≥ 0.9 increases the recall by 3%, but lead to an
expected drop in the precision (see Table 2).

Match score P R F1
ds = 1.0 0.86 0.80 0.83
ds ≥ 0.9 0.84 0.83 0.84

Table 2: Macro-averaged evaluation metrics for the
ds = 1.0 and ≥ 0.9 entity annotations for the validation
set detailed in the section 5.3

6.2 Model Training

Using the DISTANT-CTO set alone with the NER
approach (Exp 1.1 Table 3 and 4) crosses the previ-
ous SOTA F1 on the EBM-PICO benchmark by
2%. The best overall F1 for both benchmarks
is reached upon training the NER models with
combined weakly-labeled DISTANT-CTO with the
strongly-labeled EBM-PICO dataset (Exp 2.0 Ta-
ble 4) crossing the previous SOTA F1 by 5% on
the EBM-PICO benchmark. The improvement in
F1 for the combined experiments (see Exp 2.1 and
2.0 Table 4)) is significant when compared to the
their best DISTANT-CTO counterparts (see Exp 1.1
Table 4)). Using DISTANT-CTO alone has good
precision across the experiment series 1.x, but com-
bining it with the EBM-PICO further improves the
recall and balances out the F1 in the experiment
series 2.x. Adding the artificially generated A−
sentences increases the previous F1 by 5.71% and
3.77% (compare Exp 2.2 with Exp 2.1) for both

(a) ds = 1.0 (b) ds ≥ 0.9

Figure 3: Confusion matrices for the evaluation of
DISTANT-CTO validation set annotations with a) ds =
1.0 and b) ds ≥ 0.9.

the benchmarks. Note that adding these negative
sentences results in an important improvement of
about 9% in the F1 for the Physio dataset that is
specific for the domain of physiotherapy and reha-
bilitation. For the combined experiment, the addi-
tion of the ds ≥ 0.9 annotations improves the F1 as
well by a small margin for the EBM-PICO bench-
mark (Exp 2.0 I.) but has a marginal performance
loss for the Physio benchmark (Exp 2.0 II.). While
using the DISTANT-CTO alone with the ds ≥ 0.9
annotations boosts the precision but downgrades
recall thereby reducing the F1 for both benchmarks.

Type Method P R F1
FS Nye (2018) 84.00 61.00 70.00
FS Beltagy (2019) 61.00 70.00 65.00
FS Brockmeier (2019) 69.00 47.00 56.00
FS Stylianou (2021) 69.04 79.24 73.29
WS Liu (2021) 22.00 54.00 31.00
WS Exp 1.1 (Our) 83.36 70.38 75.02
HS Exp 2.0 (Our) 76.93 80.17 78.44

Table 3: Comparison of DISTANT-CTO NER models
against the previous SOTA NER methods for “Interven-
tion” recognition in terms of macro-averaged precision
(P), recall (R), and F1 scores. Boldface represents the
best score. Note: FS = Fully Supervised, WS = Weakly
Supervised, HS = Hybrid Supervision.

7 Error Analysis

7.1 Candidate Generation
Confusion matrices (see Figures 3a and 3b) for
manual evaluation of DISTANT-CTO validation
set show that relaxing ds from 1.0 to 0.9 does im-
prove the true positives (TP) and reduce false neg-
atives (FN) by 0.9% for the “Intervention” class
but also reduce the precision by increasing false
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Experimental setup P R F1 ±σ P R F1 ±σ
I. EBM-PICO gold II. Physio set

Exp 1.0 88.85 65.39 71.27 ±0.007 86.13 63.70 69.14 ±0.003
Exp 1.1 83.36 70.38 75.02 ±0.013 79.45 66.28 70.63 ±0.008
Exp 1.2 74.85 68.74 71.25 ±0.005 70.52 66.37 68.14 ±0.002
Exp 1.3 (baseline 1) 85.82 64.84 70.31 ±0.002 79.97 60.79 65.14 ±0.005
Exp 2.0 76.93 80.17 78.44* ±0.006 75.55 79.42 77.32 ±0.010
Exp 2.1 77.10 78.83 77.89 ±0.007 76.29 80.18 78.07* ±0.009
Exp 2.2 67.65 85.02 72.18 ±0.009 64.80 83.69 68.75 ±0.011
Exp 2.3 (baseline 2) 70.91 77.38 73.60 ±0.025 71.50 78.40 74.38 ±0.020

Table 4: Macro-averaged performance metrics for the NER models trained on weakly annotated DISTANT-CTO
alone vs. in combination to the strongly annotated EBM-PICO on the two described benchmarks (EBM-PICO
gold and the Physio corpus). Bold is the best experiment score. Asterisk (*) denotes a significant F1-score of the
experiment to its counterpart in the series 1.x. Significance tested using the paired student’s t-test.

positives by 1%. Improved recall for the “Inter-
vention” class is undoubtedly preferred, and hence
it is vital to inspect the cause of false negatives.
A considerable chunk of false negatives was ei-
ther i) missed intervention abbreviations and the
synonyms not mentioned under the sources, or ii)
when only the partial intervention name was men-
tioned in the source, or iii) if specific intervention
terms from the source were mentioned in the target
but with different word order (see Table 5). This
detailed post-hoc error analysis also revealed that
67% false negatives fell under non-drug type com-
posite intervention mentions (phrase mentions of
more than two words). For instance, although the
term ‘Home-based Rehabilitation using Interactive
devices’ is expressed in the sentence ‘This study
investigates clinical outcomes after the rehabili-
tation by interactive home-based devices.’, it will
remain unmapped to it because the term does not
map to the target text using our alignment heuristic.
The problem lies in the lack of naming conven-
tions for non-pharma treatment mentions that are
neither clearly identified nor standardized as se-
mantic units(Dhrangadhariya et al., 2021). There
are two possible programmatic solutions to this.
The first is using additional external ontologies
as sources of distant supervision which improves
coverage of our labeling function to detect further
writing variations within the text. Another solution
to matching such source and target text is using
order-free string matching algorithms (Apostolico
et al., 1992). Using external ontologies solves the
issues of missed synonyms, and adding an external
dictionary of treatment abbreviations could solve
the problem of missed abbreviations (Fries et al.,

2021). We noticed that the “Comparator” terms
(e.g., placebo, sham, saline, etc.) were often not
mentioned as structured sources. The development
of a general comparator term dictionary could im-
prove this. Improving the coverage and reducing
the false negatives (thereby improving recall) using
these methodologies suggests an area where fu-
ture work would be valuable. Most false positives
were a result of bigram matching. We will modify
fuzzy bigram matching to relevant bigram match-
ing, thereby reducing the occurrences of spurious
false-positive bigrams as matches. Only frequently
occurring bigrams from the source will be matched
to the targets. We plan to explore the quality of
DISTANT-CTO for ds ≤ 0.9.

Category FN count
Missed synonym 168
Missed abbreviation 77
Partial match (incl. boundary errors) 361
Missed comparator term 43
Reorder 39
Total 688

Table 5: Distribution of the false negatives in the
DISTANT-CTO evaluation corpus.

7.2 Model Training

Manual error analysis was carried out for both the
PICO benchmarks, and the error counts for EBM-
PICO gold are reported in Table 6. Each token level
error was divided into either of the four classes: 1)
false negative (FN) - if the entire entity that the
token as part of was missed out by the NER model
prediction, 2) false positive (FP) - if the entire entity
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that the token was part of was falsely recognized
as “Intervention”, 3) boundary error (BE) - if the
boundary tokens were missed out but otherwise
the entity was identified by the NER model predic-
tion, and 4) overlapping error (OE) - if the NER
model made an error in the non-peripheral tokens
of an otherwise identified entity mention. Non-
peripheral tokens are all the tokens except the first
and the last token of the multi-token entity/span.

Models trained on DISTANT-CTO alone had a
fewer boundary and overlapping errors, meaning
they missed out on many “Intervention” entity sig-
nals leading to high precision but compromised
recall. On the contrary, NER models trained on
combined datasets made twice the more BE and
six times more OE. While most BE and OE in the
1.x series were false negatives, they were false pos-
itives in the 2.x series leading to a higher recall.
This could be because the EBM-PICO training set
annotated the longest possible intervention span
resulting in spans rather than pure entities in the
DISTANT-CTO approach. Combined training set
models also picked out names of treatments, surg-
eries, and enzymes not used as treatments in the
RCT as intervention mentions. A huge chunk of
overall FN (including the FN tokens in BE and OE)
was for entities with composite intervention terms
containing two or more tokens. We noticed that
the NER system also missed several short interven-
tion names and abbreviations. Overlapping errors
occurred when multiple intervention names were
mentioned together, separated by either comma
or punctuation, or other conjunctions. The error
analysis revealed some issues within EBM-PICO
ground truth, which had inconsistencies with the in-
tervention boundaries for whether intervention fre-
quency, dose, and the way of administration should
be marked as “Intervention”. Several times, the
ground truth marked articles preceding the entity
and prepositions and punctuation succeeding the
entity. Extended error analysis can be found in the
Appendix.

Exp FP FN BE OE
EBM-PICO gold

Exp 1.0 819 1688 559 66
Exp 2.0 759 1112 1278 515
Exp 1.1 790 1152 650 55
Exp 2.1 793 1039 1327 517

Table 6: Distribution of the token-level errors made by
the corresponding NER models on EBM-PICO gold.

8 Conclusions and Future Work

We exploit the freely-available clinicaltrials.org
(CTO) and distant supervision for developing the
largest available weakly annotated database of
Intervention-Comparator entities across 11 sub-
types. Using these weak annotations combined
with the manual annotations, we train an “Interven-
tion” NER model that surpasses current approaches
by more than 5% in terms of F1 on the EBM-PICO
gold benchmark and demonstrate strong generaliz-
ability on a domain-specific physiotherapy bench-
mark. When the same NER model was trained with
the weakly annotated dataset alone, it surpassed
other approaches by 2%. This is a prototypical
work, and an automatically obtained dataset with I
and C annotations are being extended for the Partic-
ipant (P), Outcome (O), and Study type (S) entities.
The code and data are available on Github.
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A Appendix

A.1 DISTANT-CTO characteristics
The total number of entity-level “Intervention”
mentions in DISTANT-CTO are almost 30 times
more than in the EBM-PICO dataset as shown in
Table 7. For the EBM-PICO training set, 57.48%
of mentions fell under the “drug” class and the rest
under the six remaining classes.

Total DISTANT-CTO EBM-PICO
mention-level 977,682 32,890
token-level 1,558,964 125,920

Table 7: Comparing the number of “Intervention” anno-
tations in DISTANT-CTO vs. EBM-PICO.

Out of all the mention-level annotations in the
DISTANT-CTO dataset, 59.90% corresponded to

“drug” class and 40% to the rest of 10 classes. The
pie chart (upper pie in Figure 4) shows the class
distribution of the semantic classes for the retrieved
“Intervention” mentions sname about half of which
fall under the “drug” (or Pharma) class and the
rest under the remaining 10 non-pharma classes.
Out of the total retrieved mentions, almost two-
thirds that get mapped to a target t sentences also
fall under the “drug” class (lower pie in Figure 4).
Table 8 and 9 shows the number of retrieved inter-

Figure 4: upper) Class distribution for the retrieved
“Intervention” mentions, and lower) Class distribution
for the mapped “Intervention” mention.

.

vention mentions by their semantic class vs. the
percentage of these intervention mentions that get
mapped to some target sentence with the match
score ds of 1.0 and score 0.9 respectively. No-
tice that collectively the intervention mentions that
fall under the non-pharma classes outnumber the
pharma (“drug”) mentions.

Top semantic classes for the most mapped and
most unmapped intervention mentions from the to-
tal retrieved mentions are shown in the figure 6
and 5. As evident from the tables 8 and 9 “drug”
class intervention mentions are the most mapped
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Domain retrieved - (mapped)
drug 184835 (35.50%)
device 43134 (20.09%)
other 51703 (16.19%)
procedure 31630 (21.38%)
behavioral 33590 (16.03%)
biological 21225 (22.86%)
dietary supplement 11699 (25.46%)
radiation 4134 (20.44%)
diagnostic test 6742 (10.13%)
combination product 1070 (14.39%)
genetic 1524 (07.94%)
all non-pharma 206,451 (18.80%)

Table 8: Number of intervention mentions retrieved vs.
percentage mapped with ds = 1.0

Domain retrieved - mapped
drug 184835 (36.22%)
device 43134 (21.13%)
other 51703 (16.84%)
procedure 31630 (22.16%)
behavioral 33590 (16.44%)
biological 21225 (24.07%)
dietary supplement 11699 (27.44%)
radiation 4134 (21.17%)
diagnostic test 6742 (10.78%)
combination product 1070 (14.95%)
genetic 1524 (08.53%)
all non-pharma 206,451 (19.64%)

Table 9: Number of intervention mentions retrieved vs.
percentage mapped with a ds of 0.9

followed by “dietary supplement” and “procedure”
classes which also reflects in the pie chart of most
mapped lengths and common phrase lengths for
each class (see Figure 5). The most frequent phrase
length for these classes is one (unigram) and the
second most frequent length is two (bigram).

Figure 5: Top five semantic classes, source intervention
mentions from which get mapped to the target.

.

Domain Most common length
drug 1
dietary supplement 1
biological 1
procedure 2
device 1

Table 10: Lengths for the most mapped classes

The least mapped intervention mention classes are
“combination product”, “diagnostic test” and “be-
havioral” (refer figures 6) with most intervention
mentions in these classes containing either trigrams
or bigrams. This very well reflects with the num-
bers in figures 7 which shows that trigram and bi-
gram intervention mentions constitute almost half
the right pie showing the top phrase lengths for
intervention mentions that remain unmapped. One
of the ways to retain some of the missed bigram
and trigram intervention mentions is to explore the
matches with lower match scores. The Table 12
shows some of the ds ≥ 0.9 source-target matches
not captured by the ds = 1.0 constraint because
of the difference of either a single missing space
or singular-plural differences. It is also interest-
ing to note that the radiographic procedure “cys-
tourethrography” matches the name of the test “cys-
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Figure 6: Top five semantic classes of the source inter-
vention mentions that remain unmapped to the target.

.

Domain Most common length
device 3
other 2
behavioral 3
diagnostic test 2
combination product 3

Table 11: Lengths for the most unmapped classes

tourethrogram”.

A.2 Experimental Details
For the candidate generation process, we did
not define any junk elements for using the
sequencematcher function. All the NER ex-
periments in this article were conducted in PyTorch
and the models were trained for 10 epochs with a
mini-batch size of 10 for training and 6 for evalua-
tion. We used the IO (Inside, Outside) also called
raw labeling for all the NER tasks to make the ex-
periments compared with the previous studies. The
maximum sequence length was set to 100 because
the average length of each input text sequence was
about 68 words. For both experiments types, ei-
ther using the DISTANT-CTO alone or with the
EBM-PICO training set, 80% of the data was used
for training and 20% for development. The [CLS]
embeddings from the SciBERT layer were used
as features of the input text. SciBERT was fine-
tuned by not freezing weights during the experi-
ments. The hidden size for LSTM/BiLSTM was
set to 512/1024 for the text input embeddings and
20/40 for the POS one-hot embeddings. ReLU was
used as the activation function before feeding emis-

sion outputs to the CRF layer. Model training was
optimized using AdamW using a learning rate of
5e-5. The gradients were clipped to 1.0 to mitigate
the problem of exploding gradients. Due to very
specific RAM and GPU requirements for each ex-
periment and the institute’s capacity for sharing the
GPUs amongst the group members, experiments
were carried out on the following GPUs. Each ex-
periment was carried out on a single GPU without
any data and model parallelization.

B Extended Error Analysis

Manual error analysis results for Physio corpus
are reported in the Table 14. FP error count was
always lower than the FN error count in the EBM-
PICO gold but for the Physio set, the combined
NER experiments (series 2.x) lead to a higher FP
compared the FN. The ratio of BE in Exp series
2.x is on an average 1.2 times that of series 1.x.
However, a large chunk of BE in series 1.x are
false negatives in contrast to the BE in series 2.x
which are false positives. Upon closer inspection
of false-negative BE in series 1.x, we found that
they were either missed intervention synonyms in-
side brackets, missed information accompanying
intervention terms like dose, type, medium of inter-
vention, administrator of intervention, or location
of administration. This is due to the fact that dis-
tantly supervised annotation does not take into ac-
count labeling the additional intervention informa-
tion except the name. The addition of the manually
annotated EBM-PICO in the combined training ex-
periments reduces the number of false-negative BE.
This is due to the fact that EBM-PICO guidelines
required the annotators to mark the longest pos-
sible phrase describing intervention including the
additional information like dose, mode, medium,
and location of administration.

For both the evaluation corpora, the combined
NER experiments lead to more TP for the “Interven-
tion” class which is vital to PICO entity/span recog-
nition. This could be the case because the combi-
nation of weakly and strongly annotations reduce
the percentage of unseen surface forms (words)
from both test sets. 27.70% of the intervention
entity surface forms in the EBM-PICO gold bench-
mark remain unseen in the EBM-PICO training
set while for the DISTANT-CTO training set it
drops to 21.38%. 27.29% of the intervention en-
tity surface forms in the Physio benchmark remain
unseen in the EBM-PICO training set while for
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Figure 7: Left) Phrase length distribution of mapped intervention mentions, Right) Phrase length distribution of
unmapped intervention mentions.

.

Characteristic Source Target ds
Single missing space “l carnitine” “lcarnitine” 0.923
Missing negations “no pumice prophylaxis” “pumice prophylaxis” 0.900
Plurals “punch skin biopsies” “punch skin biopsy” 0.941
Abbreviations “rfsh alone” “recombinant fsh alone” 0.926
Specific treatment name to generic treat-
ment name

“biphasic insulin aspart
50”

“biphasic insulin aspart” 0.923

Procedure matches the instrument “cystourethrography” “cystourethrogram” 0.900

Table 12: Example “Intervention” mentions from CTO that get mapped to target sentences t with a ds of 0.9

GPU RAM Experiment
Tesla V100-PCIE-16GB 1TB 1.1, 2.1, 1.3
TeslaK80 GPU 126GB 1.2, 2.2
Tesla V100-PCIE-32GB 1TB 2.0, 1.0, 2.3

Table 13: Experiments and the details of GPUs they
were carried out on.

the DISTANT-CTO training set it drops to 22.97%.
Combining both training sets leads to a reduction
in unseen surface forms to 16.29% and 15.13%
for the EBM-PICO gold and Physio benchmarks
respectively. (Augenstein et al., 2017) has shown
that recall on unseen surface forms is significantly
lower than on seen surface forms for NER tasks.

C Ethical Statement

This paper studies clinical NER with a small
strongly labeled and a large weakly labeled dataset.
Our investigation neither introduces any social or
ethical bias to the model nor amplifies any bias

Exp FP FN BE OE
Physio set

Exp 1.0 963 1586 654 20
Exp 2.0 1168 897 867 347
Exp 1.1 990 1420 723 19
Exp 2.1 1116 904 1025 228

Table 14: Distribution of the token-level errors made by
the corresponding NER models on Physio set.

in the data. We do not foresee any direct social
consequences or ethical issues.

D License Information

DISTANT-CTO uses all of clinicaltrials.gov (CTO)
data that allows downloading and using it given that
any publication/distribution states and describes
any modifications made to the content of the data.
It is public data that anyone can download and re-
produce the outcomes with the code made available
on Github.


