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Abstract

Background and objective

The use of several stains during histology sample preparation can be use-
ful for fusing complementary information about different tissue structures. It
reveals distinct tissue properties that combined may be useful for grading, clas-
sification, or 3-D reconstruction. Nevertheless, since the slide preparation is
different for each stain and the procedure uses consecutive slices, the tissue un-
dergoes complex and possibly large deformations. Therefore, a nonrigid regis-
tration is required before further processing. The nonrigid registration of differ-
ently stained histology images is a challenging task because: (i) the registration
must be fully automatic, (ii) the histology images are extremely high-resolution,
(iii) the registration should be as fast as possible, (iv) there are significant dif-
ferences in the tissue appearance, and (v) there are not many unique features
due to a repetitive texture.

Methods

In this article, we propose a deep learning-based solution to the histology
registration. We describe a registration framework dedicated to high-resolution
histology images that can perform the registration in real-time. The frame-
work consists of an automatic background segmentation, iterative initial rota-
tion search and learning-based affine/nonrigid registration.
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Results

We evaluate our approach using an open dataset provided for the Auto-
matic Non-rigid Histological Image Registration (ANHIR) challenge organized
jointly with the IEEE ISBI 2019 conference. We compare our solution to the
challenge participants using a server-side evaluation tool provided by the chal-
lenge organizers. Following the challenge evaluation criteria, we use the target
registration error (TRE) as the evaluation metric. Our algorithm provides reg-
istration accuracy close to the best scoring teams (median rTRE 0.19% of the
image diagonal) while being significantly faster (the average registration time is
about 2 seconds).

Conclusions

The proposed framework provides results, in terms of the TRE, compara-
ble to the best-performing state-of-the-art methods. However, it is significantly
faster, thus potentially more useful in clinical practice where a large number
of histology images are being processed. The proposed method is of particular
interest to researchers requiring an accurate, real-time, nonrigid registration of
high-resolution histology images for whom the processing time of traditional,
iterative methods in unacceptable. We provide free access to the software im-
plementation of the method, including training and inference code, as well as
pretrained models. Since the ANHIR dataset is open, this makes the results
fully and easily reproducible.

Keywords: ANHIR, Histology, Image Registration, Deep Learning

1. Introduction1

The registration of histology images acquired using several stains is an im-2

portant problem in a period where pathology departments in hospitals are be-3

coming increasingly digital. Fusing information available in structures revealed4

by different dyes from consecutive slices may be useful for segmentation, classi-5

fication, grading, or 3-D reconstruction. However, the registration of differently6

stained histology images is challenging, because of: (i) the necessity of fully au-7

tomatic registration, (ii) the extremely large size of histopathology images, (iii)8

real-time requirements in many clinical situations, (iv) the problem of missing9

data due to differences in the tissue appearance, and (v) the lack of unique10

features due to a repetitive texture in these large images [1].11

The first two challenges are particularly difficult for classical, iterative, non-12

rigid image registration methods [2]. These algorithms optimize an enormous13

number of parameters, especially considering the high-resolution of histology14

images. This results in long analysis time, thus lowering the clinical usefulness.15

This can be efficiently addressed by deep learning-based registration [3]. In deep16

learning registration, most of the computational time is being spent on training,17

which can be done offline using a server dedicated to machine learning. As a18
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result, during inference, deep learning enables a real-time nonrigid registration,19

which is crucial to clinical practice.20

The importance of the histology registration was a motivation to organize21

an open challenge called Automatic Non-rigid Histological Image Registration22

(ANHIR) [1, 4, 5]. It was organized jointly with the IEEE ISBI 2019 conference23

(International Symposium on Biomedical Imaging) and more than 250 partici-24

pants from more than 30 countries registered for the competition. Surprisingly,25

almost all of the best scoring methods were based on the classical, iterative26

image registration resulting in the long time required for the analysis [1]. Even27

though the registration accuracy of the proposed methods is close to the level28

of the human annotation, the computational time is relatively high, thus lim-29

iting their clinical usefulness. We assume that the majority of the challenge30

participants did not decide to use a deep learning approach because of the high-31

resolution of histology images, making them difficult to register due to the GPU32

memory constraints (most GPUs have a maximum of 16-32 GB of RAM). This33

motivated us to propose a deep learning-based registration framework address-34

ing the challenges and enabling a real-time nonrigid registration of histology35

samples.36

1.1. Related Work37

Medical image registration is a mature field with hundreds of important38

contributions [2, 6]. Nevertheless, due to the challenges related to the registra-39

tion of histology images, the general state-of-the-art algorithms often fail and40

have limited usefulness. This observation was confirmed by the ANHIR orga-41

nizers [5]. They evaluated algorithms like bUnwarpJ [7], NiftyReg [8], RVSS [7],42

ANTs [9], DROP [10] or Elastix [11] and showed rather poor results comparing43

to the dedicated algorithms [1].44

Nonetheless, there are contributions focused directly on the histology regis-45

tration. In [12] an interesting concept about intensity-based registration driven46

by unsupervised classification of the structural similarity of histology images47

was proposed. Unfortunately, the authors did not take part in the ANHIR48

challenge. Another successful contribution was proposed in [13] by Fraunhofer49

MEVIS where the authors introduced a registration framework consisting of50

initial rotation search, iterative affine, and B-Spline-based nonrigid registration51

using the normalized gradient fields (NGF) as the similarity metric [14]. The52

method was the winner of the ANHIR challenge and compared to other classical53

registration approaches was amazingly fast due to a well-optimized, commercial54

implementation. Other methods dedicated to histology registration were intro-55

duced by researchers from the University of Pennsylvania (UPENN) [15] and56

the AGH University (AGH) [16]. These teams achieved the second and third57

best scores in the ANHIR challenge. The first approach is based on a proper58

preprocessing consisting of background removal by deconvolution, followed by59

random initial alignment, affine registration, and diffeomorphic registration by60

the ”Greedy” tool [17, 18]. The AGH team proposed a method similar to the61

MEVIS team in terms of a multistep approach, with the main difference related62

to the nonrigid registration. Instead of B-Splines NGF-based registration they63
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proposed a Demons-based solution using the modality independent neighbor-64

hood descriptor (MIND) as the cost function [19, 20]. The main disadvantage65

of the method was the long time required for the registration due to the un-66

optimized CPU implementation. Only one of the best scoring teams decided67

to use a deep learning-based solution. The TUB team [21] used a modified68

volume tweening network. First, they resampled the images to relatively low69

resolution and second, they tuned the network by using manually defined land-70

marks resulting in a significant difference between the training and evaluation71

sets [1]. Moreover, their method could not be considered as fully automatic72

since in practice it would require many manual annotations, making it difficult73

to use in clinical practice. Nevertheless, considering the relatively low inference74

time of their method, it inspired us to propose a deep learning-based framework.75

The goal was to propose a fully automatic method that accurately registers the76

histology images in real-time.77

The deep learning-based medical image registration is a relatively new field [3,78

22]. It immediately turned out to be useful because of the low time required79

during the model inference enabling real-time nonrigid registration. This is80

crucial, e.g. for registration during surgical interventions. The deep registra-81

tion approaches can be divided into three main categories based on the training82

scheme: (i) supervised [23, 24], (ii) unsupervised [25, 26, 27], and (iii) adver-83

sarial registration [28, 29]. The supervised registration requires ground-truth84

deformation fields or pre-aligned images that are often impossible to obtain.85

The adversarial approach, which is based on generator and discriminator net-86

works, suffers from similar limitations. Moreover, the adversarial networks are87

not trivial to train [30]. To train the discriminator, registered image pairs rep-88

resenting the ground-truth alignment are necessary. For some tasks it can be89

achieved [28], but it is usually costly and time-consuming. On the other hand,90

unsupervised methods do not require any ground-truth. They are based on min-91

imization of a given cost function and the registration accuracy mostly depends92

on: (i) a proper choice of the similarity measure, (ii) a regularization term en-93

forcing plausible deformations, (iii) the ability to converge during training, and94

(iv) a generalization ability. The unsupervised registration can be seen as a95

way to speed-up the classical, iterative image registration. Since the methods96

proposed by the ANHIR challenge participants (e.g. MEVIS, UPENN, AGH)97

achieved results close to the human annotation error [1], we decided to focus98

on the unsupervised registration, addressing the difficulties connected with the99

high-resolution of histology images and the required robustness while providing100

the real-time alignment.101

The main challenge with the learning-based registration of histology im-102

ages is connected with the high resolution of these images, coupled with large103

and complex deformations. The deep learning methods suffer from large GPU104

memory utilization. The higher the image resolution, the larger the neces-105

sary receptive field and the required GPU memory. The simplest solution is to106

downsample the images. This approach was used by the TUB team to apply107

the volume tweening network during the ANHIR challenge [1, 21]. However,108

downsampling the images reduces the registration quality and makes it harder109
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to register fine details, e.g. the TUB team downsampled the images from reso-110

lution above 15000x15000 to resolution below 1000x1000 to use learning-based111

approach [1]. In the work by de Vos et al. [25] the transformation was param-112

eterized by the B-Splines transformation model to reduce the decoder memory113

footprint. It decreases the memory consumption and still, it is not applicable to114

histology images. In the work by Fan et al. [28] a simple patch-based approach115

was applied. In this approach, the images are divided into patches to reduce116

the number of parameters and the required GPU memory. This approach re-117

duces the maximum recoverable deformations to a fraction of the patch size and118

does not solve the problem of high-resolution histology images because, even119

after unfolding, the images do not fit into the GPU memory. Another inter-120

esting approach was proposed by Heinrich and Hansen [31] for unsupervised121

learning-based registration of CT volumes. They iteratively subdivided the 3-122

D transformation space into orthogonal planes resulting in 2.5-D displacement123

search. The method not only significantly improved the registration accuracy124

but also decreased the GPU memory consumption and inference time. In the125

proposed method, we apply a pyramid, patch-based approach together with a126

sequential transfer of the batches to the GPU memory. This approach not only127

makes it possible to process images of any resolution, but also addresses the128

limitation of patch-based approaches related to maximum recoverable deforma-129

tions. What is more, training a network with a low number of parameters on130

numerous small patches reduces the risk of overfitting.131

1.2. Contribution132

In this work, we propose an unsupervised deep learning-based registration133

framework dedicated to histology images acquired using different stains. The134

method is robust to different dyes and tissue types within the evaluated dataset,135

fully automatic and provides results comparable to the state-of-the-art meth-136

ods while being significantly faster, which is important in clinical practice. The137

main technical novelty is related to the ability to recover large, complex, defor-138

mations between high-resolution images (even above 15000x15000) in real-time.139

The method is built on our previous contributions [32, 33], however, the meth-140

ods are greatly extended and improved. An additional learning-based back-141

ground segmentation was introduced, significantly improving the initial align-142

ment. Moreover, the framework user can now decide which affine registration143

is suitable for the given problem. Finally, the nonrigid registration is improved144

by changing the order of the the unfold/fold operations, the velocity field com-145

position, and the image transformation. These changes eliminated the problem146

of inconsistency at patch boundaries. We provide free access to the framework147

source code [34], including training/inference scripts and pre-trained models.148

This, together with open access to the ANHIR dataset, makes the results fully149

and easily reproducible. Moreover, the framework was evaluated using the in-150

dependent ANHIR evaluation platform. The results can easily be verified and151

compared using the challenge website [4]. The proposed framework is easily152

extendable making it possible to further improve the registration by other re-153

searchers.154
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a) Original b) Preprocessed c) Prealigned d) Affinely Registered e) Final result

Figure 1: The source and target at different registration stages (top and bottom row respec-
tively, pair 178). The target is replicated for presentation clarity. High quality picture, best
viewed zoomed in electronic format.

2. Methods155

2.1. Overview156

We propose an unsupervised deep learning-based registration framework.157

The framework pipeline consists of data loading, transferring to GPU, prepro-158

cessing, initial alignment, affine registration, and finally nonrigid registration.159

All the steps are described in detail in the following sections. The negative nor-160

malized cross-correlation (NCC) is used as the cost function during all registra-161

tion steps. The global NCC is used for initial alignment and affine registration,162

while the patch-based NCC is used for the nonrigid registration. The curvature163

(CURV) is used as the regularization term for the nonrigid registration:164

S(M,F, u) = −NCC(M,F ) + αCURV(u)→ min, (1)

where NCC is the normalized cross-correlation (global or local version, depend-165

ing on context, CURV denotes the curvature regularization (only for the non-166

rigid registration), α is the regularization parameter controlling the deformation167

smoothness, and M,F, u are respectively the warped moving patches, target168

patches and the displacement fields.169

The detailed framework structure and pipeline is presented in Figure 2. The170

visualization of an example registration pair after each registration step is shown171

in Figure 1.172
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2.2. Preprocessing173

The preprocessing consists of offline and online stages. In the offline stage,174

all the image pairs are padded and parsed from .jpg/.png into uncompressed175

.mha format to speed-up the data loading. This is quite important because it176

decreases the time needed for the data loading during the training and inference.177

The pipeline starts from the image pair loading, converting both images178

to grayscale and transferring them to GPU memory. After this, the images179

are downsampled (preceded by smoothing by Gaussian filtering) to a relatively180

low resolution (512 pixels in the smaller dimension). The downsampled image181

pairs are used during the background segmentation, initial alignment, and affine182

registration. For these steps, the use of a higher resolution is not mandatory183

and lowering the resolution decreases the registration time.184

Then, the tissues are segmented from the background by a U-Net-based [35]185

network. This is not a demanding task but significantly improves the registra-186

tion results for image pairs with background artifacts (e.g. mammary glands187

in the used dataset). This step could be done differently (e.g. by color de-188

convolution as in [15]) but we decided that deep segmentation is fast, robust,189

and easily convertible to other histology datasets. The visualization of an ex-190

ample source-target pair after the preprocessing is shown in Figure 1b. The191

background segmentation is negligible in terms of the computational time (a192

few milliseconds).193

2.3. Initial Alignment194

The goal of the initial alignment step is to perform very fast but not to have195

an accurate rigid registration. The initial alignment presented here is not deep196

learning-based since it is optimizing just one parameter, the rotation angle.197

Still, it is implemented using the GPU to lower the registration time. The198

initial alignment is not mandatory for all cases since pairs with smaller global199

deformations can be handled well by the following affine registration. However,200

for cases misaligned by e.g. 180 degree rotation this step is crucial.201

The initial alignment begins with the calculation of the source and target202

centroids. Then, the source is translated by the translation vector between203

the centroids. This is followed by an exhaustive rotation angle search with a204

predefined step. The source is being warped for each angle and the NCC is205

being calculated. The angle with the lowest negative NCC is chosen. The final206

rigid transformation is a composition of the centroid translation vector and the207

rotation matrix. The visualization of images after the initial alignment is shown208

in Figure 1c.209

One can argue that this step could also be handled by the deep network.210

It is true but the entire procedure optimizes only a single parameter and en-211

forcing deep solutions to this simple problem is an exaggeration. Moreover,212

the proposed procedure is much faster than the following nonrigid registration.213

Proposing a dedicated deep network would not speed-up the registration signif-214

icantly (especially considering the large receptive field that would be required215

by the initial alignment deep network).216
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Figure 2: Visualization of the proposed deep histology registration framework.
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2.4. Affine Registration217

The affine registration is done by a relatively simple ResNet-like [36] con-218

volutional neural network, as in Figure 2. The resolution of the input images219

is the same as in the initial alignment step. The network output is an affine220

transformation matrix (2x3) that is then converted to the transformation grid221

used in the spatial transformer. The network was trained using negative NCC222

as the cost function. The dataset was augmented by random affine transforma-223

tions applied randomly to both the source and target images. Alternatively to224

the proposed network, the framework offers also the affine registration network225

described in [33] that registers images at a higher resolution. The visualization226

of images after the affine registration is shown in Figure 1d.227

2.5. Nonrigid Registration228

The nonrigid registration is the most difficult step in the histology registra-229

tion. It is impossible to achieve accurate registration preserving the fine details230

using the simple, single-shot networks because the parameter gradients do not231

fit into the GPU memory due to the high resolution. Moreover, even a common232

patch-based approach to reduce the problem into smaller patches that are then233

combined in the batch dimension is not enough since the batches would not fit234

in the GPU memory too.235

Therefore, we propose a pyramid-based, patch-based, group-based, and iter-236

ative deep registration solution [32]. The pyramid-based approach means that237

the images are registered at different resolutions, starting at the coarsest level.238

Then, after a given pyramid level, the calculated deformation fields are upsam-239

pled to the next resolution, as in the iterative methods. Patch-based means that240

at the given resolution the images are unfolded into smaller patches that can241

be handled by a relatively small deep network. Group-based means that only242

small groups of patches are propagated by the network at once due to the GPU243

memory constraints and the loss function is being evaluated and optimized at244

the group level, not at the image level. Finally, the method is iterative since245

at each pyramid level the images are propagated through the network several246

times, progressively composing the calculated velocity fields.247

The nonrigid registration procedure can be summarized as follows. To start248

with, resolution pyramids are built for both the source and target images. Then,249

starting at the coarsest resolution, for a given number of iterations the images250

are being registered. First, the source image is warped using the current defor-251

mation field, starting with the identity transformation. Then, in each iteration,252

the images are unfolded into overlapping patches that are then split into groups253

with predefined size (limited by the GPU memory). The stride of overlapping254

patches is half of the patch size. This slightly increases the registration time.255

However, it mitigates the problem of deformation field discontinuities at the256

patch boundaries. Each corresponding group is propagated through the reg-257

istration network, calculating the current velocity field. During training, the258

group is transformed and the cost function is calculated. The cost function259

is the sum of the negative NCC and curvature regularization term [37]. The260
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calculated velocity fields for each group are concatenated. After all the groups261

are processed, the concatenated velocity fields are folded back into the velocity262

field with the same shape as the current deformation field. The current defor-263

mation field is composed of the velocity field and used for the next iteration.264

This makes the interpolation error negligible since the source image is never265

interpolated more than once. After composing, the current level deformation266

field is upsampled to the next resolution. The deformation field after the highest267

resolution becomes the final deformation field. The detailed visualization of the268

nonrigid registration procedure is shown in Figure 2. An example of nonrigid269

registration outcome is shown in Figure 1e.270

The nonrigid method has several parameters: (i) the patch size, (ii) stride,271

(iii) group size, (iv) number of pyramid levels, (v) number of iterations per level,272

and (vi) the regularization parameter. The patch size and the stride are respon-273

sible for lowering the number of network parameters and the required receptive274

field and thus the required GPU memory. The lower the patch size and stride,275

the larger the available group size, at the cost of decreasing the maximum mag-276

nitude of deformations. The number of pyramid levels is responsible for ensuring277

that the given patch size is able to capture sufficiently large deformations. Since278

the patch size is constant for all pyramid levels, the lower resolution is able to279

capture larger deformations, as in the traditional, iterative techniques. The280

number of iterations per level defines how many times the patches are passed281

through the network at each resolution. This increases the registration accu-282

racy at the cost of increasing the registration time. Finally, the regularization283

parameter is responsible for controlling the deformation smoothness.284

2.6. Technical Details285

The framework is implemented using PyTorch [38]. All the registration286

steps, excluding data loading, are implemented on the GPU. The network was287

trained using GTX RTX 2080 Ti. The Adam optimizer was used for all reg-288

istration stages together with exponentially decaying learning rate schedulers.289

The framework structure is easily extendable. One can easily replace a given290

registration or preprocessing step by another method. This makes it possible291

to e.g. propose an alternative nonrigid registration network, introduce differ-292

ent similarity measures or regularization terms, without worrying about the293

preprocessing and initial affine registration.294

We freely release the framework software, including data parsing scripts,295

training/inference source code, and pretrained models [34]. We also attach the296

transformed landmarks (after each registration step) used for evaluation as the297

supplementary material, making the results verifiable. A guide on how to run298

the scripts is available in the framework repository.299

2.7. Dataset and Experimental Setup300

We used the open ANHIR dataset to evaluate the proposed framework [1,301

39, 40, 41, 42] and promote research transparency, openness, and reproducibil-302

ity. The dataset consists of 481 image pairs split into 251 evaluation and 230303
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Lung Lesion COAD Lung Lobe Kidney

Mammary Gland Gastric Tissue Mice Kidney Breast Tissue

Figure 3: Visualization of different tissue types stained using various dyes [1, 4]. It presents
the robustness and generalization ability required by the deep registration framework (best
viewed zoomed in electronic format).

training pairs. There are 8 tissue types: (i) mammary glands, (ii) the colon ade-304

nocarcinomas (COADs), (iii) gastric mucosa and adenocarcinomas, (iv) breast,305

(v) mice kidney, (vi) human kidney, (vii) lung lesions, and (viii) lung lobes.306

The consecutive slices were stained by: (i) prosurfactant protein C, (ii) antigen307

KI-67, (iii) clara cell 10 protein, (iv) human epidermal growth factor receptor 2,308

(v) progesterone receptor, (vi) estrogen receptor, (vii) platelet endothelial cell309

adhesion molecule, (viii) cytokeratin, (ix) hematoxylin and eosin, (x) podocin.310

Visualization of different tissues stained using distinct dyes is shown in Figure 3.311

The dataset providers resampled the images to approximately 25% of the full312

original resolution, resulting in larger size varying from 6k to 17k pixels in one313

dimension (from 4369x6930 to 17179x15042, the resolution is different for each314

image). The images are provided as .jpg and .png files without the metadata.315

However, during the dataset parsing they are converted to the .mha format and316

during preprocessing to grayscale images. A more detailed description of the317

dataset and the staining procedure is available in [4].318

The dataset was annotated by providing corresponding landmarks. In total,319

9 qualified annotators chose on average 86 landmarks per image. The average320

error between the landmarks chosen by two annotators is 0.05% of the image321

diagonal. This can be used as the indicator of the human-level accuracy and a322

threshold below which the registration methods become indistinguishable [1, 4].323

The corresponding landmarks are openly available only for the training images.324

For the evaluation set, only the source image landmarks are released and the325

evaluation must be done using the server-side evaluation platform developed by326

the ANHIR organizers with a very limited number of available submissions. This327

makes the results reliable and trustworthy since the proposed methods cannot328
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be tuned to the evaluation set. During training, we used only the training pairs329

without utilizing any information about the manually selected landmarks.

Figure 4: The Median of Median rTRE and Median of Average rTRE reported in % of image
diagonal for all registered image pairs. Please note that the tissue types are not equipotent,
COADs have the highest influence on the averaged results (logarithmic scale used for presen-
tation clarity). The results originate from the ANHIR evaluation system [4] and are as of
05.08.2020. W/o BS means ”without background segmentation”.

330

2.8. Evaluation Criteria331

The registration accuracy is measured by the target registration error (TRE)332

measuring the Euclidean distance between the annotated and transformed land-333

marks. To make the error comparable between image pairs with different reso-334

lutions, the TRE is normalized by the image diagonal:335

rTRE =
TRE√
w2 + h2

, (2)

where TRE denotes the target registration error, w is the image width and h is336

the image height. There are different rTRE-based metrics: (i) average of median337

rTRE, (ii) median of median rTRE, (iii) median of average rTRE, (iv) average338

of average rTRE. For clarity, the average of median rTRE shows the average339

at the case level of the median rTRE at the landmarks level. The median of340

median/average rTRE is good for describing the quality of the registration,341

while the average of median/average can be used to verify potential outliers342

(e.g. due to the initial alignment fail).343

Apart from the rTRE, the robustness and normalized processing time are344

evaluated. The robustness is defined as the fraction of landmarks for which345

the rTRE decreased after registration to the total number of landmarks. The346

processing time reports the total time required for data loading, preprocessing,347
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Figure 5: Comparison of the proposed framework to the state-of-the-art nonrigid histology
registration methods in terms of Median of Median rTRE and Median of Average rTRE
reported in % of the image diagonal, evaluated for all image pairs. The results originate
from the ANHIR evaluation system [4]. The results for TUB method are not reported since
they used the manually annotated landmarks for training and the results are not comparable
(rTRE artificially close to 0% for half of the image pairs). The results are as of 05.08.2020.

and registration (without saving the outcomes). All the values are reported by348

an independent, server-side evaluation tool.349

3. Results350

We present the outcomes from subsequent registration steps and compare the351

final results to the state-of-the-art algorithms. We decided to use the ANHIR352

evaluation platform and to compare only to the methods submitted there. The353

reasons for this are: (i) independent, reliable comparison, and (ii) mitigation354

of the evaluation bias resulting from incorrect parameter tuning. As a result,355

there is no possibility to artificially improve the outcomes since all method356

parameters were tuned by their authors or the ANHIR organizers. Therefore,357

one can assume that everyone did their best to get as good results as possible.358

Noteworthy, the evaluation landmarks are unavailable and one can perform only359

a single submission per day, making it difficult to tune the parameters with360

respect to the evaluation set. We encourage everyone interested in the histology361

registration to submit their method using the submission system.362

In Figure 4, we show the landmark-based evaluation of the subsequent reg-363

istration stages: (i) initial, (ii) after the initial alignment, (iii), after the affine364

registration, and finally (iv) after the nonrigid registration. The results are365

presented together and separately for all the tissues and show the median of366

median rTRE and median of average rTRE. Please note that the tissue types367
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Before Initial Alignment Affine Registration Nonrigid Registration

Before Initial Alignment

Affine Registration Nonrigid Registration

Figure 6: Example checkerboards at different registration stages for pairs no. 13, 317, 430
(COAD, kidney, mammary gland). High quality pictures, best viewed zoomed in electronic
format.

14



a) Source b) Target c) Transformed Source

d) Displacement Field e) Jacobian Determinant f) Curl

Figure 7: An exemplary visualization of the registration results, together with the deformation
field, its Jacobian determinant and Curl.

Table 1: Quantitative results summary based on the ANHIR evaluation website comparing
our method to the state-of-the-art algorithms [4]. The table presents results only for the
evaluation set. The method abbreviations denote the team names, for detailed information
about the team members we refer to [1]. The results are as of 05.08.2020.

method

Average rTRE Median rTRE Max rTRE Robustness Average

Average Median Average Median Average Median Average Median time [min]

DeepHistReg 0.0061 0.0033 0.0047 0.0019 0.0276 0.0224 0.9799 1.0000 0.03

MEVIS 0.0043 0.0028 0.0028 0.0018 0.0251 0.0188 0.9880 1.0000 0.14

AGH 0.0073 0.0032 0.0036 0.0017 0.0290 0.0214 0.9795 1.0000 8.60

UPENN 0.0041 0.0029 0.0029 0.0019 0.0238 0.0190 0.9898 1.0000 1.45

CKVST 0.0042 0.0027 0.0026 0.0023 0.0239 0.0189 0.9883 1.0000 7.13

TUB 0.0089 0.0029 0.0077 0.0021 0.0280 0.0178 0.9845 1.0000 -

TUNI 0.0063 0.0031 0.0048 0.0021 0.0287 0.0204 0.9822 1.0000 10.32

UA 0.0536 0.0100 0.0506 0.0082 0.1124 0.0353 0.8209 0.9852 1.47
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are not equipotent, therefore one tissue type can have a larger influence on the368

averaged results. We show the results for initial alignment with and without the369

background removal to show its influence on the registration results. The affine370

registration and the nonrigid registration are reported only with the background371

removal. In Figure 6, we present several example checkerboards to visually ver-372

ify the registration results. In Figure 7, we show an example registration result373

together with the calculated displacement field, its Jacobian determinant and374

Curl. Unfortunately, we do not have access to the deformation fields of other375

methods evaluated on the ANHIR dataset. Thus, quantitative comparison of376

the deformation complexity (e.g. using standard deviation of Jacobian determi-377

nant) is not possible.378

To compare the outcomes to the state-of-the-art algorithms, we present an379

exhaustive comparison in Figure 5. It shows the median of median rTRE and380

median of average rTRE after the nonrigid registration for all the tissues, com-381

pared to the other histology registration methods. All the method statistics382

originate from the ANHIR evaluation system [4] (as of 05.08.2020). Moreover,383

we present all the evaluation metrics in Table 1. We must emphasize, that the384

table is an extended version of the table presented in the ANHIR summary ar-385

ticle [1] but with results obtained directly from the evaluation system without386

any additional outlier rejection and without the rTRE ranking at the case level387

since it is not being evaluated anymore.388

4. Discussion389

The presented results show that the proposed method is comparable in terms390

of the rTRE to the best state-of-the-art algorithms. The results are slightly391

worse (by about 0.002% of the image diagonal) than the three best state-of-392

the-art algorithms. However, this is somehow expected and can be justified.393

In unsupervised deep registration, the network is learning how to minimize a394

given objective function. The objective function is usually the same or very395

similar compared to the classical, iterative registration. Nonetheless, in the396

iterative registration, the objective function is minimized separately for each397

new case. In deep learning, it could be compared to tuning the network to398

each new evaluation case. This does not make sense in practice because the399

main goal of using the unsupervised deep registration is to strongly speed-up400

the analysis. We hypothesize that for larger datasets the difference between the401

results would be even smaller. Moreover, the adversarial registration could also402

be a solution because there would be no need to define the similarity measure and403

the objective function would be learned. However, ground-truth registrations404

are necessary and for histology such registrations are very hard to obtain.405

The results reported in Figure 4 show that all the subsequent steps increase406

the registration quality. The initial alignment significantly improves the reg-407

istration for all tissues except the lung lesions that do not require any initial408

rotation correction. It is crucial for gastric and breast tissues for which the409

initial alignment alone decreases the rTRE by an order of magnitude. Note-410

worthy, the necessity of this step depends on the dataset. For other histology411
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datasets not containing consecutive slices rotated by e.g. 180 degrees, this may412

be unnecessary. The affine registration decreases the rTRE for all tissue types413

and the computational time required by this step (on average 4 ms) is negli-414

gible. A correct affine registration is a requirement for the following nonrigid415

registration that further improves the registration. Compared to the initial or416

affine alignment, the influence on the rTRE is not that important. However,417

the nonrigid registration is crucial for registering the fine details, as presented418

in Figure 6.419

The results of the proposed framework in terms of rTRE are comparable420

to the best performing methods for all tissue types except the mice kidneys.421

This is the case because there is only a single mice kidney tissue in the ANHIR422

dataset and the nonrigid deep network cannot learn from such a small amount423

of data. Interestingly, for kidneys the proposed method is the most accurate and424

for COADs, lung lobes, mammary glands, breast, and gastric tissue there are no425

significant differences compared to other best-performing methods. Importantly,426

the different tissues are not equipotent, so it is important to compare the results427

separately for each tissue type. The results presented in Table 1 confirm that428

our method has a very good generalization ability since the reported rTRE is429

lower than in the presented figures (they present the results for all image pairs),430

showing that the rTRE for the evaluation set is even lower than for the training431

set.432

In can be observed that the registration accuracy depends strongly on the433

tissue type, both for our as well as other methods (Figure 4, Figure 5). The434

differences are a consequence of the tissue characteristics, the procedure of the435

sample preparation and the applied dyes. For example, for lung lesions the436

rTRE is order of magnitude higher than for gastric tissues or mammary glands.437

The reasons for this are large amount of missing data between the subsequent438

slices and difficulties with determining differentiating features of which the sim-439

ilarity could be used to drive the nonrigid registration. This is not the case for440

mammary glands or gastric tissues that do not suffer from these limitations.441

The computational time of the proposed framework is significantly lower442

than the classical, iterative methods. This could be expected since the reg-443

istration consists of only an extremely fast model inference and low-resolution444

GPU-based initial rotation search. Moreover, about half of the total registration445

time is related to the data loading and initial preprocessing. Thus, the regis-446

tration part consisting of the initial alignment, affine registration, and nonrigid447

registration is approximately two times faster than reported. The only state-of-448

the-art algorithm that is comparable in terms of the computational time is the449

MEVIS method [13]. Their well-optimized, multi-core, matrix-free implemen-450

tation is amazingly fast but it is a really optimized commercial tool and not a451

simple research prototype.452

The proposed method has two limitations. First, the training time of the453

nonrigid network is significantly longer compared to the simple, single-step for-454

ward pass registration networks that use the downsampled images. The process455

of training the networks takes several days (on the ANHIR dataset). This limi-456

tation may be addressed by the use of pretrained models since tuning the model457
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is significantly faster. The second limitation is connected to the generalizbility458

and the amount of the required training data. The proposed method is unsu-459

pervised, it does not require any annotations. However, it requires big enough460

training data to be successful. It is already visible in the results, e.g. the results461

for COADs are at the level or even better than the other approaches, on the462

other hand, results for mice kidneys are not as accurate. However, there is only463

a single case of the mice kidney tissue in the ANHIR dataset.464

There are two strongly connected areas in which the methods can be im-465

proved. The first one is related to a better similarity measure than the NCC.466

Even though the results achieved using the NCC are robust and accurate, state-467

of-the-art methods show that there is still an area for further improvement. The468

MEVIS method [13] used the NGF and the AGH method [20] using a MIND-469

based similarity measure. Both of them achieved a lower median of median470

rTRE than the UPENN [15] method which used the NCC. However, the use of471

MIND or NGF in deep registration is problematic. The challenge is connected472

with similarity metric hyper-parameters and the proper weight of the regular-473

ization function. We did initial experiments with MIND and NGF. Due to the474

necessity of properly tuning the regularization and similarity metric parameters475

simultaneously, the training was unable to converge to a better solution than476

the one achieved by NCC. We forecast that further research about adaptive,477

deep regularization functions is crucial to further improve the method.478

Another interesting idea is connected with style transfer using the adver-479

sarial networks [43]. It would be interesting to apply style connected with a480

particular dye from a given slice to another consecutive slice. This could be481

useful to create ground-truth alignments for adversarial registration networks482

which may produce even more accurate registration, without the necessity to483

define a similarity measure [28].484

5. Conclusions485

To conclude, we propose an unsupervised deep learning-based image regis-486

tration framework dedicated to histology images acquired using different stains.487

The proposed framework provides results comparable to the best state-of-the-art488

methods while being significantly faster. The proposed method is of particular489

interest to researchers requiring a real-time, accurate, nonrigid registration of490

high-resolution images. We freely release the framework source code and provide491

access to pretrained models, making the results fully reproducible. The proposed492

method can be a useful baseline for other image registration researchers eager to493

propose novel deep learning-based nonrigid registration algorithms, dedicated494

to histology images, with common preprocessing and initial alignment steps.495
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