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Abstract. Agent-based simulation is an alternative approach to tradi-
tional analytical methods for understanding and capturing different types
of complex, dynamic interactive processes. However, the application of
these models is currently not common in the field of socio-economical
science and many researchers still consider them as intransparent, unre-
liable and unsuitable for prediction. One of the main reasons is that these
models are often built on architectures derived from computational con-
cepts, and hence do not speak to the selected domain’s ontologies. Using
Triandis’ Theory of Interpersonal Behaviour, we are developing a new
agent architecture for choice model simulation that is capable of com-
bining a diverse number of determinants in human decision-making and
being enhanced by empirical data. It also aims to promote communica-
tion between technical scientists and other disciplines in a collaborative
environment. This paper illustrates an overview of this architecture and
its implementation in creating an agent population for the simulation of
mobility demand in Switzerland.

Keywords: Agent architecture ·Multi-agent system ·Agent-based mod-
elling · Discrete choice analysis.

1 Introduction

The use of a specific architecture can facilitate the application of agent-based
methodology in a particular domain. Traditionally, economists tend to give im-
portance to the selfish and rational part (homo economicus), while sociologists
focus on the social capabilities (Aristotle’s zoon politikon) and psychologists tend
to see humans as mainly irrational and emotional. Thus, explicitly or not, agent-
based models often follow one or another of these perspectives (e.g [5, 11,13]).

In recent years, we observe a trend of applying agent-based techniques to
combine the views from different domains to provide more reliable descriptions
for real-world phenomena [26] (e.g. self-organisation, the emergence of counter-
intuitive behaviours [15]). This leads to the search for a generic computational
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platform that has a higher degree of abstraction, while can also be adapted as an
illustration of a specific theory or hypothesis [8]. There is still, however, a lack
of decision-making architecture that is expressive and flexible enough to build
arguments both micro-macro levels in the socio-economical context [3, 33].

This paper introduces an agent architecture for choice modelling simulation,
which is inspired by Triandis’ Theory of Interpersonal Behaviour (TIB) [37]. TIB
states that behaviour is primarily a function of the intention to engage in the
act, habit and facilitating conditions. It provides a meaningful set of determi-
nants that contribute to decision-making in socio-psychology and can be used
to produce statements about behaviours at society level as well as its individual
members. In addition, the function given in TIB allows us to calculate the prob-
ability that a particular action will take place. By enhancing it with statistical
data, this architecture can enable an agent-based model to have not only the-
oretical support from an established concept but also the capability to include
empirical findings in scenario design. We demonstrate the implementation of this
architecture in BedDeM (i.e. Behaviour-Driven Demand Model) - a simulation
tool that aims to address both micro and macro perspectives of modal choice
for mobility domain in Switzerland.

After considering some of the popular strategies for decision-making simula-
tion in Section 2, a specification of the new architecture is presented (Section
3). Next, its contextualisation in the studied problem, Behavioural-driven De-
mand Model (BedDeM), is carried out in Section 4, especially focusing on the
attribute definition, micro-behaviour and calibration. We then conclude our ex-
perience with the whole process and suggest further development in Section 5.

2 Related works

For models that aim to understand the aggregate consequences of real-world
phenomena, it is important to specify an agent’s behaviours in a way that is
both theoretically and empirically defensible [14]. There are different approaches
for this issue in choice modelling, ranging from as basic as a reactive mechanism
to the level of a complex entity using a cognitive model.

A simple design involves agents follow some sets of behaviour rules (i.e.
decision-tree or production-rule systems), which apply both in information-
gathering stage and when making a final choice. It is typically used in con-
junction with a set of assumed preferences for the agent to rank outcomes by
desirability order. Examples include heuristics that update agent’s behaviours
according to the accumulated experience (e.g. [36]) or pick the next option that
satisfies the qualities identified from empirical data analysis (e.g. [18]). In this
setup, modellers have a straightforward job to trackback any changes in agents’
behaviour but have to face a significant increase in computational complexity
when a new rule is introduced [25].

Alternatively, researchers can choose to assign agents with beliefs, values or
world views that correspond to observation from ethnographic data or stake-
holder’s assessment. A range of cognitive inspired agent architectures has been
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developed in recent years for this purpose. Mostly supported by process-based
theories [33] and a bounded rationality approach [30], they aim for providing a
framework for a psychological mechanism through specifying essential structures,
divisions of modules and their relations while always embodying fundamental
theoretical assumptions [32]. One of the most well-known architecture is Belief-
Desires-Intentions (BDI) [23]. It provides a robust standard framework for any
agent-based simulation that wants to take into account human’s decision-making
process. However, these methods are often criticised for the lack of experimental
grounding [7] and the agent choice of being homogeneous, completely rational
and selfish [23].

Taking into account the dual nature of social processes, working on indi-
vidual and societal levels requires the consideration of both and the interaction
dynamics among them [10]. Thus, other cognitive models that add complexity
to the classical rational agent, have emerged. Representatives for this category
are CLARION [31], ACT-R [35], SOAR [19] etc. They usually take into account
social theories and focus on different issues that were ignored in the rational
agent. For example, Conte et al. [6] empower the social learning capabilities or
Sun et al. [34] focus on organisational theories and the agent roles while others
stress on the importance of beliefs in cognition [28]. There have been attempts
in finding a global unifying principles for cognitive architecture (e.g. [7]), but it
still remains an open debate [32,33]. Balke et al. [3] make a comparison between
their features, which reveals none of the mentioned models is currently cover all
socio-psychological aspects of decision-making (e.g. cognitive, affective, social,
norm and learning).

Another popular approach is to enhance the agent’s preferences, strate-
gies and likelihood of making a particular decision with discrete choice models
(e.g. [16]). Giving some defined set of possible options, it specifies a ranking order
of these choice outcomes, which can then be converted into predicted probabil-
ities. To produce an actual choice, a random component (representing human-
error) can be introduced by sampling from a multinomial distribution with these
probabilities. By incorporating empirical data (such as observed choices, survey
responses to hypothetical scenarios or administrative records), the discrete choice
model provides one flexible framework for estimating the parameter of choice be-
haviour, especially when there is a lack of information on which determinants
affecting individual choice decisions. Despite that, without comprehensive sup-
port from a socio-psychological theory, current discrete choice models are often
difficult for non-experts to understand the underlying implications of different
modelling scenarios and associated behavioural assumptions [17].

3 Agent architecture design

3.1 Overview

An agent’s main components and their functions are illustrated in Fig. 1. When
a task is assigned, the Perception observes current state of the environment,
combines it with other’s opinions and the agent’s internal state to produce a list
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of available options. They are given to the Decision-making unit to be evaluated
using the functions (or preferences) from the Memory. Details of this process
is described in Section 3.2. The Communication component then utilises this
result to output an action to the environment. A social agent can have different
agendas to archive (e.g. influence others’ decisions and/or promote a certain
action), which might affect the final outcome. There is an optional mechanism
for the agent to remember the feedbacks from past actions for future decision-
making cycles.

Fig. 1: Overview of agent’s design

3.2 Decision-making procedure

Towards Human Psychology In order to create a system that can mimic a
human society, the first question to address is the origin of our behaviours. In
psychology, different theories in school of cognitive model describe this process,
e.g. Ajzen and Fishbein’s Theory of Reasoned Action (TRA) [9] and Ajzen’s
(1991) Theory of Planned Behaviour (TPB) [1], etc. They state that the key
determinant of behaviour is an individual’s intention to perform a specific act.

Triandis went beyond these theorists in his tri-level TIB model (see Fig.
2) by adding habits and facilitating conditions that either enable or hinder the
performance of a particular behaviour. It stated that interpersonal behaviour is a
multifaceted and complex phenomenon, due to the fact that in any interpersonal
encounter, a person’s action is determined by what that person perceives to be
appropriate in that particular situation and by what others pressure them to
do. The first level of TIB is concerned with the way personal characteristics
and prior experiences shape personal attitudes, beliefs and social determinants
related to the behaviour. The second level explains how cognition, affect and
social determinants and personal normative beliefs influence the formation of
intentions with regards to a specific behaviour. Finally, the third level states that
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intentions regarding the behaviour, prior experience and situational conditions
predict whether or not the person will perform the behaviour in question.

We choose to implement TIB as it provides a comprehensive understanding as
to what determines behaviour and is useful in explaining complex human thought
processes, which are influenced by their social and physical environments. This
would be valuable when presenting our platform to other discipline’s scientists
as our set of default parameters will come from Triandis’ model. This set is also
flexible enough to reflect other behaviour theories by exchanging psychology
elements and assigning weights to mark their contribution in agent’s decision-
making process.

Fig. 2: Triandis’ tri-level model [37]

Agent’s implementation A full decision-making cycle with an example of a
mobility application is illustrated in Fig. 3. An agent first selects an isolated
decision-making task from the list that is sequentially executed. Its personal
desire/goal is then combined with means provided by the external environment
to generate a set of possible options. For all determinants (d), each option (opt)
is given a referenced value which comes from comparing its property with other’s
(Rd(opt)). In the first level, this can be done using either a real numerical system
(for determinants such as price or time) or ranking function (for determinants
such as emotion). Both can be derived from empirical data (e.g. census/survey)
or calibrated with expert’s knowledge/stakeholder’s assessment.

The referenced values of these determinants are then normalised and mul-
tiplied with an associated weight (called wd); the sum of which becomes the
referenced value for the option in the next level (see Eq.1). The weight, in this
case, represents the importance of a decision-making determinant compare to
others at the same level and emphasises on the heterogeneity of agents. It also
allows the modeller to express a certain theory by cutting of determinants (by
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Fig. 3: Agent’s decision-making procedure

setting their values to 0) that are not relevant to a case study. The combination
process then continues until it reaches the behaviour output list; the referenced
value of which can be interpreted as the probabilities that an agent will perform
that option. If the agent is assumed to be deterministic, it can pick the option
that is correlated to best-evaluated value.

Rd(opt) =

A∑
a=1

(Ra(opt)/(

O∑
o=1

Ra(o)) ∗ wa)

where •Rd(opt) is the reference value of an option (opt) at determinant d.

•A is the set of the ancestors of d (i.e. determinants connects with d

in the previous level).

•O is the set of all available options.

• wa is the weight of ancestor determinant (a).

(1)

In our mobility example (see Fig. 3), the agent has access to 3 options: walk-
ing, using car or taking train. In this study, we assume that smaller referenced
value represent higher reference in the agent’s decision. For a working trip of
around 10 kilometres distance, according to time, their referenced values are:
Rtime =car(0.2), train(0.5), walking(1.0) (measured in hours); which combine
to 1.7. According to environmental friendly determinant, they can be ranked
as Renvironment = walking(1), train(2), car(3) (from best to worst); the sum of
which is 6. If wtime and wenvironment are 7 and 3 respectively, the new refer-
enced value in next level list(Rattitude) of walking would be 1/1.7*7 + 1/6*3 ≈
4.62, car would be 0.2/1.7*7+2/6*3 ≈ 1.82 and train would be 0.5/1.7*7+3/6*3
≈ 3.56. Hence, according to attitude, car would have the highest chance to be
picked for this individual agent, followed by train and walking.
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4 A mobility simulation with the Behaviour-Driven
Demand Model (BedDeM)

Our implementation platform - BedDeM - is being developed in Java using
Repast library for agent-based modelling [24]. Its source code is currently avail-
able online at [4]. BedDeM’s first application is in mobility domain, which aims to
generate yearly demands at the individual household level that can be interpreted
at the granularity of a historical evolution of transportation for Switzerland. This
mobility model is illustrated in Fig. 4. In this section, we first describe techni-
cal details of the configuration of the agent population using statistical data. It
is then followed by an overview of the simulation process and the calibration
procedure.

Fig. 4: Overview of BedDeM model

4.1 Agent configuration

As mentioned in Section 3, the decision-making architecture requires two ele-
ments to calculate the probabilities for a set of options: (1) how to specify a
ranking order of the option according to a determinant (Rd(opt)) and (2) the
weight of the determinant (wd). For this purpose, we utilise the Swiss Household
Energy Demand Survey (SHEDS) [29]. There are several questions that com-
pared the criteria for mobility mode choices, which answer can be interpreted
as the weights(wi) for different psychological determinants in TIB. A typical
example can be observed from Fig.5. A large number of similar questions can
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be categories into TIB determinants. However, as the first step into this experi-
mental design, we decided on a mapping of a smaller set (see Table 1), which is
based on some of the past researches [2] and what properties can be measured
or ranked objectively (using common sense). Note that in this case, the determi-
nant belief is omitted since the system assumes that the knowledge/perception
of agents is always correct.

Fig. 5: An example question from the Swiss Household Energy Demand Survey
(SHEDS) [29]

Fig. 6: Building a synthetic population

Having the decision-making components figured, the next step is parametris-
ing the profiles to build a synthetic population (see Fig. 6). This is accom-
plished by utilising another data source - the Mobility and Transport Microcen-
sus (MTMC) [20], which includes the attributes listed in Table 2. Its entries (N
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DeterminantLayer Measuring/Ranking property
(R(opt))

Matching question(s) in
SHEDS (w, with scale 1-5)

Evaluation -
Price

1st Rprice = Cost of travelling wprice = •Choosing the
cheapest option

Evaluation -
Time

1st Rtime = Duration of the trip (in-
cluding the journey to station)

wtime = •Travelling as fast
as possible

Norm - En-
vironment
Friendly

1st Rnorm = Motor type of the vehicle
(Gas/Electric/No motor)

wnorm = •In the Swiss so-
ciety, it is usually expected
that one behaves in an envi-
ronmentally friendly manner

Role - En-
vironment
Friendly

1st Rrole = Recommend from other
agents in its network

wrole = •Most of my ac-
quaintances expect that I
behave in an environmen-
tally friendly manner

Self-concept -
Environment
Friendly

1st Rself−concept = No data available -
to be calibrated (see Section 4.3)

wself−concept = •I feel per-
sonally obliged to behave in
an environmentally friendly
manner as much as possible

Emotion - En-
joyment

1st Remotion = Vehicle’s comfortable-
ness/luxury

wemotion = •I enjoy this way
of travelling

Frequency
of past be-
haviours

1st Rfreq = The number of usage over
a certain period

wfreq = •I am used to taking
this means of transport

Attitude 2nd Rattitude =
Rprice/

∑
price ∗wprice +

Rtime/
∑

time ∗wtime

wattitude =
•Wealth(material pos-
sessions,money)

Social factors 2nd Rsoc = Rnorm/
∑

norm ∗wnorm +
Rrole/

∑
role ∗wrole +

Rself/
∑

self ∗wself

wsoc = Avg(•Equality •So-
cial power •Authority •Pro-
tect the environment •In-
fluential •Helpful •Prevent
pollution)

Affect 2nd Raffect = Remotion ∗ wemotion wsoc = Avg(•Pleasure •En-
joying life •Self-indulgent)

Facilitating
conditions

3rd Rcond = Does the trip pass all con-
strains? (e.g. time, budget, vehicle’s
availability) (0/1)

Agent filters the options
that are possible to be per-
formed that the time of
decision-making

Habit 3rd Rhabit = Rfreq ∗ wfreq whabit = •Habit and Rou-
tine: I do without thinking

Intention 3rd Rintent =
Rattitude/

∑
attitude ∗wattitude +

Rsoc/
∑

soc ∗wsoc +
Raffect/

∑
affect ∗waffect

wintent = MAX SCALE - •I
do without thinking

Decision Output Rdecision =
(Rintent/

∑
intent ∗wintent +

Rhabit/
∑

habit ∗whabit) ∗Rcond

Table 1: Mapping of TIB’s determinants and SHEDS to initiate decision-making
weights
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= 57,091) are placed in a latent space (socio-matrix) that is represented by a
symmetric Gower distance matrix [12]. All pairwise distances/dissimilarities are
created based on the common features of the two data sources (e.g. age group,
gender, region, household size, income level, number of personal vehicles). This
matrix also provides a way to calculate the recommendation for agents from the
same network (i.e. Rrole - see Table 1). We then find the most similar peers that
have the lowest distance towards each other and join them with entries from
SHEDS (N=5,515). A random number of representatives for each geographical
region in Switzerland are selected to become our agent population (N=3,080).

Along with the attributes in Table 2, a weekly schedule is also derived for
each agent from MTMC to provide a way to calculate all relative costs for a
trip (including purpose, distance, execution time). The agent’s main purpose
is to select a mode of transportation (including rail, car, bus, tram, biking,
walking, others) to perform a task on its schedule. There is also an option of
not performing the scheduled activity due to the constraints from the agent’s
states or environment (e.g. exhaustion of budget or exceeded travelling time on
all available modes). Agents perform this filtering procedure before any decision-
making activities (see determinant Facilitating conditions in Table.1).

Attribute Brief description

Location Region (or Cantons in Switzerland) in which the agent is living

Budget Weekly travelling budget

Accessibility set List of available transportation services for the agent, which can be
used to calculate all relative costs from a trip

Owned vehicles
and Discounts

List of vehicles that the agent own

Weight to uni-
verse

The proportion of population that the agent represents

Table 2: An agent’s state attributes

4.2 Simulation procedure

As shown in Fig. 4, the simulation process starts with a central controller creat-
ing all the agents with all their attributes and assigned them to their respective
regions. Each region contains information about the available public transporta-
tions and can be used to reflect the dynamic change in traffic rate with regard
to the simulating time. Initial values for these attributes are coming from the
mapping process in Section 4.1. The agent then looks at its individual schedule
and creates decision-making events to be activated. At the time of simulation,
the controller triggers these events simultaneously, waits for them to finish, then
skips to the next scheduled point (i.e. event-driven). At this developing stage,
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no learning technique is applied for feedback loops inside the agent’s decision-
making process. Agents simply keep track of the number of times its used a
vehicle for trips of the same purpose, which is used for determinant habit (see
Table 1). After all the tasks finished, a reporter component in the region collects
the final results. Since each agent represents a portion of the total population,
these numbers are then multiplied by the weight to universe parameter (see Ta-
ble 2) to be compatible with MTMC for the calibration process.

4.3 Calibration

The purpose of calibration is to improve the compatibility of the current popu-
lation with the target system (i.e. statistical data from MTMC). We are focus-
ing on figuring out the most fitted ranking patterns for Rself−concept. Since
the mapping question in SHEDS for this determinant is related to environ-
mental friendly aspect of the option, we divided the agent population into 4
main profiles, depending on their daily main transportations: (1) soft-mobility
modes (walking/biking), (2) public vehicles (tram/bus/train) (3) private vehi-
cles (car/motorbike) and (4) others. Rself−concept for each of them can then be
calibrated by permuting the ranking order of all the modal choices.

Objective function: Our main objective is to minimise the error calculated
the Eq.2. It is measured from the total differences between the final sum of
kilometres in each mobility mode at the end of a period (i.e. a year in this case)
and historical data. From MTMC [20], the total kilometres result for one year
of all mobility profiles can be obtained (i.e. walking/biking, bus/tram/train,
car/motorbike, others). Assuming that no two modes can be ranked in the same
position, calibration involves using the permutation of these four sets of modes
as configurations for the Rself−concept. We repeat this procedure for all agent’s
profiles set at either deterministic (choose the best option) or stochastic (choose
from a random function with probabilities provided by sampling distribution of
final referenced values) to find the smallest error.

minimise
conf

err(conf) =

M∑
i=1

| censusi − simi(conf) |

where •M = {walking/biking, bus/tram/train, car/motorbike, other}.
• conf = S(M)⊕ S(M)⊕ S(M)⊕ S(M), an instance of the conca-

tenation of two permutation sequences of M.

• censusi is census data for mode i (in kilometres).

• simi(conf) is the simutation result for mode i (in kilometres).

(2)

Result: We list the kilometres in census data and the top results of two types of
agents in Table.3. The best configuration is in the deterministic model with an
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error around 7.3x109 kilometres, which accounts for 6.5% of the total scheduled
kilometres. The main differences are in the public (i.e. walking/biking) num-
bers. We also observe that the stochastic error are much larger - above 51.8x109

kilometres, which is only 46% accuracy. This is expected since agents in stochas-
tic mode choose options based on a random function of probabilities derived
from the referenced values. Currently, there is no pattern shown in the ranking
function Rself−concept of the results of stochastic mode, and hence additional
runs with different distribution functions are needed in order to have a broader
picture for this setting.

Type conf a CMb BTTbWBb Ob errb

Census 72.7 27.5 8.6 3.7 n/a

Determin- RCM = (1)CM, (2)BTT, (3)WB, (4)O 73.1 26.7 3.3 4.4 7.3
istic RBTT = (3)CM, (1)BTT, (4)WB, (2)O

RWB = (4)CM, (2)BTT, (1)WB, (3)O
RO = (2)CM, (4)BTT, (3)WB, (1)O

Stochastic RCM = (1)CM, (2)BTT, (4)WB, (3)O 46.7 6.0 5.0 4.6 51.9
RBTT = (3)CM, (1)BTT, (4)WB, (2)O
RWB = (4)CM, (3)BTT, (1)WB, (2)O
RO = (4)CM, (2)BTT, (3)WB, (1)O

Table 3: Calibration results

a Abbreviation - CM: Car/ Motobike, BTT: Bus/Tram/Train, WB: Walking/Biking,
O:Others.
b All units are in 109 kilometres.

5 Conclusion and future direction

The tree-like and layered structure of TIB has inspired us to develop a new agent
architecture that can combine many different determinants in human decision-
making; each of which can also be enhanced by empirical data. This has the po-
tential to facilitate the uptake of socio-psychologists, economists and the general
public with research projects. We aim to demonstrate its practicality by creating
a fully-working model to predict trends in the mobility domain for Switzerland
- BedDeM. An agent population has been created and calibrated with the data
of MTMC and SHEDS.

There is still some small margin error from the calibration process (around
6.5% of the total scheduled kilometres). The agent’s stochastic mode also does
not reflect the macro patterns in MTMC effectively. Hence, we propose to address
the issue of irrational behaviours by focusing on agent’s learning in uncertainty
environment (e.g. reacting to changes in traffic rate/break-downs and other’s
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opinions) in the upcoming developing stage. Currently, agents are only keeping
track of the number of times they used a mode on trips with the same purpose,
which accounts for habit in decision-making (see Section 4.2). The influence of
past experience to the ranking functions (i.e. feedback loops) can be further
extended by modifying agent’s belief about the consequences or changing the
weights of determinants to prioritise better alternatives. Studies in Reinforce-
ment Learning techniques (e.g. [21]) or Generalized Expected Utility Theory
(e.g. [22]) can be utilised for this purpose.

The next important step is assessing the model’s variability and sensitiv-
ity. This can be done by selecting different representatives for the population
when joining the two data sources. Although we have acquired the help of an
economist specialised in environmental substantiality, it is also necessary to re-
ceive inputs from sociologist to derive alternative mappings of empirical data
to TIB determinants (see Table 1) for more agent profiles. Further clustering
technique on SHEDS panel data of the past few years would also give a good
indication of how the weights of the determinants have changed, especially when
there is a new innovation in technology or policy-making. Coupling this with ge-
ographical statistics will allow us to observe how physical proximity, the layout
of regions and other environmental elements can hinder or facilitate interaction
and interdependence among social groups. Another potential research direction
is comparing the efficiency of Triandis’ Theory with other similar behavioural
theories (e.g. Theory of Planned Behaviour [1]) by also changing the mapping
of determinants. The next wave of microcensus (available in 2020) is a potential
source for this test.

In term of validation, one of the good direction for our model is determining
whether the key relationship or mechanisms highlighted in the agent-based model
seem to be plausible explanations of real-world phenomena, which often involves
analysis of empirical data that is separate from the agent-based model. Good
data sources include other energy demand models in [27], which can be used to
indicate the pattern in demand for the transportation sector. Another way to
do this is to design an experimental scenario aimed at capturing mechanisms of
interest. It can be done with the support of an expert in socio-psychology.

We close with a few words about software and documentation. As mentioned
above, the core agent framework and BedDeM are developed in Java using an
agent-based platform called RePast [24]. Although facing some problem with
documentation, it is easy to understand and has reduced the learning curve for
the development process. RePast is also actively updated for newer Java ver-
sion and functionalities. We are using the R language to take care of handling
and analysis to empirical input data. We have published the core architecture of
BedDeM [4] and planned to provide further complex examples for the decision-
making mechanism. This will allows us to have feedback from multiple perspec-
tives to improve the platform so that it can be employed for researches across
different domains.
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