
Vehicle Position Nowcasting with Gossip Learning
Mina Aghaei Dinani,

Adrian Holzer
University of Neuchatel,

Switzerland
name.surname@unine.ch

Hung Nguyen
The University of Adelaide,

Australia
hung.nguyen@adelaide.edu.au

Marco Ajmone Marsan
Politecnico di Torino, Italy and

Institute IMDEA Networks, Spain
ajmone@polito.it

Gianluca Rizzo
HES-SO Valais, Switzerland, and

University of Foggia, Italy
gianluca.rizzo@hevs.ch

Abstract—Nowcasting, i.e., short-term forecasting, of end user
location is becoming increasingly important for anticipatory
resource management in radio access networks (RAN). In this
paper we look at the case of vehicles moving in dense urban
environments, and we tackle the location nowcasting problem
with a particular class of machine learning (ML) algorithms
that go under the name Gossip Learning (GL). GL is a peer-to-
peer machine learning approach based on direct, opportunistic
exchange of models among nodes via wireless device-to-device
(D2D) communications, and on collaborative model training. It
has recently proven to scale efficiently to large numbers of static
nodes, and to offer better privacy guarantees than traditional
centralized learning architectures. We present new decentralized
algorithms for GL, suitable for setups with dynamic nodes. In
our approach, nodes improve their personalized model instance
by sharing it with neighbors, and by weighting neighbors’
contributions according to an estimate of their marginal utility.
Our results show that the proposed GL algorithms are capable of
providing accurate vehicle position predictions for time horizons
of a few seconds, which are sufficient to implement effective
anticipatory radio resource management.

I. INTRODUCTION

Vehicle position nowcasting (i.e., short-term forecasting) is
attracting increasing attention, since it allows on the one hand
to improve transport services and reduce traffic congestion [1],
and on the other to implement anticipatory radio resource man-
agement in RANs. For instance, the allocation of processors in
multi-access edge computing (MEC) facilities, or transmission
resources in narrow beam millimeter wave base stations, can
be implemented with increased effectiveness if the position of
user terminals can be forecasted a few seconds in advance.
Nowcasting of user terminal positions is an obvious candidate
for the exploitation of ML techniques. Standard ML algorithms
rely on training over datasets built from a large number of
sources, and typically stored centrally, on one machine or
in a data center. However, storing such data in a central
place has become more and more problematic because of
data protection rules and customer privacy concerns. In addi-
tion, collecting data from different devices can be inefficient,
since their transfer can quickly clog the available bandwidth.
Several distributed ML approaches have been proposed to
overcome these limitations [2], [3]. Among these, Federated
Learning (FL), first introduced by Google [4], is based on a
synchronous coordinator-client (server-client) architecture. FL
collaboratively learns a single consensus model for all clients
from decentralized data without the need to store data centrally.
Data remains where it was generated, which guarantees privacy
and reduces communication cost. However, learning heavily

depends on the coordinating server, which causes scalability
issues with large numbers of nodes. Decentralized ML algo-
rithms have been proposed to tackle scalability issues. In these
algorithms, learning is implemented collaboratively amongst
all nodes, with no central server, aggregator or coordinator.
One of the state-of-the-art approaches in this field is gossip
learning (GL) [5], which implements a decentralized version
of FL. Each node in this distributed algorithm acts as a client
for other nodes. At the same time, it plays the role of a
coordinating server that merges received models. GL has been
applied to a wide spectrum of ML problems. In [6] local
models are distributed over a logically fully connected peer-to-
peer network serving an application of distributed learning for
medical data centres. However, the solution has scalability and
connectivity issues. In [7], a segmented gossip aggregation is
introduced. The global model is divided into non-overlapping
subsets. Local learners aggregate the segmentation sets from
other learners. The proposed approach is application-dependent
and it is unclear whether it may generalize to other applications
and ML architectures. [8] proposes a fully serverless FL
approach, in which nodes receive a combined model from their
neighbours, and each one independently performs training on
its local dataset. Then, similarly to [6], nodes forward updated
models to their one-hop neighbourhood for a new consensus
step. Their goal is exploiting a serverless consensus paradigm
for FL and enhancing speed of convergence. However, most
of these approaches consider scenarios in which either each
node communicates with all other nodes, or the connectivity
graph is static. By not accounting for churn and mobility, these
approaches cannot be extended to dynamic setups.
In our previous work [9] we presented a distributed scheme
applied to a classification problem, to derive a forecast about
the section of the considered urban region in which a vehicle
will be at a given time in the future. Each node implemented
a distributed version of FL, periodically sending its model to
all neighbors, who train it on their local database and send
it back to be merged with those sent by all other neighbors.
The main drawback is that only a small fraction of nodes are
able to train models which achieve acceptable performance,
while those in regions with low node density will consistently
experience unacceptably poor performance.
In this paper we aim at addressing the above mentioned open
issues. We consider the problem of nowcasting in an urban
region, and we propose a gossip learning approach which
allows high performing nodes to quickly disseminate their
models to those which are not able to build a good one, and to

let their model persist probabilistically in the given area even
after they left it. This allows their models to be constantly
improved and adapted to changes in mobility patterns even by
those nodes which do not possess enough neighbors or data to
be able to train a high performing model by themselves. The
main contributions of this paper are as follows:

• We propose a novel, fully distributed GL approach for
highly dynamical settings, based on node cooperation, on
the combination of local model training and fusion of
models received via opportunistic interactions, and on the
probabilistic persistence of node models in the region.

• We present two practical model aggregation strategies
based on iterative model averaging and on two different
estimators of the impact of each contribution on the
accuracy of the model resulting from aggregation.

• We evaluate our approach over measurement-based mo-
bility traces in several urban settings and traffic con-
figurations. Result over different scenarios suggest that
our approach is quickly effective, and able to converge
and adapt even in presence of large variations in vehicle
density and traffic patterns.

II. SYSTEM MODEL

We consider a set of vehicles moving on a road grid
according to an arbitrary mobility model. We assume vehicles
know their position at any point in time, and they communicate
in a peer-to-peer fashion, using a wireless technology (e.g.
WiFi, or Cellular D2D). When two vehicles are in range of
each other (and thus able to exchange information directly)
we say that they are in contact.
Without loss of generality, let us assume time to be divided
into slots, and let ∆ be the slot duration. Let v ∈ N be the
unique identifier of a vehicle. Starting from the slot at which
the v − th vehicle enters the considered urban region (which
we denote as slot 1), with (xt, yt)

(v) we denote the vehicle
position at the beginning of the t-th slot since ingress time.
We consider a scenario in which at any slot each vehicle tries
to predict its own location h slots in the future, where h is
thus its forecast horizon, equal for all vehicles. We assume that
vehicles entering the region possess a local dataset, composed
by time series pertaining to their past trajectories in the region.

III. A DISTRIBUTED GOSSIP LEARNING ARCHITECTURE

A. Model architecture

We assume that each node employs a Long Short Term
Memory (LSTM) network, a special kind of Recurrent Neural
Network (RNN) widely used for vehicle trajectories prediction
[10]. For time series forecasting, when a sequence of input and
output multi-variant data is available, encoder-decoder LSTM
models have shown to outperform other approaches for motion
prediction, such as Kalman filtering or support vector machines
[11], [12].
The LSTM model of each node is given by the concatenation
of two LSTM layers (encoder and decoder). The encoder
accepts as input a time series {(xt, yt)}t=t1,...,t1+α of size

α by 2, representing vehicle trajectories over α consecutive
time slots. The output of the encoder layer is a fixed-length
vector which captures the temporal structure of the past
trajectory. The second LSTM layer (decoder) maps the vector
representation back to a variable-length target sequence. The
target sequence is a sequence of h coordinate labels, describing
the position in which the vehicle is predicted to be, from time
slot t1 +α+ 1 up to t1 +α+h. The resulting LSTM network
is trained over a sequence of epochs, i.e. of learning iterations
performed over the entire dataset. In each epoch, a node trains
once the local model instance using its local dataset, and it
updates the model parameters. We adopt a mini-batch gradient
descent training approach, in which the training during one
epoch is partitioned in two or more batches. Finally, we
employ the Adam optimizer [13] because of its computational
efficiency and simplicity, as it requires little memory, and it
is well suited for problems with many parameters. It is also
appropriate to cope with non-stationary objectives [13].
Once the model is trained, at every time slot each node feeds
the LSTM with the last α samples of the time series repre-
senting the node’s own trajectory, and receives a prediction on
where the node will be in the h future time slots.

B. Gossip Learning algorithm

In what follows we detail the GL algorithm run by each
node, which aims at generating more accurate models than
those resulting from training exclusively on the local dataset
of each node. At the moment on which a node enters the
region, it is endowed with a local dataset, as well as with a
default instance of the encoder-decoder LSTM model, possibly
incorporating a priori data on vehicular trajectories in the
region. On entering the region, the node trains the default
model instance on its local dataset. Then, at each time slot
spent within the region, each node uses its local LSTM model
instance to issue a prediction about its position in the future
h slots. In addition, it keeps expanding its local dataset, by
adding in real time data about its current trajectory.
Each node partitions the time spent into the region into rounds,
all of the same duration, equal to one or more slots. Duration
and timings of rounds are generally different among nodes.
Each round is split into three phases. In the first one, a node
sends the coefficients of its local model instance to all nodes
with which it comes in contact. At the same time, from each
of these nodes it receives their local model instances. In the
second phase, similarly to traditional FL, a node combines the
model instances received during the round in order to produce
an updated version of the local model instance (denoted as
meta-model). Finally, every m rounds, the node enters a third
phase, in which it trains the meta-model on the local dataset, to
include data about the most recent part of the node trajectory.
Note that each node never shares its own data with others.
Instead, nodes share their model instances, thus providing
support for protection of data confidentiality. The frequency
of the training of the meta-model over the local dataset is a
parameter which can be tuned and adapted to the specific setup.
The total number of epochs for each training step is chosen in
such a way as to avoid overfitting while maximizing accuracy.

2

A key aspect of our GL approach is represented by the strategy
used to combine the model instances received through oppor-
tunistic exchanges. More precisely, model merging determines
the coefficients of the meta-model as a linear combination of
the corresponding coefficients of the models to be merged.
Clearly, the strategy for choosing weights is the key factor
influencing the performance of the meta-models and thus of
the GL algorithm.
In these settings, static implementations of GL schemes, ori-
ented at characterizing the correlation between the problems
solved by neighbor nodes, are not fit for scenarios in which the
neighbors of each node (and the specific prediction problem
they are trying to solve, and thus their local model instances)
change continuously over time. Thus, differently from what
done in existing works, in the considered scenario any measure
of quality of the models to be merged needs to be based mainly
on properties of the models themselves. Following this idea,
we propose two different approaches to meta-model building:
Decentralized Averaging (DA) and Decentralized Powerloss
(DP). They are both based on associating with each model
instance a parameter ξ, representing an estimate of the quality
of the model itself. They however differ on how ξ is derived
and updated.

C. Decentralized Averaging

This merging strategy is outlined in Algorithm 1. At the
beginning of the first round, when the local model instance is
trained on the local dataset, ξ is chosen as the number of data
points in the local dataset. When a set of model instances are
merged, the meta-model is computed through a weighted sum
over all merged model instances, in which the contribution
of the k − th merged instance is weighted by its associated
parameter ξk, normalized over the sum of all such parameters
from all merged instances. In addition, with the new meta-
model is associated a parameter ξ computed as a weighted
sum of the ξk of all the merged model instances, with the
same weights as those used for the derivation of the meta-
model itself. When instead a model instance is trained over
the local dataset, the new value of ξ is the sum of the old
value of the parameter, plus the number of data points used in
the training process.
Hence, in DA the parameter ξ of a model instance is a loose
measure of the amount of data points included in it by training
or merging. Such a choice for ξ is based on the intuition that
to a larger amount of data points used for training corresponds
a more accurate model. The intuition behind this merging
strategy is thus to give a larger weight in merging to those
model instances which include the largest number of samples,
either directly (through training on local dataset) or indirectly
(by merging). In settings where the majority of merged models
has a low value for ξ, this might still result in a relatively high
contribution of these model instances to the resulting meta-
model, at the expense of its performance. For this reason, the
linear combination at the basis of the DA algorithm considers
only the β% largest contributions (in terms of weight). The
parameter β can be tuned for the algorithm to work well

Algorithm 1 Decentralized Averaging
ξk is the figure of merit for the k-th neighbor of node v at round j
K′(β) ⊆ Kv

j ∪ v is the smallest subset of Kv
j ∪ v composed by those nodes

whose weights make up at least a fraction β of the total, where Kv
j is the set

of v’s neighbors at round j.

function MERGEMODELS((wvj , ξ
v
j), {(wkj , ξkj)}k∈Kvj)

wv ←
∑

k∈K′(β)

ξkj∑
h∈K′(β)

ξhj
wkj

ξv ←
∑

k∈K′(β)

(ξkj)
2∑

h∈K′(β)
ξhj

Return (wv, ξv)
end function

Algorithm 2 Decentralized Powerloss
lk is the loss of model wkj , evaluated over the validation set of node v.

function MERGEMODELS({wkj }k∈Kvj ∪v)
for every node k ∈ K′(β) do

Compute lk
pk = |log10 lk|

end for
P ←

∑
k∈K′(β)

pk

wv ←
∑

k∈K′(β)

pk
P
wkj

Return wv

end function

also in contexts where nodes with high performing models
are relatively rare and sparsely distributed over the region.

D. Decentralized Powerloss

The DP algorithm differs from DA in the way in which
the performance estimator ξ is computed. In DA, parameter
ξ is independent from which node will use it to derive a
merged model. In DP instead, the node which computes the
merged model evaluates the performance estimator for each
merging model just before merging. It does so by assessing
each merged model on its local validation set (consisting in
the last V samples of its trajectory), and by associating a loss
value with each of these models. Thus in DP the performance
parameter ξ is tightly related to the node which performs the
merging operation, and to its most recent trajectory. As a loss
function we consider mean squared error, where the error is
the distance between the actual position of a vehicle and its
predicted position. The weight associated with each merged
model is then computed as a logarithmic function of the loss,
as shown in Algorithm 2, in order to increase the weight of
those models with small losses. Note anyway that our approach
is very general, and it can be extended to any other type of
loss functions.

IV. NUMERICAL EVALUATION

In order to assess numerically our algorithms, we con-
sidered scenarios from different cities and times of the day.
A first setup exploited the LuST dataset [14], consisting in
measurement-based vehicular traces over 24 hours from the

3

Fig. 1: Map and road grid of Cologne (Innenstadt) (a) and of Luxembourg City (b), with the considered region in red. c) Mean error versus
time from bootstrap for the DA and DP algorithms, as well as for the local training scheme, for the Luxembourg scenario.

city of Luxembourg. The second scenario was based on the
TAPAS Cologne dataset [15], again a measurement-based set
of vehicular traces covering the greater urban area of the city
of Cologne for a whole day. Fig. 1 (a) and (b) show the areas
of Cologne and Luxembourg within which our framework was
assessed. In both scenarios, the region is a square of side 1
km, covering a large fraction of the city center in both cities.
We used Keras [16] to implement our GL algorithms, SUMO
for vehicular mobility simulation and the Omnet++ framework
for opportunistic communications among vehicles. We consid-
ered a slot duration of one second (typical of many present
day car fleet management applications). We chose a duration
of 15 s for each round, equal for all nodes. Indeed, as vehicles
have an average speed of 11 m/s in urban settings, this
choice on average ensures that the set of a node’s neighbors
significantly differs among consecutive rounds. At the same
time, such a round duration is short enough to allow the
node to capture in its local model changes in the context
due to its mobility. We considered a forecast horizon of 5
s, compatible with such applications as predictive collision
avoidance systems, MEC processor reservation strategies, and
5G beam resource allocation strategies. The input of the LSTM
model is composed of 12 steps, with a gap of 5 s between two
consecutive steps. Thus, our LSTM model required at least
the last minute of the trajectory of a car in order to issue a
trajectory prediction. For local training, we adopted a mini-
batch Gradient Descent approach with batches of size 32 (as
indicated in e.g. [17]), and a 10−3 learning rate, as suggested
in [18]. Unless otherwise specified, we assumed β = 1. The
number of neurons (50), the batch size, the number of input
time steps as well as the other hyperparameters were tuned
through extensive simulations.
To determine the local dataset of each vehicle when entering
the region, for each scenario (and for each time interval) we
have built a scenario database, consisting of all the trajectories
in the given region outside of the considered time interval.
In each scenario, for each vehicle entering the given region,
we have drawn at random a subset of the respective scenario
database, corresponding to 5 minutes of trajectories. We have
assumed that the tasks of local model training, of meta-model
computation, and of model exchange among nodes can all be
completed within a single time slot. In order to evaluate the
impact which model merging has on the performance of our
training algorithms, we have considered also the case in which
each node trains the model only on the local database, thus

performing no model exchange.
In a first set of experiments, we aimed at assessing the
performance of our schemes in conditions which are as close
as possible to stationary, in order to evaluate the convergence
speed of the training process and the accuracy of the models in
a way which is not significantly affected by underlying changes
in mobility patterns. To this end we considered a one-hour time
interval, from 6:30 to 7:30 AM, in the in the Luxembourg
scenario. Such duration is, on one side, long enough to allow
our training framework to progress. On the other side, we
have verified that it is short enough for the average pattern
of vehicular traffic flows not to vary significantly within it.
Moreover, this time interval corresponds to one of the daily
traffic peaks in the city, and it is thus appropriate for evaluating
the impact of high vehicular densities on our algorithms. In
the given region, 300 vehicles are present on average at every
time instant in the time interval considered. In this setup, we
have assumed a transmission radius of 150 m. As a result, on
average every vehicle is in the range of 60 other vehicles.
One of the main performance metrics of our algorithms is the
mean error at the t-th time slot, defined as the mean distance
between the forecasted position and the actual one, averaged
across all vehicles present in the scenario during that slot.
As Fig. 1(c) shows, both our asynchronous GL algorithms
manage to constantly improve model performance over time.
In addition, our algorithms converge quickly, reaching a mean
error inferior to 20 m in less than 40 minutes of operation. This
plot shows also how both our algorithms perform significantly
better than mere local training, proving the effectiveness of our
asynchronous model merging based on opportunistic model
exchanges. Indeed, the strategy based exclusively on local
training does not improve its performance over time (except for
the first 10− 20 rounds), reaching values of mean error more
than one order of magnitude larger than through collaborative
training schemes.
A key characteristic of our GL approaches is the exploitation

of direct peer-to-peer opportunistic exchanges to collect those
model instances which will be merged. Fig. 2 shows the
evolution over time of the mean error from the start of the
scheme for different values of the transmission radius. As the
transmission radius affects the mean number of neighboring
nodes which at any time instant are in range of a given node, it
also directly influences the mean number of models which are
merged at each round. From the figure it emerges that a larger
amount of models merged at each round not only decreases

4

Fig. 2: Mean error versus time from bootstrap (first 40 minutes), for
different values of transmission radius, for the DA and DP algorithms,
in the Luxembourg scenario.

Fig. 3: Mean error versus time from bootstrap (first 40 minutes), for
different values of β%, for the DA and DP algorithms, Luxembourg
scenario.

the mean error, but also helps both our schemes to converge
more quickly with the number of iterations.
However, it is expected that what ultimately determines the
performance of the meta-model is not the amount of merging
models, but their potential to generate a meta-model which
performs better than any of them. Nonetheless, when the share
of low-performance merging models is preponderant, both DP
and DA might still assign too high a weight to them. For this
reason, in a new set of experiments we have analyzed the
impact of the percentage of model contributions considered
in weight computation in our algorithms. Fig. 3 shows that a
value of β inferior to 100% may indeed positively affect both
accuracy and convergence speed. Of course the optimal value
of β (80% in the considered setting) is highly dependent on
node density and mobility, on the mean sojourn time in the
region, and it thus varies from one setup to the other.
Another key aspect of the performance of our scheme is how

quickly a vehicle entering the region is able to improve its
accuracy. Fig. 4 shows the mean error as a function of vehicle
sojourn time, averaged across the whole time during which
our algorithms have been active, for different scenarios and
time window duration. As a reference, in Fig. 4 (b) and (c)
we have also plotted the mean error resulting from a naive
baseline algorithm, by which at any time the future location
forecasted by each vehicle coincides with the present vehicle
position. In both scenarios, and despite the short time from
bootstrap, nodes are able to achieve satisfactory levels of
accuracy after only few minutes in the given region. In the
Cologne scenario, we witness a convergence which is initially
faster than in the Luxembourg scenario. This is likely due to

the larger transmission radius considered in Cologne (450 m
versus 150 m). At the same time, the shorter mean sojourn
time in Cologne (4 min 4 s) with respect to Luxembourg (11
min 12 s) brings the accuracy experimented by a single node
to stabilize after the initial rapid improvement. In Luxembourg
instead, longer sojourn times allow accuracy to keep improving
throughout the whole trajectory of the vehicle in the region,
achieving a mean error of 6 m within 20 minutes of sojourn
time, and after only 40 minutes from the start of the scheme.
Here we note that the absolute values of accuracy reachable
by each algorithm have been evaluated on a very conservative
worst case scenario, in which each node has only a limited
initial database, and in which our scheme has been running for
less than one hour. The good performance of our schemes in
these conditions suggests that in more realistic settings, where
our scheme has been running and training for long periods,
the performance of our distributed algorithms is likely to be
better than predicted by our experiments.
Another consideration emerging from these results is that DP
performs better than DA in terms of both convergence speed
and mean error in a consistent fashion, in all experiments.
Indeed, while DA’s model quality estimate is not directly
related to a model’s performance at a given point of the
region, DP’s is instead a function of each merging model’s
performance over the most recent part of the given node’s
trajectory, and it is thus close to the performance which
the merging model would deliver on the trajectory of the
given node in the near future. Finally, Fig. 4 shows how the
distribution of the error is heavily skewed towards values lower
than the mean

A. Impact of nonstationarity in vehicular mobility

One clear feature arising from the numerical assessment
of our algorithms is the high impact which node density and
mobility patterns have on accuracy and on convergence rate. As
in real scenarios, these features change substantially over time,
we have performed a set of experiments over time windows
during which the configuration of vehicular traffic changes
substantially. This corresponded to a time window of three
hours, from 4:00 PM to 7:00 PM in the Luxembourg scenario,
and from 2:00 PM to 5:00 PM in the Cologne scenario. As
Fig. 5 and 6 show, notwithstanding the substantial differences
in road grid configuration, time of the day, and mobility
patterns, in both scenarios the mean error decreases steadily
over time from the start of our schemes, despite variations
of up to one order of magnitude in the number of vehicular
nodes in the region. These features suggest that, except for
minor fluctuations in the mean error, in realistic scenarios our
GL schemes are able not only to adapt in a timely manner to
changes in patterns of mobility, but also to keep on improving
the model performance over time.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have discussed the application of gossip
learning for nowcasting in dense urban environments, for
the implementation of anticipatory strategies in radio access
network management.

5

Fig. 4: a) Mean error versus vehicle sojourn time for the DA and DP algorithms. b) Mean error and quartiles versus vehicle sojourn time, for
the DP algorithm as well as for the baseline scheme in the Cologne scenario with a 3 hours time window, and c) in the Luxembourg scenario
with a 40 minutes time window.

Fig. 5: Mean error versus time for the DA and DP algorithms, from
2:00 PM to 5:00 PM in the Cologne scenario.

Fig. 6: Mean error versus time for the DA and DP algorithms, from
4:00 PM to 7:00 PM in the Luxembourg scenario.

We have proposed new algorithms for model merging, and we
have shown that very good performance can be achieved in
realistic dynamic environments within only a few hours from
bootstrap, and with very small initial datasets for each node.
The future steps of our work will include, among others,
the investigation of the effect of heterogeneity in node initial
dataset size, computing capacity, and wireless communication
technology on the convergence of our schemes and on model
accuracy.

REFERENCES

[1] Z. Xiao, P. Li, V. Havyarimana, G. M. Hassana, D. Wang, and K. Li,
“GOI: A Novel Design for Vehicle Positioning and Trajectory Prediction
Under Urban Environments,” IEEE Sensors Journal, vol. 18, no. 13, pp.
5586–5594, 2018.

[2] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” Advances in neural information processing sys-
tems, vol. 30, pp. 4424–4434, 2017.

[3] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J. Franklin, and
M. I. Jordan, “MLbase: A Distributed Machine-learning System.” in
Cidr, vol. 1, 2013, pp. 2–1.

[4] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics. PMLR, 2017, pp. 1273–
1282.

[5] R. Ormándi, I. Hegedűs, and M. Jelasity, “Gossip learning with linear
models on fully distributed data,” Concurrency and Computation:
Practice and Experience, vol. 25, no. 4, pp. 556–571, 2013.

[6] M. Blot, D. Picard, M. Cord, and N. Thome, “Gossip training for deep
learning,” arXiv preprint arXiv:1611.09726, 2016.

[7] C. Hu, J. Jiang, and Z. Wang, “Decentralized federated learning: A
segmented gossip approach,” arXiv preprint arXiv:1908.07782, 2019.

[8] S. Savazzi, M. Nicoli, and V. Rampa, “Federated learning with cooper-
ating devices: A consensus approach for massive IoT networks,” IEEE
Internet of Things Journal, vol. 7, no. 5, pp. 4641–4654, 2020.

[9] M. A. Dinani, A. Holzer, H. Nguyen, M. A. Marsan, and G. Rizzo,
“Gossip learning of personalized models for vehicle trajectory pre-
diction,” in 2021 IEEE Wireless Communications and Networking
Conference Workshops (WCNCW). IEEE, 2021, pp. 1–7.

[10] F. Altché and A. de La Fortelle, “An LSTM network for highway
trajectory prediction,” in 2017 ITSC. IEEE, 2017, pp. 353–359.

[11] B. Kim, C. M. Kang, J. Kim, S. H. Lee, C. C. Chung, and J. W. Choi,
“Probabilistic vehicle trajectory prediction over occupancy grid map
via recurrent neural network,” in 2017 IEEE ITSC. IEEE, 2017, pp.
399–404.

[12] P. Ondrúška and I. Posner, “Deep tracking: Seeing beyond seeing using
recurrent neural networks,” in Proceedings of AAAI, 2016, pp. 3361–
3367.

[13] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[14] L. Codeca, R. Frank, and T. Engel, “Luxembourg SUMO Traffic (LuST)
Scenario,” in IEEE VNC, Dec 2015, pp. 1–8.

[15] S. Uppoor, O. Trullols-Cruces, M. Fiore, and J. M. Barcelo-Ordinas,
“Generation and analysis of a large-scale urban vehicular mobility
dataset,” IEEE Transactions on Mobile Computing, vol. 13, no. 5, pp.
1061–1075, 2013.

[16] F. Chollet, Deep Learning with Python and Keras: The practical manual
from the developer of the Keras library. MITP-Verlags GmbH & Co.,
2018.

[17] Y. Bengio, “Practical recommendations for gradient-based training of
deep architectures,” in Neural networks: Tricks of the trade. Springer,
2012, pp. 437–478.

[18] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, tools, and techniques to build intelligent sys-
tems. O’Reilly Media, 2019.

6

	Introduction
	System model
	A distributed Gossip Learning architecture
	Model architecture
	Gossip Learning algorithm
	Decentralized Averaging
	Decentralized Powerloss

	Numerical Evaluation
	Impact of nonstationarity in vehicular mobility

	Conclusions and future work
	References

