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Abstract. PICO recognition is an information extraction task for de-
tecting parts of text describing Participant (P), Intervention (I), Com-
parator (C), and Outcome (O) (PICO elements) in clinical trial litera-
ture. Each PICO description is further decomposed into finer semantic
units. For example, in the sentence ‘The study involved 242 adult men
with back pain.’, the phrase ‘242 adult men with back pain’ describes
the participant, but this coarse-grained description is further divided
into finer semantic units. The term ‘242’ shows “sample size” of the par-
ticipants, ‘adult’ shows “age”, ‘men’ shows “sex”, and ‘back pain’ show
the participant “condition”. Recognizing these fine-grained PICO enti-
ties in health literature is a challenging named-entity recognition (NER)
task but it can help to fully automate systematic reviews (SR). Previous
approaches concentrated on coarse-grained PICO recognition but focus
on the fine-grained recognition still lacks. We revisit the previously un-
fruitful neural approaches to improve recognition performance for the
fine-grained entities. In this paper, we test the feasibility and quality
of multitask learning (MTL) to improve fine-grained PICO recognition
using a related auxiliary task and compare it with single-task learning
(STL). As a consequence, our end-to-end neural approach improves the
state-of-the-art (SOTA) F1 score from 0.45 to 0.54 for the “participant”
entity and from 0.48 to 0.57 for the “outcome” entity without any hand-
crafted features. We inspect the models to identify where they fail and
how some of these failures are linked to the current benchmark data.

Keywords: Named entity recognition · Health · Evidence-based health.

1 Introduction

Systematic reviews (SR) are cornerstones of evidence-based medicine (EBM) and
aim to answer clinically relevant questions with utmost objectivity, transparency,
and reproducibility. Primary relevance screening is a very resource-consuming
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process involving reviewers manually screening thousands of clinical trial ab-
stracts for inclusion into an SR [20]. The criteria for including a study into an
SR is decomposed into whether all or most predetermined PICO elements are
present in the study [23]. Machine learning (ML) algorithms can help automate
the recognition of PICO elements from clinical trial studies by directly pointing
the human reviewers to the correct PICO descriptions in a document. However,
the detected coarse-grained PICO descriptions (see Section 3.2) are further de-
lineated into fine-grained semantic units (see Figure 1). This means that even

Fig. 1. Example of I. coarse-grained annotated participant span and II. further delin-
eated fine-grained participant entities (P = Participant).

after a machine points a human reviewer to the correct coarse-grained PICO
description, the reviewer requires to manually read and understand its finer as-
pects to screen the study for relevance. This leads to the semi-automation of the
process. Fully automating the relevance screening process requires identifying,
delineating, and normalizing the fine-grained PICO mentions allowing for ma-
chine reasoning over the extracted semantic units. Unlike in many biomedical
journals, fine-grained PICO mentions in the broader health literature are neither
clearly identified nor standardized as semantic units (e.g. naming conventions for
interventions and outcome measurement) making it an even more tedious pro-
cess for the reviewers [13]. This hampers machine reasoning over the semantic
units leading to barriers for full automation.

In this work, we test and propose end-to-end neural attention models that re-
quire no hand-engineered features unlike the previous approaches and are trained
to improve recognition of fine-grained PICO entities. Our approach achieves
state-of-the-art (SOTA) performance for fine-grained “Participant” and “Out-
come” entity recognition. In our approach, fine-grained PICO recognition was
considered as a sequence labeling task for which two different setups were tested:
single-task learning (STL) and multi-task learning (MTL). We investigate if
these model setups trained on the PICO benchmark corpus extend to reaching
similar performance for an in-house PICO-annotated corpus from the physi-
cal therapy domain (hereafter: physiotherapy corpus). The key takeaway from
the error analysis and corpus exploration is that the PICO benchmark corpus
over-represents pharmaceutical entity labels leading to poor performance on any
low-frequency entities especially the non-pharma entities coming from domains
of physiotherapy, complementary therapies and in the more general health do-
main. Automating PICO recognition is far more challenging compared to open-
domain NER because there are disagreements even between human experts on
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the exact words that make up PICO elements. Additionally, PICO recognition
cannot be purely labeled as an NER task because “Participant” entities span
entire sentences.

2 Related work

Research towards automatic PICO recognition peaked with exploration of several
methods including rule-based lexical approaches [8], language models (LM) [3],
support vector machines (SVMs) [4], graphical models like CRF [6], shallow
neural (Multilayer Perceptrons) approaches [2], a combination of ML and rules [6]
and deep neural approach like LSTMs [18]. These studies, however, used small
annotated corpora, heavy text pre-processing, and hand-engineered features.

The availability of a comparatively large, and probably the only PICO bench-
mark corpus (EBM-PICO corpus hereafter) from [21] with multi-grained (fine
and coarse-grained) PICO annotations opened up possibilities to explore the neu-
ral models. Nye et al. [21] used this corpus to train baseline models using hand-
engineered features for separately detecting fine- and coarse-grained entities.
Their baselines achieved a good performance on the coarse-grained PICO but
a poor performance on the more difficult, semantic fine-grained entities.5 SciB-
ERT, through domain-adaptation, improved6 the overall coarse-grained PICO
recognition for the EBM-PICO corpus [1]. A few studies dived into the recog-
nition of finer aspects of PICO but did not focus on all of them together. For
instance, the DNER (Disease NER) [26] neural model focused on disease-mention
recognition, [25] concentrated on recognition of patient demographics (sex, sam-
ple size, disease) and [7] explored recognition of different intervention arms from
RCTs (randomized controlled trials). Except [21], prior work either focused on
coarse-grained or sentence-level PICO recognition. Fine-grained PICO recogni-
tion has not yet garnered as much attention as it should given its potential for
fully automating the SR screening phase.

The focus of our work is to improve recognition of fine-grained PICO entities,
test feasibility and competency of MTL models utilizing joint information from
the fine- and coarse-entity annotation, and improve generalization by introducing
inductive bias [5]. The work stands out because both PICO corpus and the
current SOTA automation methods focus on the overall entity recognition but
do not explore domain differences. Both the MTL and STL models trained on the
EBM-PICO benchmark corpus were used to evaluate fine-grained performance
on the physiotherapy corpus.

3 Methodology

3.1 Multitask learning

As fine-grained entities are nested under coarse-grained spans (see Figure 1),
we assume both entity extractions as closely related tasks that can serve as

5https://ebm-nlp.herokuapp.com/
6https://paperswithcode.com/sota/participant-intervention-comparison-outcome
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mutual sources of inductive bias for each other. This opens up the possibility to
jointly training both tasks using the MTL approach [5, 22]. MTL has previously
shown to leverage performance on nested biomedical named-entities (NEs) for
example for the GENIA corpus [11]. In contrast to an STL setup that requires a
separate setup to recognize fine-grained and coarse-grained entities, an end-to-
end MTL system jointly learns to recognize both by exploiting the similarities
and differences between the task characteristics. MTL opens up the possibility
to improve recognition of poorly performing7 fine-grained recognition by sharing
the hidden representation with the far better performing coarse-grained task. For
comprehensive details on the MTL algorithms in NLP read [22].

In our MTL setup, fine-grained PICO recognition was considered as the main
task and involved assigning each token in the input text with the fine-grained
PICO class labels (see Table 1). Coarse-grained recognition was considered as an
auxiliary task and involved assigning each token in the input text with either 1
(“Participant” or “Intervention” or “Outcome”) or 0 (“No Label”). For both tasks,
0 (“No Label”) was considered as the out-of-the-span or non-span label. We began
training simple models and sequentially added more layers to understand the im-
provement effect. To probe the cumulative effect of the self-attention component
on the tasks in the MTL setup two ablation experiments were performed [24].

Table 1. Coarse-grained P (Participant), I (Intervention) and O (Outcome) labels are
delineated into respective fine-grained labels. Annotation counts are shown in the table.

Participant count Intervention/Comparator count Outcome count
0 No label 124372 No label 120453 No label 115578
1 Age 708 Surgical 659 Physical 7215
2 Sex 157 Physical 1988 Pain 180
3 Sample size 661 Drug 4424 Mortality 261
4 Condition 3893 Educational 1328 Side effect 540
5 Psychological 62 Mental 1657
6 Other 323 Other 2064
7 Control 542

3.2 Datasets

EBM-PICO test set: We used the EBM-PICO corpus comprising ∼5000 coarse-
and fine-grained PICO-annotated documents 8 to train and test the end-to-end
system (see Figure 1 and Table 1). A part of the dataset was annotated by
crowd-sourcing and a small part by medical experts. It comes pre-divided into a
training set comprising 4,993 documents and a test set comprising 191 that was
used for evaluation. More details about the dataset can be found in [21].

7https://ebm-nlp.herokuapp.com/#Leaderboard
8A single document consists of a title and an abstract.
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Physiotherapy and Rehabilitation test set: An additional test set comprising
153 documents in an in-house SR titled "Exercise and other non-pharmaceutical
interventions for cancer-related fatigue in patients during or after cancer treat-
ment: a SR incorporating an indirect-comparisons meta-analysis" was manu-
ally annotated by the first author using the annotation instructions9 available
from [21, 14]. The primary purpose of this additional test dataset was not to
establish any inter-annotator agreement (IAA) but 1) to understand the com-
plexity and noise encompassed in the multi-grained PICO annotation process,
and 2) to test the feasibility of the proposed setups trained on the general medical
(EBM-PICO) dataset to predict PICO classes for a corpus from physiotherapy
and rehabilitation domains. The vitality of this annotation exercise will be ap-
parent in the discussion section (see Section 5). IO (Inside, Outside) or raw
labeling was used for both sequence labeling tasks.

3.3 System components

1. Embeddings: Contextual representations like BERT, ULMFit, GPT encode
rich syntactic and semantic information from the text into vectors eliminating
the need for heavy feature engineering. They also tackle the challenge of out-of-
vocabulary (OOV) words using the WordPiece tokenizer and byte pair encoding
(BPE) [9, 19]. The proposed model setups used SciBERT to extract dense, con-
textual vectors et from the encoded input text tokens xt at each time-step t.

2. Feature transformer: To encode long-term dependencies and learn a task-
specific text structure from the input documents, the model stacked a single
bidirectional LSTM (BiLSTM) layer on top of the embedding layer [15]. A for-
ward LSTM ran from left-to-right (LTR) encoding the text into a (

−→
h ) vector

using the current token embedding input et and the previous hidden state ht−1.
A backward LSTM does the same from right to left (RTL). Both outputs were
shallowly concatenated ([

−→
h ;
←−
h ]) into ht and used as the input for the next layer.

3. Self-attention: Next, the model stacked a softmax-based multi-head self-
attention layer that calculated for each token in the sequence a weighted aver-
age of the feature representation of all other tokens in the sequence [24]. Self-
attention improves the signal-to-noise ratio by out-weighting important tokens.
Self-attention weights for each token were calculated by multiplying hidden rep-
resentation ht with randomly initialized Query q and Key k weights, which were
further multiplied with each other to obtain attention weighted vectors. Finally,
the obtained attention weights were multiplied with the Value (V) matrix which
was obtained by multiplication between a randomly initialized weight matrix v
and ht finally obtaining scaled attention-weighted vectors at.

9https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6174533/bin/NIHMS988059-
supplement-Appendix.pdf
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4. Decoder: The attention-weighted representation at is either fed to a linear
layer to predict the tag emission sequence followed by calculation of weighted
cross-entropy loss or to a CRF layer along with the true tag sequence yt. CRF
is a graph-based model suitable for learning tag sequence dependencies from the
training set and it has shown to outperform softmax classifiers [16].

Fig. 2. The proposed end-to-end MTL approach with fine-grained recognition as the
main-task and coarse-grained as the auxiliary task. Removing either of the CRF de-
coder heads gives the respective STL setup.

4 Experiments

To compare our proposed methodology on fine-grained PICO recognition, two
strong baselines from Nye et al. were used. The baselines use a combination of
n-grams, part-of-speech tags, and character embeddings as features and used
them to separately train a logistic regression model and a neural LSTM-CRF.
To demonstrate the feasibility of the MTL approach for improving fine-grained
recognition using the auxiliary coarse-grained task and to compare the perfor-
mance of each MTL setup, exactly identical STL setups were used. The setups
are:

I. BERT Linear setup includes a linear transformation layer stacked on top of
the BERTBASE model followed by weight-balanced cross-entropy loss calculation.

II. BERT LSTM CRF setup uses BERTBASE for feature extraction followed by
an LSTM and a linear layer to generate emission probabilities that feed into the
CRF decoder head that learns tag sequence dependencies and calculates loss.
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III. BERT BiLSTM CRF setup is identical to setup II, but BiLSTM replaces
the LSTM layer.

IV. BERT LSTM atten CRF setup incorporates a single self-attention head.
Attention weights calculated by the attention head are applied to the output
of the LSTM layer followed by a linear transformation to generate emission
probabilities. These probabilities feed into the CRF decoder.

V. BERT BiLSTM atten CRF setup is identical to the setup IV, but BiLSTM
replaces the LSTM layer.

VI. BERT BiLSTM Multihead atten CRF setup differs from setup V in how
attention-weights are applied. For MTL, this setup uses a single-head attention-
weighted BiLSTM representation to decode coarse-grained entities while a two-
head attention-weighted BiLSTM representation is used to decode the fine-
grained entities. This was to over-weigh the fine-grained signals.

VII. BERT BiLSTM Multihead atten: setup has specific settings for the MTL
and STL. In the MTL setup, CRF is used as a decoder for the fine-grained
task. The coarse-grained task includes a linear layer followed by a weighted
cross-entropy loss calculation. As STL cannot have a coarse-grained task, the
encoder setup was used with a linear layer as the decoder for the fine-grained
task. Similar to the previous setup, to decode the coarse-grained sequence, a
single-head attention-weighted BiLSTM representation was used, while it was a
two-head attention-weighted BiLSTM representation to decode the fine-grained
entities.

In the MTL setup, all except the final decoding layer shared the parameters
for the main and auxiliary tasks. For decoding, the final shared hidden repre-
sentations were fed to two separate decoding heads that calculated the losses
separately for both tasks. The back-propagated loss was a linear combination of
both task losses (Loss = Losscoarse + Lossfine). For the STL setups without
any shared representation between the tasks, the models were optimized using
these individual task losses.

Ablation experiments: To probe the effect of attention weights individually on
the fine- and coarse-grained tasks in the MTL setup, two ablation experiments
each were performed. For the experiments, the linear transformation was directly
applied to the BiLSTM layer without attention-weighting and this unweighted
BiLSTM output was first used for the main task and in the second experiment
for the auxiliary task.

5 Results

Similar to the other PICO recognition studies, the F1 score was evaluated and
reported per token for comparison. Each F1 score is an average of individual
fine-grained categories for PICO. The F1 score serves to compare: 1) the per-
formance of our methodology with the baseline, 2) the performance of STL vs.
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MTL for the fine-grained PICO recognition, and 3) the performance improve-
ment brought by the additional functional layers for the MTL and STL setups.
A t-test was applied as a significance test with a Bonferroni corrected p-value
(αaltered) threshold set to 0.007 to the normally distributed F1 scores for each
MTL model and its corresponding STL counterpart for the fine-grained task [10,
12]. F1 scores for the EBM-PICO and physiotherapy corpus are reported in Ta-

Table 2. F1-score comparison for the fine-grained (main task) PICO labels for mul-
titask learning vs. single task learning for the EBM-PICO evaluation corpus and the
physiotherapy corpus. The EBM-PICO baseline F1 scores for the fine-grained PICO
recognition are annotated as b1 and b2. The best F1 score for an entity in its series
of experiments is shown in bold. Underlined scores show that the setup performed
significantly better than its counterpart.

Setup MTL F1 STL F1
Fine-grained P I/C O P I/C O

EBM-PICO evaluation corpus
b1 logistic regression - - - 0.45 0.25 0.38
b2 LSTM-CRF - - - 0.4 0.5 0.48
I BERT Linear 0.21 0.07 0.09 0.20 0.08 0.12
II BERT LSTM CRF 0.33 0.24 0.37 0.45 0.27 0.45
III BERT BiLSTM CRF 0.39 0.28 0.40 0.52 0.27 0.53
IV BERT LSTM attn CRF 0.34 0.28 0.47 0.53 0.25 0.49
V BERT BiLSTM attn CRF 0.51 0.30 0.53 0.54 0.30 0.57
VI BERT BiLSTM multihead attn CRF 0.54 0.30 0.56 0.54 0.29 0.55
VII BERT BiLSTM multihead attn linear 0.52 0.34 0.56 0.54 0.30 0.56

Physiotherapy corpus
I BERT Linear 0.23 0.07 0.05 0.22 0.07 0.06
II BERT LSTM CRF 0.36 0.15 0.20 0.52 0.15 0.27
III BERT BiLSTM CRF 0.40 0.17 0.24 0.57 0.19 0.27
IV BERT LSTM attn CRF 0.37 0.14 0.28 0.56 0.17 0.27
V BERT BiLSTM attn CRF 0.57 0.17 0.30 0.60 0.19 0.30
VI BERT BiLSTM multihead attn CRF 0.62 0.18 0.30 0.56 0.18 0.29
VII BERT BiLSTM multihead attn linear 0.62 0.23 0.30 0.60 0.21 0.30

ble 2. In most setups, STL significantly outperforms MTL. For the EBM-PICO
corpus, in terms of the cumulative PICO F1, the MTL setup VII outperforms
the STL counterpart, but only by gaining a 4% boost in F1 for the “Interven-
tion” recognition while deprecating the performance on the “Participant” entity.
Compared to the MTL setup V, setup VI gains 3% F1 on the “Participant”
and “Outcome” recognition by exploiting the two-head attention-weighted BiL-
STM outputs exclusively for decoding the fine-grained output vs. only a single
head for decoding the coarse-grained output. Setup VII further improves the
performance for the “Intervention” by switching to a linear decoding layer that
uses the weighted cross-entropy loss. In comparison to the baseline, both setups
outperform for “Participant” and “Outcome”.
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For evaluation on the physiotherapy corpus, MTL again seems to exploit
the two-head self-attention exclusively on the fine-grained task (vs. only a sin-
gle head on the coarse-grained task) and linear decoding followed by weighted
cross-entropy loss calculation for the coarse-grained task to achieve a similar
performance as STL. The MTL setup VII obtains 2% better F1 scores for the
“Participant” and “Intervention” classes. MTL outperforms STL only by carefully
exploiting task weights, weighted loss, task-specific decoder heads. Ablation ex-
periments (see Table 3) show that the performance boost for the MTL setup is
brought by cumulative attention weighting for both decoding tasks. Removing
attention weights from either of the decoding heads reduces the F1 score. This
effect of weights on the tasks was also observed in the experiments of [5] where
the MTL benefited from the weighted hidden layers on the input, the rationale
being that weighted input when backpropagated carried more information.

Table 3. F1 score for the ablation experiments in the MTL setup (BERT BiLSTM
attention CRF) for both test corpora

Setup F1 (Physiotherapy) F1 (EBM-PICO)
Fine-grained P I/C O P I/C O
BERT BiLSTM attn CRF 0.57 0.17 0.30 0.51 0.30 0.53
BERT BiLSTM attn (on coarse) CRF 0.44 0.11 0.19 0.39 0.21 0.37
BERT BiLSTM attn (on fine) CRF 0.43 0.15 0.23 0.31 0.29 0.42

In general, it was observed that 1) using BERT alone gave very poor perfor-
mance (See Table 2 Experiment I), 2) the addition of a single head self-attention
layer brought a significant performance boost for both setups (See Table 2 Ex-
periment V), 3) the approaches have poor generalization on the physiotherapy
corpus for the “Intervention” entity, and 4) though most MTL setups did not out-
perform the STL setups, it cannot be concluded that MTL is ineffective. These
results warrant further investigation into task-weighting, appropriate task de-
coders, loss weighting strategies, especially for the label-imbalanced tasks.

6 Discussion and Error Analysis

As apparent from Table 2, the “Intervention” entity showed the most dissatisfying
overall F1-score and was the only entity unable to pass the baseline. For the
EBM-PICO corpus, performance on the “Intervention” entity had saturated at
0.30 F1 and was even worse for the physiotherapy corpus. Upon the confusion
matrix inspection for “Intervention” for both setups and evaluation corpora it
was identified that all the sequence taggers failed to correctly identify any of
the “Other” and “Psychological” fine-grained classes (see red box in Figure 3).
The most obvious reason for this is the comparatively lower number of label
annotations for these classes. It was apparent during the manual annotation of
the physiotherapy corpus that the “Other” entity encompassed any intervention
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Fig. 3. “Intervention” entity example error matrix for the MTL experimental setup V
(BERT BiLSTM attention CRF)

mention that did not fall into the rest of “Intervention” classes making this class
highly heterogeneous with a mixture of diverse entities that followed several
patterns (see Table1). Heterogeneous entities are a challenge for IR [17].

All the taggers were consistently confused between the physiological and
educational intervention classes (see the blue box in Figure 3), which are impor-
tant for our field of interest. This challenge is related to the “Intervention” class
definition. During manual annotation, it was rather difficult, even as a human
annotator, whether to classify certain interventions as educational or psycho-
logical (for example, the psycho-educational intervention if administered by a
psychologist is considered as psychological intervention and if administered by
a nurse it is classified as an educational intervention). The performance of auto-
matic labeling was just a direct reflection of the difficulty emanating from class
definitions. General analysis of all the PICO confusion matrices shows several
out-of-the-span entities were mislabelled as PICO and vice versa. If it was merely
PICO being miss-tagged as out-of-the-span, it could have pointed to the class-
imbalance problem given that out-of-the-span forms the majority class. However,
consistently even the out-of-the-span entities were mislabelled as PICO which
points to the class-overlap problem. Error inspection showed that the overall
limited performance of these classifiers might result from the class-overlap be-
tween the PICO and out-of-the-span classes and ambiguities in how each coarse-
grained PICO was divided further into fine-grained PICO classes, especially for
the health entities.
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7 Conclusion

We propose two end-to-end neural model setups for fine-grained PICO recogni-
tion that outperform the previous SOTA for the fine-grained “Participant” and
“Outcome” entities without any need for hand-engineered features. We show that
MTL is not only feasible but also a good alternative to the STL setup. How-
ever, combining even the seemingly related tasks in MTL might not directly
boost the performance. To perform similar to or outperform its STL counter-
part, MTL could require rather careful individual weighting of the involved tasks
and task losses. We contribute a manually annotated dataset with multi-level
PICO annotations adding to the currently available resources. Our error analysis
warrants rethinking of semantically solid class definitions for fine-grained PICO
entities along with ontology development for the health domain. The code and
the annotated in-house dataset are available on Github10.
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