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Abstract—Coordinated multi-robot systems are an effective
way to harvest data from sensor networks and to implement
active perception strategies. However, achieving efficient coordi-
nation in a way which guarantees a target QoS while adapting
dynamically to changes (in the environment, due to sensors’
mobility, and/or in the value of harvested data) is to date a
key open issue. In this paper, we propose a novel decentralized
Monte Carlo Tree Search algorithm (MCTS) which allows agents
to optimize their own actions while achieving some form of
coordination, in a changing environment. Its key underlying
idea is to balance in an adaptive manner the exploration-
exploitation trade-off to deal effectively with abrupt changes
caused by the environment and random changes caused by other
agents’ actions. Critically, outdated and irrelevant samples - an
inherent and prevalent feature in all multi-agent MCTS-based
algorithms - are filtered out by means of a sliding window
mechanism. We show both theoretically and through simulations
that our algorithm provides a log-factor (in terms of time steps)
smaller regret than state-of-the-art decentralized multi-agent
planning methods. We instantiate our approach on the problem of
underwater data collection, showing on a set of different models
for changes that our approach greatly outperforms the best
available algorithms for that setting, both in terms of convergence
speed and of global utility.

I. INTRODUCTION

Over the last few years, multi-robot cooperative data har-
vesting, based on unmanned aerial vehicles (UAVs) or under-
water autonomous vehicles (AUVs) has attracted widespread
attention [1]. Autonomous vehicles (AVs) are widely used
for efficient data communication as wireless relays. Thanks
to their high mobility, they can move in proximity of IoT
devices to harvest data and relay them to a fusion center. This
allows avoiding multi-hop or long range transmissions, greatly
prolonging IoT devices lifetime. In particular, decentralized
collaborative multi-robot systems for active perception have
become popular due to their robustness and scalability, which
makes them suitable for industrial and military applications,
as well as in environmental monitoring, in search and rescue
missions, or in online object recognition and tracking [1]–[3].
The use of AVs is particularly beneficial when sensors/tracked
objects are too far apart from each other and from data sinks,
and when sensors location, tracked objects, and the environ-
ment around change over time in an unpredictable manner,
such as in post-disaster (e.g. flood, earthquakes) scenarios. It
is this variability over time which makes the problem of how
to effectively achieve coordination in a decentralized manner

– emerging from the need to guarantee a target performance,
e.g. in terms of AoI or latency – a key issue still largely
unsolved [4]–[6].

As these solutions show, the state-of-the-art approach in
multi-robot path planning is based on Decentralized Monte
Carlo Tree Search (Dec-MCTS) [6] and on an exponen-
tially decreasing forgetting factor to handle the changes in
rewards distribution caused by other agents’ actions and to
encourage exploration of new paths. However, recent works
have highlighted significant issues with such approach [7]–[9],
showing that it is unfit for addressing effectively realistic sce-
narios characterized by inherently unpredictable and dynamic
changes in the environment, such as uncertain or unknown
variations in sensor locations and/or availability.

In this paper, we elaborate a first approach to tackle
the above-mentioned issues. We propose a new algorithm
for efficient decentralized multi-robot path planning for data
harvesting and active perception in volatile environments,
designed to cope with complex and unexpected changes in the
rewards associated to each data collection task, in which agents
coordinate by periodically sharing a compressed form of their
search trees. Our strategy allows each agent to optimize its
own actions by maintaining a probability distribution over
plans in the joint action space. Moreover, it adopts a sliding
window mechanism to force the MCTS algorithm to ignore
outdated and irrelevant samples, in a way which effectively
accounts for changes due to the environment, as well as
for those due to agents’ choices at each round of the data
collection process. Specifically, our main contributions are:
• We formulate the problem of optimal multi-robot path

planning with time varying rewards, where changes are due
to both dynamics of the environment and to actions of each
agent.

• We propose a novel sliding window decentralized Monte
Carlo Tree Search algorithm (SW-MCTS), which allows
each AUV to plan its own trajectory in a way which balances
exploration-exploitation trade off, to deal effectively with
abrupt changes in the environment. Our algorithm admits a
general class of objective functions, optimizes actions over
an arbitrarily long planning horizon, it is anytime, and it
is robust with respect to limitations in the frequency and
amount of information exchange among agents e.g. due to
energy budget constraints for agents.



• We prove formally that our algorithm provides a log factor
(in terms of time steps) smaller regret than state-of-the-
art decentralized solutions. By doing so, we show that our
algorithm converges faster and achieves better performance
than the best available decentralized MCTS planning algo-
rithm for coordinated multi-robot data collection and active
perception. We provide guarantees for convergence rates to
the optimal payoff sequence even when rewards change,
based on an analytical relationship between the sliding
window size and the rate of changes in the environment.
To the best of our knowledge, our work is the first to
provide theoretical bounds and performance guarantees for
a decentralized MCTS algorithm with changing rewards.

• We evaluate the performance of our method using simula-
tions in a realistic setup, by applying it to the problem of
multi-drone path planning for underwater data harvesting.
Results suggest that our solution performs substantially
better than the best existing ones both in static settings
and in presence of frequent changes in sensor position
and availability, achieving faster convergence and higher
resource efficiency, even when decreasing the frequency of
coordination exchanges among agents.

II. BACKGROUND AND RELATED WORK

Information gathering problems using robots are often
modeled as sequential decision making problems [10]. In
the simplest setting with one agent, the problem reduces to
a typical traveling salesman problem - a well-known NP-
hard search problem. When there are multiple agents, joint
optimization of all agent actions explodes the state space and
it results in an intractable problem even for a small number
of agents. Numerous approaches for the multi-agent planning
problem have been proposed over the last few decades.

Some early heuristic solutions include myopic solvers, that
minimize the objective function over a limited time hori-
zon [11], [12]. When the objective function is submodular, the
myopic methods can achieve near-optimal performance [13].
When the objective function is not submodular, non-myopic
decentralized coordination algorithms for multiple agents ex-
ploiting problem-specific characteristics are proposed (e.g.
in [14], [15] and literature therein).

In more general settings, decentralized active information
gathering can be viewed as a partially observable Markov
decision process (POMDP) in a decentralized form [16], [17].
The most dominant approach to Dec-POMDP is to first solve
the centralized, offline planning over the joint multi-agent
policy space and then push these policies to agents who then
execute them online in a decentralized way [17]. These online-
offline approaches are however not applicable to dynamic
environments where the state of the environment is not known
ahead of time.

When uncertainties in the environment are prevalent, si-
multaneous decentralized planning and execution can be per-
formed for Dec-POMDP using solutions such as [18]. Stan-
dard Dec-POMDP methods, however, suffer from significant
memory cost and high computational complexity due the

requirements to compute and store the reachable joint state
estimations of all agents [19]. Recently, decentralized plan-
ning using the anytime Monte Carlo Tree Search algorithm
has gain significant traction due to its flexibility in trading
off computation time for accuracy, and it has been applied
to several decentralized collaborative planning problems for
groups of robots [20]–[23]. The key idea in these solutions is
to use MCTS with upper confidence bound (UCB) in order to
find the best paths, treating node selection as a multi-armed
bandit (MAB) problem [24], [25]. These algorithms seek to
find the most rewarding move regarding a given goal at a
given time and a given state in a mission or game, based on a
search tree with an arborescence that grows and evolves as it
is used. In [6], a Decentralized MCTS algorithm (Dec-MCTS)
allows each agent to optimize its own actions by maintaining a
probability distribution over plans in the joint action space. In
order to deal with the uncertainty deriving from changes in the
environment, [20] and [22] propose a version of Dec-MCTS
which exploits heuristic-based prediction methods, based on
predefined models of other teammate agents. MCTS with
coordination graph is used in [23] for multi-agent planning.
However, being based on previous knowledge, they are un-
suitable for robot motion planning in settings which change
in an unpredictable fashion, as it is often the case in realistic
scenarios, e.g. in a disaster environment.

Within the larger domain of multi-armed bandit (MAB) ap-
proaches, recent works [26]–[29] have focused on applications
in non-stationary environments. Some of these approaches are
based on the assumption that the dynamics of the changing
rewards over time are known [26]–[28], while others assume
no previous knowledge on patterns of reward variation [30].
However, how to apply these results to multi-robot planning
via MCTS in nonstationary settings is a non-trivial problem
which is still open to date. Indeed, it involves modeling the
evolution of multiple interdependent MABs and the way in
which they dynamically impact each other’s decisions. Our
present work tackle these challenges, providing for the first
time a sliding-window based MCTS algorithm for nonsta-
tionary environments where changes cannot be forecasted,
proving formally its convergence properties, and assessing
its performance via simulation in a concrete scenario of
underwater data harvesting by a set of autonomous underwater
vehicles (AUVs).

III. SYSTEM MODEL AND PROBLEM DEFINITION

A. Basic assumptions

We consider a set of S wireless sensors, each with a com-
munication radius R, arbitrarily distributed within a volume
of space, and let s be the label of the s-th element of the
set. These sensors may model e.g. a WSN for underwater
monitoring of a sea port exit, or for hydrogeologic measure-
ments, among others. We assume sensors may move over time
within the volume of reference, e.g. as in the case of wildlife
monitoring, or in underwater monitoring when sensors are
displaced by water currents.
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Fig. 1: Example of data collection scenario for the case of an
underwater WSN (left) and representation of the sensor plane
and of the motion graph (right).

We assume N static wireless data sinks are present in
the same volume. Data sinks collect data from sensors and
deliver them e.g. to the cloud for further elaboration. In water
monitoring systems, data sinks are typically located on the
surface of the water volume monitored, while in post disaster
communications they usually lie at the border of the monitored
area. We assume that, in general, sensor nodes are too distant
among themselves and from data sinks to be able to relay data
to other sensor nodes and/or directly to data sinks. Thus, we
assume that in the given volume a set of M homogeneous
agents (modeling such robots as UAVs, or underwater drones)
periodically harvest data from sensors and relay them to data
sinks. Let m be the label of the m�th agent.

Without loss of generality, we assume the trajectories of
agents are constrained on a motion graph G, i.e. a directed
graph defined at system setup time, and which does not vary
over time. The motion graph typically models constraints to
agent trajectories due to e.g. morphology of the monitored vol-
ume, presence of obstacles, maximum distance from sensors
sufficient for successfully harvesting data, limitations in agent
movements (e.g. on a road grid), legal constraints on agent
paths, among others. The specific way in which the graph is
derived is thus application and context-dependent, and it is
out of the scope of the present work. We assume each sink
is connected to the motion graph via two overlapping edges,
one per direction. A schematic representation of the system,
and an example of the path model are illustrated in Fig. 1. All
agents know the motion graph for the considered volume.

We assume that each agent communicates with other agents
when it is at a sink, via the data sink itself. In what follows
we assume the likelihood of two agents to get close enough to
be able to exchange directly information to be negligible. The
data harvesting process takes place over a time horizon of T
time intervals (denoted as rounds), each of same duration. At
the beginning of every round, each agent is at the location of a
data sink. During a round each agent moves at constant speed
(equal for all agents) along the motion graph, harvesting data
from all sensors for which it gets within their transmission
range. The path of each agent in a round is chosen in such a
way as to terminate at a sink by the end of the round itself,
in order to allow the agent to relay the harvested data to

the sink, and to exchange information with the other agents.
For ease of analytical treatment, we assume any exchange of
information (e.g. from sensors to agents, from agents to data
sinks, and among agents via data sinks) to be instantaneous.
Note however that our approach can be easily extended to
account for finite exchange duration, as well as to agents
moving at different speeds.

In round t, with vti,m we denote the i-th vertex that the m-th
agent has visited since the beginning of the round. The path of
the m-th agent in round t, denoted as ptm, is an ordered list of
vertices ptm = (vt1,m, . . . , vtnm,m) of length nm, such that two
adjacent vertices in the path are the two vertices of an edge of
the motion graph G, and in which only the first and the last
vertex in a path are sink nodes. Let B denote the maximum
path length during a round. Such a maximum value is derived
from node speed and round duration, but it may capture also
various constraints, e.g. due to finite storage capacity, finite
per-round energy budget, among others. We assume B is the
same for each agent and in each round. We assume the round
duration is larger than the time taken by any agent to traverse
a maximum path length B, and that possibly it also accounts
for the time required to recharge the agent and/or to exchange
data at the sink. To any path ptm on the motion graph we
associate a cost b(ptm), equal to its length.

We consider that the first time in a round that a sensor
finds an agent within its transmission range, it sends its own
data, removing them from memory. We denote this event as a
successful harvesting event. All subsequent events of contact
between that sensor and agents in that round do not bring to
any data transfer (failed harvestings). At the beginning of a
round, all sensors have data to transfer, and the amount of
that data remains the same independently on whether data has
been harvested from a given sensor in the previous round, or
not.

We assume that at the beginning of the first round, position
and availability of sensors are unknown to the agents. At the
beginning of each round, every agent knows the location of
each collected sensor and its operating status thanks to the
exchange of information among agents. However, this infor-
mation might be outdated due to changes in the environment
occurring after that location and status of each sensor have
been assessed.

B. Problem formulation
Our goal is to find, at each round, a path for each agent

such that the cumulative utility of the data collection process
over T rounds is maximized. The utility function is defined
as follows. To every harvesting event at the s-th sensor in
round t we associate an utility, which is equal to ws

t in case
of success, and zero otherwise. ws

t is in principle different for
each sensor, and potentially varying at every round.

Let rtm denote the total utility associated to the traversal of
path ptm. It is equal to the sum of the utility of all the successful
harvesting events which the m-th agent has performed while
traversing it. It is a quantity which, for a same path, may be in
principle different at each round (e.g. due to sensor movement,
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to changes in sensor availability and/or harvesting utility).
Moreover, given that failed harvestings yield zero utility, it
depends not only on the path of the m-th agent, but also
on those of all the other agents in that round. We denote its
expected value as r̄tm.

With P t
m, we denote the set of all possible paths which

start at agent m’s starting sink at the beginning of the t-th
round. Let Pt = (P t

1 , ..., P
t
m, ..., P t

M ) denote the collection
of sets of paths for all agents at the t-th round, and let P =
(P1, ...,Pt, ...,PT). We define then the following problem:
Problem 1. (Multi-robot path planning in nonstationary set-
tings)

maximize
P

TX

t=1

MX

m=1

r̄tm (1)

Subject to, 8ptm 2 P,

b(ptm)  B (2)

Constraint (2) derives from imposing that the total path
length for the m-th agent in the t-th round to be less than
the travel budget B available to each agent in a single round.
Such an optimization problem cannot be solved efficiently.
Indeed it is easy to see that Problem 1 is a variant of the well
known NP-hard travelling salesman problem.

In the next section we provide an adaptive and distributed
learning solution to Problem 1, that learns from the environ-
ment and from the actions of other agents, updating planning
decisions accordingly in each round.

IV. THE SLIDING WINDOWS MCTS ALGORITHM

A. Algorithm overview

Our algorithm, denoted as sliding window MCTS (SW-
MCTS) implements a distributed planner which aims at finding
the best course of action (CoA) for each agent in each round
t, i.e., to determine for each agent a path which globally
maximizes the utility function in Problem 1. At each round
the distributed planner determine these paths (one per agent),
executes them, updates the information used for path planning
(such as sensor position and availability, which might have
changed during the round), and replans before starting a
new round. Each agent runs an independent instance of SW-
MCTS. The best CoA for each agent is determined using a
Monte Carlo tree search, where a node of the tree corresponds
to a vertex of the motion graph, and the actions at such
node are the edges starting from that vertex. Specifically, our
algorithm extends the well known UCT bandit algorithm for
tree search [24] to nonstationary settings. In order to find the
optimal equilibrium between exploration and exploitation in
presence of changes in the reward scheme, the move selection
problem at each internal tree node is modeled as a separate
multi-armed bandit, in which the arms correspond to the
possible moves from each node, and the payoff to the result
of the rollout episode that traverses the node.

The pseudo-code of SW-MCTS for the m-th agent at the
t-th round is shown in Algorithm 1. To each node v of the

Algorithm 1 SW-MCTS algorithm for agent m in round t

Input: Motion graph G, travel budget B, set of feasible paths
and probabilities of other agents (P̂ t

(m), q
t
(m))

Output: ptm
1: pt(m)  Sample (P̂ t

(m), q
t
(m))

2: i = 1
3: while vti,m is fully explored AND residual budget allows

AND sink not reached
4: vti+1,m SW-UCT(vti,m)
5: i = i+ 1;
6: end while
7: while sink not reached AND residual budget allows
8: vti+1,m  Random policy (vti,m)
9: i = i+ 1;

10: end while
11: Backpropagation (ptm, pt(m), Ê

t
m)

12: (P̂ t+1
(m) , q

t+1
(m))  Update and Communicate (P̂ t+1

m , qt+1
m )

motion graph we associate, for each round u 2 [1, t� 1], the
following parameters (denoted as node statistics):
• The rollout score F v

u , which is the average of the utility of
all paths which, at round u, traversed node v;

• For every adjacent vertex v0 of v, the number of times it has
been visited from vertex v during the u-th round, denoted
as ↵v(v0, u).
For coordination between agents with SW-MCTS, each

agent optimises its own actions while accounting for other
agents’ choices by maintaining a probability distribution over
the MCTS plans in the joint action space. To this end, at
each round t, every agent m exchanges with other agents a
description of the set of paths it has chosen so far, in the form
of a set of paths P̂ t

m and of a probability mass function qtm
which associates to every element of P̂ t

m a value of probability,
which is function of how often that path has been chosen in
the past by agent m. In the same way, to account for the effect
of other agents’ choices, every agent maintains a set P̂ t

(m) of
paths which other agents might take, and its probability mass
function qt(m). To reduce the computation and communication
requirements for agents, the set P̂ t

m may be built to include
only those paths which are most likely to be chosen.

At the beginning of each round, each agent samples the
paths taken by other agents by drawing at random a set of
paths, one for each of the other agents, using the probability
mass function given. These sampled paths are then used by
the agent in planning its own optimal path, assuming the other
agents are taking these sampled paths in the current round.
Then, starting from the sink node, each agent at the i-th node
of its path chooses the next node to visit using the following
strategy:
• While the current node is fully explored (i.e., all actions have

been tried in the past at that node), the sliding window UCT
(SW-UCT) algorithm (described in the following section) is
used to compute a score for each action. Then the agent
selects the action with the highest score and visits the
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corresponding next hop. This continues until either the agent
reaches a sink, or the agent reaches a node which is not
fully explored. In the latter case, the agent chooses randomly
one untried child node to expand the tree search. We use
Êt

m(⇢ ptm) to denote a set of chosen actions and the newly
expanded node of the agent m by using the SW-UCT policy
in round t.

• Then, the agent applies the random policy, randomly picking
one action at every node and visiting the corresponding next
hop until a sink is reached. Note that, in any case, an action
cannot be chosen if it does not allow getting back to the
starting sink with the residual travel budget. This condition
is checked at every node along the path of the agent, thus
ensuring that constraint Equation (2) is always satisfied.
In the backpropagation phase, the rollout score for ptm is

computed, which is set equal to the utility of the agent’s path at
round t. This utility is derived using a local utility function as
in [6], and by estimating the effect of the possible path choices
of other agents, through (P̂ t

(m), q
t
(m)). Such information is

updated for every nodes in Êt
m to use for calculating the SW-

UCT scores in the following rounds.
After that, each agent elaborates P̂ t+1

m and qt+1
m by accounting

for ptm, and it shares them with the other agents. Finally, it
updates the node statistics, and it starts a new round.

B. Sliding window UCT algorithm

In this section we present our algorithm for computing
a score for each of the actions available at a node, when
the node has been fully explored. To incorporate the time-
varying nature of reward distribution in nonstationary settings,
a sliding window strategy is used to force the algorithm to
“forget” outdated previous samples. Thus, the algorithm is
parametrized by a sliding window constant ⌧ � 0 which tunes
the weight which the results of past explorations should have
in computing payoffs. The algorithm is based on computing,
at round t and node v, an upper confidence bound Uj,t on the
value of each child j of the given node. That is, an upper
bound on the potential payoff of choosing that child node
as next hop. The algorithm then selects the child node that
maximizes this quantity over all children of the given node.
We denote this optimal node by Iv,t.The upper bound Uj,t is
derived as a combination of the empirical mean of rewards
received at node j and a confidence interval derived from
the Chernoff-Hoeffding inequality [26]. Specifically, the upper
bound is given by Uj,t = Xj,t(⌧)+Hj,t(⌧), where Xj,t(⌧) is
the average empirical reward for choosing node j, given by

Xj,t(⌧) =
1

Nt(⌧, j)

tX

u=t�⌧+1

F j
u (3)

Nt(⌧, j) is the number of times the child node j within the
last ⌧ iterations has been visited. The average empirical reward
accounts for the results of the past explorations, and it thus
represent the exploitation component of Uj,t, as it tends to
favor the child with the best score in the recent past. Hj,t(⌧) is

instead the exploration bonus in a window of ⌧ past iterations
from t for node j:

Hj,t(⌧) = 2Cp

s
log(t ^ ⌧)

Nt(⌧, j)
, (4)

where t ^ ⌧ = min(t, ⌧). Cp > 0 is an exploration constant,
and it is used to tune the relative weight which the exploration
bonus has with respect to the average empirical reward. As
it can be seen, Hj,t(⌧) is larger for child nodes which have
been visited less in the past, and it thus pushes the algorithm
towards exploring new path choices. Critically, while the
general structure of this bound follows the typical one of UCT
algorithms [24], in the sliding window version we propose here
both exploration and exploitation terms are functions of the
sliding window constant ⌧ , which thus models the ”memory”
of the system.

V. THEORETICAL BOUND ON SW-MCTS PERFORMANCE

We provide in this section an upper bound on the regret
of SW-MCTS, where the regret is generally defined as the
difference between the actual payoff at the root node and the
optimal payoff for the root node. In our particular application,
the regret is the difference between the reward that an AV
agent obtains by using SW-MCTS versus the optimal reward.
SW-MCTS aims to minimize this regret.

Recall that the child node selection problem at each node
in the tree is similar to the bandit problem [24], with the key
difference that the payoff received on selecting an arm changes
as we explore the search tree. The changes come from three
sources:
• The reward for each internal node drifts as we discover more

descendant nodes;
• The reward for each node in the MCTS tree of each agent

changes as a result of other agents’ actions; and
• The rewards for the nodes change as the environment

changes.
Our analysis of SW-MCTS therefore needs to take into

account these three sources of changes and provide a thorough
treatment of their combined impact. To handle the inter-
dependencies between the sources of changes, we break the
proof into three steps: (1) SW-UCB: Bounds on the re-
gret when applying sliding windows to bandit with drifting
changes; (2) Bounds on sliding window when applying to
UCT as extensions of results in step 1; and (3) Bounds on
SW-MCTS when there are multiple agents using results from
step 2.

A few notations are needed for the analysis of step 1, SW-
UCB. Let It 2 {1, . . . ,K} denote the arm pulled at round t,
with K being the number of possible arms. After selecting the
arm It = i, we receive a stochastic payoff Xi,t 2 [0, 1]. The
sequence of payoffs generate the stochastic process {Xi,t}t,
i = 1, . . . ,K for t � 1. Let µi,t be the expected reward for
arm i at time t. The SW-UCB arm selection policy chooses
the arm with the best UCB within a sliding window ⌧ as

It = argmax
i2{1,...,K}

{X̄i,t(⌧) +Hi,t(⌧)},
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where the empirical reward X̄i,t(⌧) is given by (3) and the
exploration bonus Hi,t(⌧) is given by (4).

We make the following four key assumptions about the
rewards.
Assumption 1. (Independence) Fix 1  i  K. Let {Fi,t}t
be a filtration such that {Xi,t}t is {Fi,t}t-adapted and Xi,t is
conditionally independent of Fi,t+1,Fi,t+2, . . . given Fi,t�1.
Further, there exists an integer Tp such that for ti � Tp and
t < ti, Xi,t is independent from Fi,t.

Let ⌥t denote the number of breakpoints before time t,
where a break point is defined as the time instant where
distributions of the rewards change.
Assumption 2. (Finite Number of Changes) The sequence
{⌥t}t is known and bounded such that limt!1 ⌥t =
supt ⌥t <1 and ⌥t+1 � ⌥t.

We also assume that the expected payoff µi,t converges.
Assumption 3. (Convergence of means) The limit µi =
limt!1 µi,t exists for all i 2 {1, . . . ,K}.

Let the difference between the two quantities be �i,t =
µi,t � µi. For any arbitrary time t, denote the optimal arm
as ti⇤ , and define the optimal expected payoff by µi⇤t ,t =
maxi2{1,...,K}µi,t

. The average expected payoff up to time t
is

µ⇤
t =

1

t

tX

u=1

µi⇤u,u.

The minimum difference between the optimal reward
and the instantaneous reward up to time t is �i,t =
minu2{1,...,t}{µi⇤u,u � µiu,u : i 6= i⇤u}. Let Mi(t) be the
number of times arm i is pulled following the most recent
breakpoint. The following assumption requires that the drift
�i,t is proportional to �i,t after a finite burn-in period.
Assumption 4. (Small drifts) There exists an index T0(✏) such
that for any arbitrary ✏ > 0 and Mi(t) � T0(✏), |�i,t| 
✏�i,t/2 and |�⇤|  ✏�i,t/2 for all i.

Given these assumptions, we first bound the number
of times each sub-optimal arm is pulled. Let Ñi(t) =Pt

u=1 {Iu=i 6=i⇤u} be the number of times an arm i was played
when it was not the best arm in the first t rounds. The
following lemma gives a bound on Ñi(t).
Lemma 1. Consider the SW-UCB applied to a non-stationary,
switching bandit problem where Assumptions 1, 2, 3, and 4
hold. Then for any arm i 2 {1, . . . ,K} and T > 1,

E⌧

h
Ñi(T )

i
 O

⇣p
E[⌥T ]T log(T ) (C2

p + T0(✏) + Tp)
⌘

.

(5)
This lemma is the cornerstone of all the theoretical analyses

in this work and we present the proof in Section A of the
Appendix.
Remark: Compared to the bounds for the Dec-MCTS
in [6] where the number of suboptimal pulls is bounded
by O

⇣p
E[⌥T ]T (C2

p log(T ) + T0(✏) + Tp)
⌘

, our SW-MCTS
performs better by a factor of

p
log T .

In the typical multi-arm bandit problem with fixed expected
pay-offs, the bound on the number of suboptimal pulls leads
directly to the bound on the expected regret. In UCT, as
the expected payoff drifts over time, we need to prove that
the expected pay-off converges to the optimal payoff. The
following lemma gives such guarantee.
Lemma 2. Let X̄t =

PK
i=1

Ni(t)
t X̄i,t. Under Assumptions 1-4,

E⌧

⇥
X̄T � µ⇤⇤  |�⇤t |+O

 r
E[⌥T ] log(T )

T
(T0(✏) + Tp)

!
.

The following lemma provides a bound on the concentration
of the actual payoff X̄t about the expected payoff. Let Zt

denote the indicator variable that a suboptimal arm was pulled
at time t. From Assumption 1, for t > Tp, the indicator Zt

is independent of Zt+1, Zt+2, . . . , given Z1, . . . , Zt�1. Thus,
after Tp and T0, the non-stationary bandit problem becomes
equivalent to a stationary problem with high probability.
Lemma 3. For an arbitrary 0 < ✏  1 and let �t =
9Cp E[⌥t]t

p
2 log(2/✏). Then, under the assumptions of

Lemma 1, for t � O
⇣p

E[⌥T ]T log(T )(Cp + T0(✏) + Tp)
⌘

the following bound holds:

P(t|X̄t � E⌧ [X̄t]| � �t)  ✏.

The proofs for Lemma 2 and 3 follow the steps in the
proofs of Lemma 2 in [6] and Theorem 5 in [24] but require
adjustments for the sliding window. Due to space constraints,
we skip the detailed proofs in this version.

The previous three lemmas are for SW-UCB. We will need
to extend these results to a tree, where the node selection
problem at each node in the tree is equivalent to the bandit
problem, however with different assumptions on the payoff.
For node id, after selecting node Iid,t = j, the tree search
further down the tree and subsequent MCTS rollout yield a
stochastic payoff Fj,t = Ft 2 [0, 1] that is adapted to Fj,t as
in Assumption 1. As nodes are slowly expanded in the search
tree, the expected reward at any node higher up the tree slowly
drifts until all nodes are explored in the subtree (Assumption
3).

The sequence of payoffs generates the stochastic process
{Fj,t}, 8j 2 C(Id) and t � 1. Recall that F̄id,tid

is the
empirical mean and that F̄i0,ti0

is the empirical mean at the
root node. Let µ⇤

i0 denote the optimal expected payoff at the
root node and note that ti0 = t.
Theorem 4. Consider algorithm SW-MCTS running on a tree
of depth D and branching factor K. The payoff distribu-
tions of the leaf nodes are independently distributed and can
change at breakpoints. The sequence that gives the expected
bound of breakpoints E[⌥T ] follows Assumption 2 and let
⌧ =

lp
16T log(T )/E[⌥T ]

m
. Then, the regret of the payoff

at the root node,

|F̄i0,Ti0
� µ⇤

i0 | = O(KD
p

E[⌥T ] log(T )/T )

Further, the probability of failure at the root node becomes
zero as T grows large.
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The proof is an induction on D using results from Lemmas
1-4.

VI. EVALUATION

In this section, we evaluate the performance of our SW-
MCTS algorithm as a function of the main system parameters.
The scenario we considered consists of an UWSN in which
100 sensors are randomly distributed in a 2000 m ⇥ 2000
m plane, with a transmission radius of 50 m (typical of
underwater acoustic communications for UWSN, e.g. [31],
[32]). Each agent in the scenario travels at a constant speed of
5 m/s. The motion graph is built using a probabilistic roadmap
(PRM) with a Dubins path model [33]. This model uses curves
for smoothing straight-lines between waypoints and it has
been widely used to model motion constraint of vehicle-like
nonholonomic robots such as AUVs. This constraint implies
that each AUV agent can only travel along smooth curvatures
without reversing direction, and that its trajectory must satisfy
geometric continuity [34]. The resulting motion graph has
200 vertices, and a maximum edge length of 500 m. Unless
otherwise stated, we observe the performance of our algorithm
over a time interval of T = 104 rounds, and for an AUV travel
budget of 4.5 km (typical of many current implementations of
AUVs [31]).

We benchmark our SW-MCTS algorithm with the dis-
counted method (Dec-MCTS [6]) which, although not be-
ing designed for varying environments, is the state-of-the-
art decentralized multi-agent planning method for information
gathering. In addition, we consider an ideal greedy algorithm
(greedy planner), in which every agent at each step is able
to forecast perfectly the reward associated to visiting a given
edge of the graph, and in which every agent chooses the action
which delivers the highest immediate reward.

The discounting factor of Dec-MCTS is 0.5, i.e. at the
lowest value recommended [6] to ensure the strongest forget-
ting effect, and thus the fastest adaptation to changes in the
environment. Unless otherwise stated, the window size of SW-
MCTS has been set to 40 rounds, agents have communication
exchanges with their fleet every 10 rounds and the exploration
parameter Cp for both algorithms is equal to 1.8⇥ 10�3.
Those values are chosen to enable a high convergence speed in
the vast majority of scenarios considered in our experiments.
We assumed utility of successful harvesting events to be the
same for all sensors and at any time. Three different models
of changes in the environment have been considered:
• Static: Position and availability of sensors remain unchanged

throughout the time interval T . This setting corresponds to
a conventional decentralized offline planning problem with
known reward distributions.

• Location changes (LC): The location of all sensors change
randomly and abruptly at a given point in time. This scenario
models the case in which sensors are drifted away due to a
storm, or to a sudden change in water currents, e.g. due to
ocean tides.

• Availability changes (AC): All sensors lying on the agents’
optimal paths at round T/2 (i.e., the most likely at round

T/2 among all the feasible paths, for the MCTS algorithms)
are assumed to be unavailable starting from round T/2+1.
This setup models the One Hot Region scenario, in which
sensors that are located near the agents’ trajectories tend to
be out of battery faster, as they communicate more often
than less visited nodes.

We use the following metrics to evaluate the performance of
the algorithms:
• Instantaneous reward coverage (IRC) at round t: Fraction

of available sensors covered at that round. A stable instan-
taneous reward indicates that the algorithm has converged.

• Average per round reward coverage (ARC): Fraction of
available sensors covered per round, averaged across all
rounds in the considered time interval. That is, ARC =PT

t=1 IRC(t)
T .

A. Performance Benchmarking

In order to perform a first evaluation of our algorithm,
we considered the static scenario with 2 AUVs. As Fig. 2a
shows, while the greedy planner performance does not improve
over time, both MCTS-based algorithms quickly outperform
it, as MCTS agents are able to discover more potential high-
reward areas by reaching deeper levels of their search trees.
Indeed, as visible from the overlay of a sample mission in
Fig. 2d, decentralized path planning in SW-MCTS is very
effective in avoiding overlapping paths while covering as many
distinct sensors as possible within each round. Moreover,
these results suggest that SW-MCTS, although not being
designed for static settings, actually outperforms Dec-MCTS
(i.e, the best available algorithm for AUVs coordination in
such settings) thanks to its substantially faster convergence
rate. Thus, our proposed algorithm is also a good fit for multi-
robot coordinated information gathering in stable settings.

To evaluate the impact on performance of changes in the en-
vironment, we considered the LC and AC scenarios, assuming
the changes to occur after 5, 000 rounds. As Figs. 2b and 2c
respectively show, the greedy agents are able to react instantly
after the break point in both setups. Instead, MCTS agents take
slightly more time to adapt to these changes, but they quickly
find better paths to cover the sensors than those chosen by
greedy agents. Although both SW-MCTS and Dec-MCTS are
able to handle the changes, SW-MCTS performs significantly
better than the discounted method, achieving higher reward
coverage before and after the break point, and converging
substantially faster in both test cases.

B. Impact of parameter settings

In this section, we investigate the impact of the key pa-
rameters of the system and of the SW-MCTS algorithm on
the performance of our solution, with a special focus on its
scalability and robustness. Specifically, we consider the LC
setting, and we evaluate the impact of travel budget, of the
number of AUVs, of the duration of the communication cycle,
and of the number of times a change in node position takes
place over T rounds. Fig. 3 illustrates the impact of these
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Fig. 2: Evolution over time of the Instantaneous Reward Coverage (IRC) in the Static setting (a), in the LC scenario (b), and in the AC
scenario (c), averaged over 20 runs. Sample overlay mission of AUVs for underwater data collection, for the three algorithms considered, at
the last round of the considered time horizon in the static setting (d).
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Fig. 3: Impact of different parameters on the algorithms performance. (a) Travel budget; (b) Number of AUVs; (c) Time between two
consecutive events of synchronization among agents; (d) Number of changes per time window T in the LC scenario, for T = 10, 000 rounds.
Results are with 95% confidence interval.

parameters on ARC, and for a default number of AUVs equal
to 2.

As Fig. 3a shows, with small values of B, the difference
in performance between the two algorithms is marginal, but
it increases quickly to 15% with growing travel budget.
Indeed, with larger travel budgets the space of possible choices
for path planning increases too, and so do the gains of a
better planning strategy, such as the one of SW-MCTS. A
similar behavior is exhibited by the system when we vary
the number of AUVs. As Fig. 3b shows, the improvement
of our approach with respect to the discounted method is
substantial when increasing the number of AUVs. Naturally,
when trying to achieve large values of coverage (larger than
70% in the considered setting) with the use of a larger number
of AUVs, the performance advantage of a smarter planner is
less evident. Indeed, achieving very high values of coverage
requires reaching nodes associated to low reward, e.g. because
of being far away from the bulk of the other sensors.

Among the factors affecting the AUVs energy budget a
key role is played by the frequency of information exchanges
among AUVs, taking place when AUVs communicate at data
sinks. Potentially, more frequent information exchanges imply
a faster adaptation of the SW-MCTS algorithm to environmen-

tal changes, at the cost of decreasing the amount of energy
available for data harvesting (e.g., as a travel budget). As a
key step towards characterizing such tradeoff, in Fig. 3c we
have studied the impact of the duration of the communication
cycle Tc on average per round rewards coverage, in the LC
setup, with 4 AUVs. As expected, both SW-MCTS and Dec-
MCTS drop in performance as synchronization among agents
becomes less frequent. Indeed, the less agents synchronize,
the less each agent is aware of the changes in the paths of
other agents, thus potentially visiting sensors that have been
covered already by other AUVs. Moreover, for very large
communication cycles, the performance of SW-MCTS drops
close to the discounted algorithm. This is due to the fact that,
as explained in Section V for a given value of communication
cycle and of frequency of changes, there is a range of values of
window size ⌧ which guarantee satisfactory behavior for SW-
MCTS algorithm. Thus in the considered setup, a window of
size ⌧ = 40 is a suboptimal choice for a communication cycle
of 500 rounds or more.

In the LC setup, we have also assessed the impact of the
rate of changes in the environment, with 2 AUVs. Specifically,
we have assumed sensor position to vary n times within the
time period T in a periodical fashion, with a new spatial
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Fig. 4: Impact of window size on Average Reward Coverage (ARC)
for the SW-MCTS algorithm. Results are with 95% confidence
interval.

configuration of the sensors every T/n rounds. As shown
in Fig. 3d, ARC decreases as the rate of changes increases.
Indeed, a higher frequency of changes imply that less time
is available for the algorithms to converge and adapt to
the new configuration (and its induced reward distribution).
However, thanks to its faster convergence rate our SW-MCTS
algorithm substantially outperforms the discounted approach,
showing a better ability to adapt to changing environments.
Specifically, this result shows that in the considered setting,
SW-MCTS with a 40 round sliding window allows agents to
adapt and ignore irrelevant (pre-change) observations much
more effectively than a Dec-MCTS configured for maximum
forgetting effect.

Finally, we investigate the relationship between window size
⌧ and ARC for our algorithm, for the three settings considered
in a scenario with 2 AUVs. Results in Fig. 4 suggest that in
each scenario performance improves when increasing window
size from a value of a few rounds. However, in all settings
ARC peaks at a specific window size, generally different for
each setting, and starts decreasing monotonically for larger
window values. Indeed, for SW-MCTS window size sets the
tradeoff between, on one side, allowing more information to
be available for the agent to estimate the reward of each
action (and hence to plan the optimal path), and avoiding
the inclusion of irrelevant past information (i.e. related to
an outdated sensor layout, or to inherent randomness in the
choices of agents). For instance, results suggest that in settings
such as AC, in which environmental factors alter sensors’
availability in the considered area in a very rapid fashion, a
smaller window is required to allow the algorithm to quickly
remove the outdated observations due to the change.

VII. CONCLUSIONS

Achieving efficient coordination in multi-robot planning for
active perception is a hard open issue in practical settings,
where available resources and environmental conditions vary
over time, often in an abrupt and unpredictable fashion. In this
work, we proposed a new general approach to tackle this is-
sue, based on carefully balancing the exploration-exploitation
trade-off and on appropriately weighting the contribution of
past information on planning decisions. We have shown on

a practical scenario that our algorithm performs substantially
better than the best approach available in the literature, achiev-
ing faster convergence and higher resource efficiency despite
implementing a loose form of synchronization among agents,
even in settings with frequent changes. As a followup, we
intend to explore the impact of long transitory periods for SW-
MCTS when rewards vary significantly, and of non-stationarity
in the frequency and spatial distribution of changes.
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APPENDIX

A. Proof of Lemma 1

Step 1: For suboptimal arm i, let A0(t, ✏, ⌧) =
min{Nt(⌧, i)|ci,t(⌧)  (1 � ✏)�i,t/2}. From the
definition of ci,t(⌧), A0(t, ✏, ⌧) =

16C2
p log(t^⌧)

(1�✏)2�2
i,t

. Let
A(t, ✏, ⌧) = max(A0(t, ✏, ⌧), T0(✏), Tp). Then the number of
times a suboptimal arm is played is

Ñi(T ) = 1 +
TX

u=K+1

{u:(Iu=i 6=i⇤u),Nu(⌧,i)<A(u,✏,⌧)}

+
TX

u=K+1

{u:(Iu=i 6=i⇤u),Nu(⌧,i)�A(u,✏,⌧)} (6)

From Lemma 1 in [27], the second term in the right hand side
is bounded by

TX

u=K+1

{u:(Iu=i 6=i⇤u),Nu(⌧,i)<A(u,✏,⌧)}  dT/⌧eA(u, ✏, ⌧).

Let D(⌧) =
log((1/⌧)C2

p log(K(1�1/⌧)))
log(1�1/⌧) , and denote by T (⌧)

the set of all indices t 2 {K + 1, . . . , T} such that for all

integers s 2]t � D(⌧), t], for all j 2 {1, . . . ,K}, µs(j) =
µt(j), then as shown in [27]

TX

u=K+1

{u:(Iu=i 6=i⇤u),Nu(⌧,i)�A(u,✏,⌧)}  ⌥TD(⌧)

+
X

u2T (⌧)

{u:(Iu=i 6=i⇤u),Nu(⌧,i)�A(u,✏,⌧)}.

Putting everything together, we then have

Ñi(T ) 1 + dT/⌧eA(u, ✏, ⌧) +⌥TD(⌧)

+
X

u2T (⌧)

{u:(Iu=i 6=i⇤u),Nu(⌧,i)�A(u,✏,⌧)}.

Step 2: There are three conditions under which a suboptimal
arm will be played when Nu(⌧, i) � A(u, ✏, ⌧) (following a
breakpoint), as follows:

{u : (Iu = i 6= i⇤u), Nu(⌧, i) � A(u, ✏, ⌧)}

✓

8
><

>:

{u : (µ⇤
u � µi,u < 2ci,u(⌧)) ^ (Nu(⌧, i) � A(u, ✏, ⌧))}

[{u : X̄i⇤u,u(⌧)  µ⇤
u � ci⇤u,u(⌧)}

[{u : X̄⇤
u(⌧) � µi,u + ci,u(⌧)}.

Let’s consider the first case, using Theorem 2 in [24]. Since
Nt(⌧, i) � A(t, ✏, ⌧) � A0(t, ✏, ⌧)

ci,t(⌧)  2
q
C2

p log(t ^ ⌧)/A0(t, ✏, ⌧) 
�i,t

2
.

The first case, therefore, cannot occur when Nt(⌧, i) �
A0(t, ✏, ⌧). When Nt(⌧, i) � T0(✏), we have that |�i,t| 
✏�i,t/2. Since µ⇤ � µi � �i,t, t = 1, 2, . . . , we have that

µ⇤ � µi � 2ct,ti(⌧) � �i,t � |�⇤t |� �i,t � 2ci,t(⌧)

� �i,t � ✏�i,t � (1� ✏)�i,t = 0

Step 3 and 4 of the proof provide bounds for the probabilities
of the last two events in Step 2. Recall that Mi(t) denotes
the number of pulls of arm i after the most recent breakpoint.
Then, under Assumption 1, when Mi(t) � Tp  A(t, ✏, ⌧) we
can then use Theorem 4 in [27] to show that

P
�
X̄i,t(⌧) � µi,t + ci,t(⌧)

�

 ⌧ �K +

⇠
log(⌧)

log(1 + ⌫)

⇡
t

⌧(1� (1� 1/⌧)⌧ )

for any positive number ⌫.
Step 5 Now combining everything together in (6) and taking
expectation, we obtain

E⌧

h
Ñi(T )

i
 C(⌧)

T log(⌧)

⌧
+ ⌧ E[⌥T ] + log2(⌧), (7)

where

C(⌧) =
4C2

p

(1� ✏)2�2
i,t

dT/⌧e
T/⌧

+
2

log(⌧)

⇠
log(⌧)

log(1 + ⌫)

⇡

Finally, choosing ⌧ = 2Cp

p
T log(T )/E[⌥T ] yields

E⌧

h
Ñi(T )

i
= O

⇣p
E[⌥T ]T log(T )(Cp + T0(✏) + Tp)/T

⌘
.
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