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Abstract: The prevalence survey is a valid and realistic surveillance strategy for nosocomial infection surveillance but 
it is resource and labor-consuming. Querying the hospital data warehouse with a set of relevant features and 
applying a classification algorithm on the results can reduce the amount of cases to be evaluated by the 
infection control practitioners. The objective of this work is to provide a framework to build a nosocomial 
infection model with a set of pre-selected features with Fisher’s linear discriminant algorithm. Application 
of the methodology to two datasets provides promising results. It permits to predict respectively an average 
of 41.5% and 43.54% positive cases including respectively 65.37% and 82.56% true positive cases. The 
proposed framework can be applied to other classification algorithms, which are planned as future work. 

1 INTRODUCTION 

1.1 Context 

Nosocomial infections (NI) are infections acquired 
in a hospital. In Switzerland, 70000 hospitalized 
patients per year are infected and 2000 deaths per 
year are caused by NI. A hospital aware of the 
quality of the patient care should have an infection 
prevention, control and surveillance program. The 
surveillance is the process of detecting these 
infections. Prevalence surveys are recognized as 
valid and realistic approaches of nosocomial 
infection (NI) surveillance strategies (French et al, 
1983). Prevalence of NI is presented as prevalence 
of infected patients, defined as the number of 
infected patients divided by the total number of 
patients hospitalized at the time of study, and 

prevalence of infections, defined as the number of 
NIs divided by the total number of patients 
hospitalized at the time of study (Sax et al, 2002). 
However, a prevalence survey is resource and labor-
consuming, as it requires assembling a wide range of 
data gathered from multiple sources. The medical 
record of all patients hospitalized for more than 48 
hours at the time of the survey are reviewed by 
infection control practitioners. During this first 
process they extract information related to each 
patient and store them in a database specially 
developed for this purpose. The prevalence database 
contains 83 attributes ranging from administrative 
information, demographic characteristics, admission 
diagnoses, comorbidities and severity of illness 
scores, type of admission, and exposure to various 
risks of infection, clinical and paraclinical 
information, and data related to infection when 



 

present. This database is analyzed to sort out the 
prevalence official report. 

The hospital data warehouse contains all the data 
in the operational system except the data of the day. 
Querying the hospital data warehouse and apply data 
mining techniques in order to report “potential 
cases” to be reviewed by the infection control 
practitioners will reduce their workload and will 
allow them to focus on the content of the patient 
record and evaluate the presence of NI.  

Some of the 83 attributes of the prevalence 
database are acquired for administrative purposes 
only. The majority of these attributes are the 
synthesis of information from the patient records 
emanating from laboratory, radiology, nursing, and 
clinical databases. A more realistic approach to 
report potential cases is to find a subset of N most 
relevant features (N<83) and query the hospital 
databases on the basis of these N features. The 
results obtained are then classified and ranked with a 
classification algorithm, and only predicted positive 
cases i.e. lists of infected patients are reviewed by 
the infection control practitioners. The classification 
is based on a model build with the N features. 

We present in this paper a framework to build a 
computer-aided detection of NI based on a set of N 
pre-selected features using Fisher’s linear 
discriminant algorithm. For this purpose, we analyze 
a previous prevalence database to optimize the 
classification process. The retrieval of the data from 
the hospital data warehouse is not presented in this 
paper. The Fisher’s linear discriminant (FLD) was 
chosen for its “simplicity” as it only has one 
parameter to optimize. One challenging 
characteristic of NI prevalence data is the imbalance 
between the positive and negative cases 
(respectively 11% and 89%) (Cohen et al, 2006). 
This important characteristic is taken into account in 
the proposed methodology. An application is 
developed to automate all the process. 

1.2 NI prevalence data 

The prevalence data we analyzed in this work is data 
collected at the hospitals during the 2006 survey. 
The dataset contains 5 data categories: 1) 
demographic information, 2) admission diagnosis 
(classified according to McCabe5 (McCabe and 
Jackson, 1962) and the Charlson index (Charlson et 
al, 1987) classifications); 3) patient information at 
the study date (ward type and name, status of 
Methicillin-Resistant Staphylococcus Aureus 
portage, etc); 4) information at the study date and 
the 6 days before (clinical data, central venous 

catheter carriage, workload, infection status, etc) and 
5) those related to the infections i.e. for infected 
patients (infection type, clinical data, etc.). 

In this study, we are interested in the 4 first 
categories of data as they are related to patient 
infection, which comprises 45 attributes. Most of 
these data are categorical except for date information 
(year of birth, admission date and study date) and 
the workload value. The dataset contains 1573 cases. 
The year of birth was converted into age and 
discretized into 3 categories (0-60; 60-75; >75) as in 
(Sax et al, 2002), and a new variable “hospitalization 
duration” was created. A Mann-Whitney-Wilcoxon 
statistical test on the workload value provides a 
significant difference between infected and non-
infected patients. As it is the unique attribute having 
missing values (91 cases including 2 positive cases), 
all cases having no workload value were removed. 
The latter and the hospitalization duration were 
discretized afterwards using the minimum 
description length principle (Kononenko, 1995). 
Patients admitted for less than 48 hours at the time 
of the study and not transferred from another 
hospital were also removed. The final dataset 
contains 1384 cases containing 166 positive cases 
(11.99%). Let us denote this dataset S. 

The ratio of positive cases in the dataset S is very 
low compared to the negative ones. The class 
imbalance is an important issue in machine learning 
since the class of interest is represented with a small 
number of examples (Japkowicz and Stephen, 2002). 
In the presence of imbalanced datasets, classification 
algorithms tend to classify the larger class accurately 
while generating more errors in the minority class. If 
a positive class has a ratio of 10%, a classification 
accuracy of 90% may be meaningless if the 
classification is not sensitive at all. 

The class imbalance problem induces specific 
approaches to train classifiers and evaluate their 
performance. Two approaches were proposed to deal 
with the class imbalance problem in (Cohen et al, 
2006, Estabrooks, 2004). The first one is to modify 
the classification algorithm or at least use an 
algorithm able to deal with imbalanced data. The 
second resamples the data to reduce the imbalance 
effect. The latter has the advantage of being 
independent of any classification algorithm. 

1.3 Fisher’s Linear Discriminant: 

The basic idea behind linear discriminant algorithms 
is to find a linear function providing the best 
separation of instances from 2 classes. Fisher’s 
linear discriminant is looking for a hyperplane 



 

directed by w, which (i) maximizes the distance 
between the mean of the classes when projected on 
the line directed by w and (ii) minimizes the 
variance around these means (Fisher, 1936). An 
illustration of this algorithm is highlighted on the 
figure below (Figure 1). 

Formally, Fisher’s linear discriminant aims at 
maximizing the function:  
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where SB is the scatter matrix between classes and 
SW the scatter matrix within classes. This equation 
permits to formulate Fisher’s linear discriminant as 
an algorithm aiming at minimizing the variance 
within the classes and maximizing the variance 
between classes. An unknown case will be classified 
into the nearest class centroid when projected onto a 
hyperplane directed by w. 
 

. 

Figure 1: Illustration of Fisher’s linear discriminant. The 
algorithm is looking for the direction providing the best 
separation of the classes when projected upon. In this 
figure, the third image (bottom left) provides the best 

separation of the datasets. 
 

In a classification task, an object is member of 
exactly one class and an error occurs if the object is 
classified into the wrong one. The objective is then 
to minimize the misclassification rate. With Fisher’s 
linear discriminant algorithm, the scatter matrix 
within classes SW is evaluated on the training 
datasets. To minimize the misclassification rate on 
unseen test sets (generalization error), a 
regularization factor r (0 ≤ r ≤ 1) is introduced into 
the computation of SW (Hastie et al, 2001). The 
regularization factor r has to be optimized to 
minimize the misclassification error. 

2 MATERIAL AND METHODS 

The attributes from the dataset S were ranked 
according to the information gain. Afterwards, a 
Chi-square statistic test was applied to filter the 
discriminative features to be retained for an 
evaluation with the classification algorithm. Let us 
denote S1 the new dataset created with this feature 
selection. The dataset S1 may contain attributes 
which are not always documented or at least not 
documented in a machine readable format in the 
clinical database. We will remove them from the 
dataset S1 to obtain a second dataset S2.  

We have taken the two datasets S1 and S2 
described above to evaluate the discriminative 
power of the selected features. For classification 
purposes, we use the open-source toolbox 
MATLABArsenal. This MATLAB package contains 
many classification algorithms and in particular the 
regularized Fisher linear discriminant algorithm as 
described above. The MATLAB software is invoked 
from the java application developed for the process 
automation. This application also uses the WEKA 
api for other routine tasks such as the training/testing 
set splitting. 

The evaluation of the predictive power of the 
selected features is inspired by the experimental 
setup described in (Rätsch et al, 2001). One hundred 
(100) partitions of training and testing sets were 
generated with the data source S1 and S2 having 
respectively a ratio of 60% and 40%. The original 
data distribution is kept in both partitions. A grid 
search algorithm is then applied to the first five 
under-sampled training sets using a 5-folds cross-
validation to find the best parameters of the 
classification algorithm. In the five under-sampled 
training sets, the classes are equally distributed (50% 
positive cases and 50% negative cases). 

The regularization factor r takes 41 values from 
2-20 to 220 during this process. The best parameter 
of each training set was the one providing the 
highest recall (i.e. the parameter permitting to 
predict highest rate of true positive cases). The best 
value selected for the classification algorithm is the 
median of the 5 best parameters. The 100 training 
sets (having the original class distribution) are then 
used to train Fisher’s linear discriminant models 
with this best parameter. This process allows us to 
build 100 models and to validate each of them on the 
corresponding testing set. The general performance 
of the classifier is computed as the mean of the 100 
classification performances on the test sets. The 
performance of the classification algorithm with the  



Table1: List and rank of features obtained with information gain followed by a Chi-square filtering. The first column 
provides the rank of each attributes.  

Rank Selected attributes 
1 Antibiotic therapy 
2 Fever 
3 Mechanical ventilation 
4 Urinary tract 
5 Workload value > 91.5 
6 Workload value <=45.5 
7 Stay at the intensive care unit during hospitalization 
8 Central vein catheter 
9 Hospitalization duration up to 7.5 days 

10 Intensive care unit ward 
11 Obstetrical ward 
12 Surgery 
13 McCabe score fatal < 6 months 
14 No MRSA colonization 
15 Actual MRSA colonization 
16 McCabe score non fatal 
17 Workload value between 45.5 and 91.5 
18 Diabetes with organ affected 
19 Transfer from another hospital as admission 
20 Congestive cardiomiopathy 

 
 

 

Figure 2. The mean of each performance measure on the datasets S1 and S2.  



2 datasets (S1 and S2) is also compared with respect 
to the Mann-Whitney-Wilcoxon statistical test. 

3 RESULTS 

3.1 Feature selection: 

Twenty (20) attributes were retained from the 
feature selection process as summarized in the table 
1. Let S1 denote the name of this subset. Two (2) 
clinical attributes are not always documented or at 
least not documented in a machine readable format 
in the clinical database: fever and workload value. 
These attributes were removed to create a second 
data source denoted S2 even if the information gain 
ranked these attributes at the fourth and sixth 
position. 

3.2 Model selection 

The grid search algorithm applied on the two 
datasets S1 and S2 returned respectively r =0.5 and 1 
as the best parameter. The figure 2 summarizes the 
performance metrics (accuracy, precision, recall, f-
measure and the ratio of positive predictions) 
obtained with the 2 datasets in terms of their mean. 

3.3 Classification performances 

Dataset S1 and S2 permit to obtain respectively a 
mean recall (±standard deviation) of 65.37% (±6.76) 
and 82.56 (±4.22), a precision (±SD) of 41.50% 
(±3.9) and 43.54% (±4.59), a f-measure (±SD) of 
50.58(±3.83) and 56.87(±4.29) over the 100 
training/testing split realizations. The mean accuracy 
(±SD) for S1 and S2 are 84.83%(±1.04) and 
85.04%(±1.65) and the positive prediction ratios are 
respectively 18.82% (±1.72) and 22.73% (±1.55).  

According to the results above, querying the 
hospital data warehouse with the features present in 
the dataset S1 and S2 and classify the results with 
the FLD algorithm, we can expect retrieving an 
average of (±SD) 65.37% (±6.76) and 82.56 (±4.22) 
of the infected patients. The mean numbers of 
potential cases (±SD) to be submitted to the ICP are 
respectively 18.82% (±1.72) and 22.73% (±1.55) of 
the hospitalized patients.  

A Mann-Whitney-Wilcoxon statistic test 
provided a p value < 0.001 for accuracy, precision, 
f-measures and the positive prediction ratio. 
According to this test, there is a statistically 

significant difference between the accuracy, 
precision, f-measure and the ratio of positive 
prediction. The removal of the temperature and the 
workload features improved significantly the 
performance of the FLD. 

4 DISCUSSION AND 
CONCLUSION 

In this paper we present a framework to build a NI 
model based on a small number of clinical features 
permitting to report NI cases to be reviewed by 
infection control practitioners. Fisher’s linear 
discriminant was chosen as detection algorithm. The 
removal of the attributes characterizing fever and 
workload value is not affecting the sensitivity of the 
classifier. This may be explained by the strong 
correlation between these attributes with some 
important features such as the antibiotherapy for the 
fever and surgery, stay at the intensive care unit 
during the hospitalization, a presence of artificial 
ventilation, urinary tract, and central venous catheter 
for the workvalue. The automation of the process 
needs integration of data from laboratory, radiology, 
nursing, and clinical databases. 

Limits of this work 

The evaluation of the discriminative power of the 
selected features was carried out using Fisher’s 
linear discriminant algorithm. A comparison with 
other classification algorithms such as Support 
Vector Machines (SVM) and the Kernel Fisher’s 
linear discriminant could be a good option to 
improve the classification performance. The 
framework could also be extended with an 
evaluation of the best classifiers. The grid search 
algorithm for optimal parameters has high 
computational cost especially for classification 
algorithms with more than one parameter to 
optimize such as SVMs of the Kernel Fisher 
discriminant. A gradient descent method can be used 
to find the best parameter and can improve the 
generalization performance as described in 
(Chapelle et al, 2002). 

Future work 

The framework introduced in this paper permits to 
evaluate the discriminative power of a subset of 
important features from the NI database. The feature 
selection method we have chosen in this work is 



 

based on the information gain combined with a Chi-
square statistic test. More experiments with other 
feature selection techniques are required (Guyon, 
2003). The discriminative power of the selected 
features will be evaluated with more than one 
classification algorithm. The result of these 
evaluations i.e. the minimal attributes required to 
predict most of the positive NI cases will be retained 
to build queries for the hospital databases in order to 
automatically report potential cases for the 
prevalence surveys. This automated nosocomial 
infection reporting will permit to conduct more 
prevalence surveys with less cost. 
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