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The discriminative power and stability of radiomics 

features with CT variations: Task-based analysis in 

an anthropomorphic 3D-printed CT phantom 

 

Abstract 

 

Objectives: To determine the stability of radiomics features against Computer Tomography 

parameter variations and to study their discriminative power concerning tissue classification using 

a 3D-printed CT phantom based on real patient data.  

 

Materials and Methods: A radiopaque 3D phantom was developed using real patient data and a 

potassium iodide solution paper printing technique. Normal liver tissue and 3 lesion types (benign 

cyst, hemangioma and metastasis) were manually annotated in the phantom. The stability and 

discriminative power of 86 radiomics features was assessed in measurements taken from 240 

CT series with 8 parameter variations of reconstruction algorithms, reconstruction kernels, slice 

thickness and slice spacing. Pairwise parameter group and pairwise tissue class comparisons 

were performed using Wilcoxon signed-rank tests. 

 

Results: In total, 19,264 feature stability tests and 8,256 discriminative power tests were 

performed. The 8 CT parameter variation pairwise group comparisons had statistically significant 

differences on average in 78/86 radiomics features. On the other hand, 84% of the univariate 
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radiomics feature tests had a successful and statistically significant differentiation of the 4 classes 

of liver tissue. The 86 radiomics features were ranked according to the cumulative sum of 

successful stability and discriminative power tests.   

 

Conclusions: The differences in radiomics feature values obtained from different types of liver 

tissue are generally greater than the intra-class differences resulting from CT parameter 

variations. 

 

Keywords: radiomics, texture analysis, anthropomorphic phantom, computed tomography, 

quantitative biomarkers 

 

1 Introduction 

 Radiomics can perform a comprehensive and automated quantification of phenotypic disease 

characteristics on medical imaging [1, 2, 3]. When radiomics features are combined with other 

data sources, such as structured clinical data, or genomics data, they can produce robust 

evidence for clinical-decision support systems [4]. Particularly in oncological studies and tumour 

characterisation, they have outperformed visual assessment and provide high potential for 

personalised medicine [5]. 

One major challenge that still needs to be overcome for the clinical implementation of this 

technology, is the variation of radiomics feature values caused by changes in the data acquisition 

and image reconstruction [6, 7, 8]. Several studies have shown that the stability of radiomics 

features in computed tomography images can be severely impacted by intra- and inter-scanner 

differences [9, 10, 11]. To minimize the risk of using unstable radiomics features treatment site-

specific and time-, scanner-, and imaging protocol-controlled test-retest analyses have been 

proposed [12]. In recent years, several small studies have carried out test-retest studies with 
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multiple patients to assess this challenge [13, 11, 14, 15]. However, Computed Tomography (CT) 

test-retest studies evaluating radiomics feature stability entail ethical concerns of recruiting a large 

cohort of patients with multiple exposures to radiation and are thus limited to small sample sizes. 

To address the latter, recent studies used phantoms allowing extensive radiation exposure in 

highly controlled acquisition conditions [9, 16, 17, 18, 19, 20]. 

Phantoms aim to mimic human and tumour tissue contrast and attenuation to assess the 

performance of medical devices in imaging, nuclear medicine and radiation therapy [21]. They 

are mainly used by hospital imaging departments for regular device calibration. One disadvantage 

of most commercially available phantoms is their geometric simplicity and uniform backgrounds 

due to the use of homogeneous materials [9, 22] with very limited texture. Recently, an innovative 

aqueous potassium iodide solution-based paper printing technology to create realistic 3D CT 

phantoms based on real CT-acquired patient data was developed [23]. These anthropomorphic 

radiopaque phantoms include high precision anatomic details and attenuation properties. When 

compared to patient-based test-retest approaches, phantoms also simplify image registration of 

different acquisitions. Anthropomorphic phantoms are therefore ideally suited to study the impact 

of CT acquisition and reconstruction parameters based on realistic densities and texture patterns 

of human tissue. 

Another limitation of most previous studies investigating the effect of CT parameters on radiomics 

measurements is a focus on parameter stability alone [16, 20], neglecting the discriminative power 

of the features given a controlled detection or classification task. As long as intra-class variations 

resulting from CT parameters remain significantly smaller than inter-class variations of different 

lesions, the consequences of the former are limited. Homayounieh et al. had previously evaluated 

the accuracy of radiomics in differentiating diffuse liver diseases on non-contrast CT [24]. 

Rotzinger et al. investigated the variability in diagnostic information from 68 different CT units in 

the detection of focal liver lesions using an anthropomorphic abdominal phantom [25]. In the 

context of radiomics features, Caramella et al. also focused on stability and discriminative power 
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[19]. However, they used a nonanthropomorphic synthetic phantom where the discrimination 

tasks were not realistic regarding actual use of radiomics biomarkers (e.g. normal versus tumoural 

tissue). 

In this paper we present a study of the stability and discriminative power of radiomics features 

using a 3D printed texture phantom of the thorax and abdomen. A univariate analysis designed 

to better understand the influence of CT variations on individual radiomics features is performed 

toward the translation of these advanced image computing techniques to clinical practice. When 

compared to previous work, our approach is novel in two aspects: (i) high sample size and realistic 

image acquisitions using an anthropomorphic radiopaque phantom and (ii) the consideration of 

combined stability and discriminative power of radiomics features. 

2 Materials and Methods 

2.1 Phantom 

 A realistic radiopaque 3D phantom designed to simulate clinical imaging in oncology was built 

showing real patient texture data of the thorax and the abdomen, including lesions and tumours. 

The customised phantom was manufactured by printing real patient CT data with an aqueous 

potassium iodide solution on paper and subsequently joining the sheets together [23]. Tissue 

equivalent attenuation at a defined energy spectrum was calibrated at 120 kVp (PhantomX, 

www.thephantomx.com). The phantom comprises two separate sections: a half-mirrored lung 

tumour section, which was not used in this study, and an abdominal section with one pathology 

proven liver metastasis from a colon carcinoma (see details in Supplementary Figure S1 [online]). 

In Fig. 1) the phantom is shown together with manually annotated Regions Of Interest (ROI) in 

the liver. The lung tumour section is derived from a non-small-cell lung carcinoma patient (PAT1) 

that was made publicly available to serve as radiomics phantoms [4], including for the Image 

Biomarker Standardisation Initiative (IBSI) [26]. 
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2.2 CT acquisitions 

 The phantom was imaged with a Siemens SOMATOM Definition Edge (Siemens Healthineers, 

Erlangen, Germany) CT scanner. To define the acquisition and image reconstruction parameters, 

a survey of clinical CT protocols was done including 9 radiological institutes. Portal venous 

contrast phase thorax/abdomen protocols used for clinical indications of tumour or infectious foci 

were considered in the survey. All the CT scans in this study were acquired with the same 

acquisition parameters. The tube voltage was 120 kVp, the helical pitch factor was 1.0, the 

rotation time was 0.5 s and the tube current time product was 147 mAs (no automatic tube current 

modulation), resulting in a volume computed tomography dose index (CTDIvol) of approximately 

10 mGy.  

The following image reconstruction parameters were varied in this study: reconstruction algorithm 

(Iterative Reconstruction, IR or Filtered Back Projection, FBP), reconstruction kernel (two 

standard soft tissue kernels per algorithm), slice thickness in mm (1, 1.5, 2, 3) and slice spacing 

in mm (0.75, 1 and 2). Series reconstructed with an IR algorithm used an ADvanced Modeled 

Iterative REconstruction (ADMIRE) at strength level 3. In total, eight groups of parameter 

variations were selected for this study to assess their impact on classic radiomics features (see 

Table 1). These reconstruction parameter settings are typical for clinical protocols in thoracic and 

abdominal oncology.  

Two approaches were used during the CT scanning of the phantom. First, twenty repetition scans 

(=acquisitions) were performed without re-positioning of the phantom. Then, ten repetitions were 

performed with re-positioning of the phantom between each measurement. For each acquisition, 

the 8 reconstructions listed in Table 1 were performed. In total, 30 CT series (from 30 distinct 

acquisitions) were available for each of the 8 parameter variations selected for this study. All 

series were then exported in the Digital Imaging and Communications in Medicine (DICOM) 

format. 
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2.3 Regions of interest and registration 

 Six 3D ROIs were manually annotated by a board-certified radiologist using a phantom series 

with 2 mm slice thickness and 1 mm spacing. Normal liver tissue and three different types of liver 

lesions were included during the annotation process resulting in two normal liver tissue regions, 

two cysts, a hemangioma and a liver metastasis from a colon carcinoma. 

All CT volumes were registered to a common space using an automated rigid registration 

approach from the Elastix toolbox [27]. The phantom in the volumes was treated as a rigid body, 

allowing translation and rotation, thus matching the manually annotated ROIs to the same 

phantom location in all available CT series. 

 

2.4 Radiomics feature extraction 

 A total of 86 radiomics features were extracted in 3D from the manually segmented ROIs using 

the open source Pyradiomics (version 3.0) python toolkit [2]. The radiomics feature categories 

include First-Order statistics (firstorder, n=18), Grey Level Co-Occurrence Matrices (GLCM, 

n=22), Grey Level Dependence Matrices (GLDM, n=14), Grey Level Run Length Matrices 

(GLRLM, n=16), and Grey Level Size Zone Matrices (GLSZM, n=16). No shape features were 

considered in this study since the features were extracted from the same ROIs in the registered 

CT volumes and are therefore not varying across acquisitions. Definitions for the radiomics 

features are available in the Pyradiomics documentation online (PyRadiomics, Radiomics 

features, pyradiomics.readthedocs.io/en/latest/features.html). 
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2.5 Statistical analysis 

 The Wilcoxon signed-rank test is a non-parametric test that does not require the assumption of 

normality. This test was selected to assess the stability and discriminative power of isolated 

radiomics features in two separate univariate analyses. A two-tailed test with a p-value < 0.05 

was considered statistically significant. All statistical analyses were performed using the 

Scikitlearn and Scipy packages implemented for Python software (version 3.7) [28]. 

2.5.1 Stability of radiomics features (intra-class variation) 

For the stability tests, a tissue class is fixed and each radiomics feature set includes the 

measurements obtained from the 30 CT series sharing the same parameter settings. Pairwise 

comparisons between the eight parameter variation groups are then performed with Wilcoxon 

signed-rank tests. This process is repeated for all available tissue classes while all other CT 

parameters are kept constant. A univariate feature stability test is considered positive if the 

difference between the parameter variation groups is not statistically significant. 

2.5.2 Discriminative power of radiomics features (inter-class variation) 

In the discriminative power tests, a CT parameter setup is kept constant while the feature values 

obtained from a specific ROI class (i.e. normal liver tissue, cyst, hemangioma and liver 

metastasis) are compared in pairwise tests to the values from the remaining classes. These 

comparisons are performed for each of the 8 parameter variation groups. A discriminative power 

test for radiomics features is considered positive if a pairwise comparison has statistical 

significance. 

 

3 Results 

 In a preliminary analysis, no statistical significance was found between the CT series without 

phantom repositioning and those acquired with re-positioning of the phantom between each 
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acquisition. Therefore, the 30 CT series sharing the same CT parameter settings were then 

considered as a single group of feature value measurements. 

3.1 Feature stability 

 In total, 19,264 feature stability tests were performed: 8 parameter variations × 7 pairwise 

comparisons × 4 liver tissue classes × 86 radiomics features. The confusion matrix resulting from 

the feature stability tests is shown in Figure 2. The matrix shows the mean proportion of radiomics 

features without statistically significant differences for pairwise comparisons between the 8 

parameter variation groups defined in Table 1. Only in 15% of these feature stability tests, the CT 

parameter variations had no significant impact on the radiomics features values. Moreover, 78 

out of the 86 radiomics features had, on average, statistically significant differences in the 8 CT 

parameter variation pairwise group comparisons. It can be noted that the parameter groups with 

the highest proportion of significant differences to the other groups have a slice thickness of 3 

mm. In Figure 3, a qualitative evaluation of some of the liver texture patterns (i.e. cyst and liver 

metastasis) is shown for 4 groups of CT parameter variations (i.e. Groups 1,3,6 and 8). 

3.2 Discriminative power 

 Regarding the task-based discriminative power of radiomics features, 8,256 tests were 

performed: 4 tissue classes × 3 pairwise comparisons to the other classes × 8 parameter 

variations × 86 radiomics features. All of the independent radiomics features had at least 40% of 

successful discriminative power tests. In particular, 84% of the univariate discriminative power 

tests resulted in a statistically significant differentiation of the 4 classes of liver tissue. In Figure 

4, a plot of the 86 radiomics features is shown with the percentage of positive stability tests on 

the x-axis and the percentage of positive discriminative power tests on the y-axis. 
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3.3 Data projection and feature ranking 

 Figure 5 shows a principal component analysis visualisation of the 86 radiomics features from all 

240 available CT series. After visually inspecting the data projected in the feature space of the 

first two principal components, the differences between the four ROI classes (inter-class variation) 

are larger than all CT parameter variations (intra-class variation). Moreover, ROIs from the normal 

liver tissue class (green), are closer in the feature space than those from the other classes. The 

two measurements inside the benign cyst ROIs resulted in a larger variation, with cyst_2 

measurements appearing also close to the measurements obtained from the metastasis ROI. The 

visual texture patterns and Hounsfield Unit intensity values within the cysts are more diverse than 

those in the other ROIs, thus generating these larger distributions in the feature space (for more 

details see Supplementary Figure S2 [online]). Nevertheless, all four classes remain linearly 

separable despite the CT parameter variations.                                                                                                                                                                                

The radiomics features were then ranked based on the sum of the percentages of successful 

stability and discriminative power tests. The top ten radiomics features with best performance and 

their corresponding percentages of successful tests are shown in Table 2 (full table showing the 

results for the 86 radiomics features available [online], Supplementary Table S1). 

 

4 Discussion 

To the best of our knowledge, this is the first task-based radiomics study targeting the stability 

and discriminative power of radiomics features using a realistic 3D phantom. The univariate 

differences with statistical significance are measured for 86 common radiomics features with four 

types of CT parameter variations (reconstruction algorithm, reconstruction kernel, slice thickness 

and slice spacing) in a controlled setup. Normal liver tissue regions and 3 types of liver lesions 

are considered. In this study, both the stability of radiomics features, together with their 
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discriminative power, are presented in a task-based performance evaluation using real, not 

simulated, 3D liver tissue patterns. 

According to the results from the feature stability tests, changes in CT parameter settings with 

thin slices, e.g. 1-2mm, have fewer features impacted than changes from 1-2mm to thicker slices 

i.e. 3mm. In addition, CT images with thin slices contain more detailed texture information and 

have been associated with better diagnostic performance for some tasks [7]. Also, when stability 

studies use real patient data, slice thickness seems to be a more influencing factor than the 

reconstruction algorithm and reconstruction kernel [11]. Density phantom studies with simple 

backgrounds do not share this characteristic [9]. 

The results from this study show that even when the majority of radiomics features had low 

stability for CT parameter variations, as has been previously shown in other studies [8, 10, 11, 

12], the discriminative power remains markedly high in the task of differentiating between 4 tissue 

classes. While the fraction of significant stability and discriminative power tests depends on the 

number of repetition acquisitions, the combination of stability and discriminative power results can 

be used to rank the radiomics features. A detailed analysis of the radiomics features with the best 

performance both in stability and discriminative power could be used to define guidelines for 

feature inclusion in future CT imaging studies. Although some compensation methods have been 

proposed to counteract the effect of the parameter and inter-scanner variations in radiomics 

studies [29], the feature values were not normalised for these tests. Any normalisation step is 

highly dependent on the samples and range of values considered for the normalisation. Moreover, 

the interpretability of the radiomics features is facilitated when their original computation values 

are respected.  In future work we will expand our study with multi-site, different vendor 

comparisons, as well as the impact of other CT scanning parameters (e.g. dose, tube voltage). 

Finally, the stability of other quantitative biomarkers, i.e. deep features, could be further studied 

to limit the variation due to scanners and CT protocols [31]. 
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Even though the realistic phantom offers many advantages with respect to other phantoms 

available, a range of low Hounsfield Units (HU) cannot be achieved by the production technique 

of this phantom, with a limit around -100 HU. However, this did not impact our study, as in the 

range of HU > 0 (e.g. liver tissue) the structures are presented with a high resolution and realistic 

contrast. Overcoming problems resulting from the 3D printing of realistic relative HU values was 

also a challenge in the phantom study from Holmes et al. [30]. Given the flexibility and increasing 

availability of 3D printing, it can be expected that further development of these techniques will be 

investigated in future studies [21].  

In conclusion, CT data can have multiple scanner variations and parameters during the acquisition 

and reconstruction process that can affect the values of radiomics features. Understanding the 

scale of changes produced from variations in the acquisition and reconstruction process can help 

to better interpret the analysis of radiomics studies and in case of retrospective studies the 

inclusion or exclusion of patients. Identifying features that are not only stable between different 

scanner settings but that have also a high discriminative power for a specific clinical task should 

be a leading factor when developing personalised medicine approaches with these biomarkers, 

thus limiting unwanted influences on the results. 
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Tables 

 

Table 1. Summary of CT reconstruction parameter variations in this study. FBP: Filtered Back Projection, 

IR: Iterative Reconstruction, ASA: Advanced Smoothing Algorithm. 

 

Group Reconstruction algorithm Reconstruction kernel Slice thickness (mm) Slice spacing (mm) 

1 FBP B26f medium smooth ASA 1 0.75 

2 FBP B30f medium smooth 1.5 1 

3 FBP B30f medium smooth 2 1 

4 FBP B30f medium smooth 3 2 

5 IR I26f medium smooth ASA 1 0.75 

6 IR I30f medium smooth 1.5 1 

7 IR I30f medium smooth 2 1 

8 IR I30f medium smooth 3 2 
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Table 2. Top ten radiomics features when considering both the univariate stability and discriminative 

power for differentiating between 4 types of liver tissue (normal liver tissue, benign cysts, hemangioma 

and liver metastasis) with 8 CT parameter variations. firstorder: First-Order statistics, glcm: Grey Level 

Co-occurrence Matrix, gldm: Grey Level Dependence Matrix, glszm: Grey Level Size Zone Matrix, glrlm: 

Grey Level Run Length Matrix. 

 

 Features Stability (%) Discriminative power (%) Sum 

 original_firstorder_Median 65.2 100.0 165.2 

 original_firstorder_Mean 53.6 100.0 153.6 

 original_gldm_LargeDependenceHighGreyLevelEmphasis 67.9 81.3 149.1 

 original_glcm_ClusterShade 56.3 89.6 145.8 

 original_gldm_SmallDependenceLowGreyLevelEmphasis 54.5 85.4 139.9 

 original_glcm_InverseDifferenceMomentNormalised 52.7 83.3 136.0 

 original_firstorder_Skewness 51.8 83.3 135.1 

 original_glszm_SmallAreaLowGreyLevelEmphasis 67.0 66.7 133.6 

 original_glrlm_LongRunHighGreyLevelEmphasis 36.6 93.8 130.4 

 original_glszm_LargeAreaHighGreyLevelEmphasis 25.0 100.0 125.0 
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Figure legends            

Figure 1. Anthropomorphic radiopaque 3D phantom and manually annotated ROIs.  A. Photo of the realistic 

3D printed phantom set in a scanner. B. Coronal view from a CT volume of the phantom showing the 

mirrored thorax section (top) and an abdominal section (bottom). C and D. Two axial sample views 

displaying the six manually annotated ROIs in the liver: normal liver tissue (green), a liver metastasis from 

a colon carcinoma (red), two benign cysts (blue) and a hemangioma (yellow). 

 

 

 

 

Figure 2. Univariate stability of radiomics features using the proposed pairwise comparisons between the 

8 groups of parameter variations. The average percentage of radiomics features that showed a significant 

difference (p < 0.05) in the measurements of 6 liver ROIs obtained from sets of 30 CT series reconstructed 

with each of the corresponding parameter variations. 

 

 

 

 

Figure 3. Liver texture patterns (cyst and metastasis) in four different CT parameter variations:  filtered back 

projection with slice thickness of 1 mm (Group 1), filtered back projection with slice thickness of 2 mm 

(Group 3), iterative reconstruction with slice thickness 1.5 mm (Group 6) and iterative reconstruction with 

slice thickness 3 mm (Group 8). 
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Figure 4. Scatter plot representation of all 86 radiomics features in terms of the percentage of successful 

stability (x-axis) and discriminative power (y-axis) tests between pairwise comparisons of the 8 parameter 

variation groups. 

 

 

 

 

Figure 5. Principal component visualisation for 1440 samples corresponding to 30 CT series × 8 parameter 

variations × 6 ROIs described by 86 radiomics features. Intra-class variations are represented by colour 

shade variations. Green: normal liver tissue, blue: cysts, yellow: hemangioma, red: metastasis. 
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