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Abstract

The general goal of this project is to understand if something as generic as paying
attention to visual stimuli, whether intended or driven by distractor objects, can
be classified well. People’s ability to behave effectively in everyday situations is
critically dependent on “selective attention”, which is the ability to promote the
processing of objects that match our current behavioral goals and suppress those
objects that do not match those goals. The last decades have provided significant
advances in terms of brain and cognitive mechanisms orchestrating selective at-
tention as well as their role in enhancing perception and supporting the learning
of new information. However, this knowledge of both processes of intended and
distracted attention has yet to be discriminated. Goal: If distraction and intention
can be classified by only neural input, particularly in real-world, multisensory
environments, this could bring forth knowledge of the underlying differences in
mechanisms additive to the traditional neural analysis methods. For this reason,
it is particularly useful to model and understand cognition processes through
statistical modelling, such as those in Machine Learning (ML) applications on
attentional control data. Methodology: In particular, employing ML techniques
to discriminate between visual selective attention to distractor objects vs. intended
object, in an unbiased and automatic manner, without relying on subjective eval-
uation. Results: In this endeavor, a linear classifier was trained to successfully
classify attention to distractor object, intended object, or neither, with the best
accuracy score of 0.65 (chance accuracy score = 0.33). Additionally, the selection
of features from N2PC regions resulted in the best accuracy score of 0.65 while
decreasing feature size to 10.9 perfect of total features (14/128 electrodes). How-
ever, the non-N2PC region features suggested that attention is a process that uses
whole-brain activity.
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Chapter 1

Introduction

“Attentional Blindness” is a general term for any failure to identify stimuli that
should possibly be attributed to attentional factors rather than perceptual impair-
ment [11]. Comprehending attentional dynamics can help improve the ability to
differentiate between visual stimuli attributed to attentional factors or perceptual
impairments. Cathy Davidson, founder of Duke University’s Center for Cognitive
Neuroscience and the author for “Now You See It”, shows that “attention blind-
ness” has produced one of the most challenging problems of our society [10]. She
believes that the expectation of what real-world attention is (or isn’t) and how it
reflects intelligence leads to diminishing the number of students who do not fit
the mold that is currently defined by attention or intelligence. Thus, when the
students do not fit the mold, they are deemed as failures. Fortunately, the more
we understand about the concept of attention and how it manifests neurally and
behaviorally, the closer we are to eliminating engraved biases and supporting
adapted attention and intelligence relations.

1.1 What is Attention?

In psychology, attention is distinguished into three processes – alerting, orienting,
and selective attention. When attention is studied, it is generally the selective
attention process that is studied. From now onward, attention and selective
attention will have the same meaning for this thesis.

Attention is the process in which limited computational resources are flexibly
hired to perform a task. The concept of attention, whether applied to Machine
Learning (ML) or neuroscience, is quite similar. Much like in Artificial Neural
Networks (ANNs), biological attention uses parallel processing subsystems, where
each unit system has an input and output role that feeds to the following unit

11
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system and so on until completion; Completion in ML is the decision reached
while in neuroscience it is the behavioral response.

In nature, attention is forced to be a selective process. The amount of overall
energy consumption available to the brain is limited and constant[4], even though
the allocation of this energy is flexible according to the specific task demand. Thus,
the limitations in energy and concurrently engaged processes led to the idea that
selective attention arises from the brain’s limited information processing capac-
ity[4]. Thus, stimuli compete for the limited resources in the brain, a hypothesis
known as the “biased-competition hypothesis” [12].

1.1.1 Selective Attention

The “biased-competition hypothesis” gives rise to selective attention. In daily
interactions with the real world, neural representations encode information about
the world (movements memories emotions, for example) from which a com-
petitive cortical process selects the salient occurrences. This form of selective
attention creates a successful interaction with the environment. As previously
stated, in neuroscience, cognitive science, and psychology, attention is activated
selectively, depending on specific sensory inputs or a group of sensory inputs as
dictated by the bias-competition hypothesis. In other terms, selective attention is
defined by bottom-up processing or top-down processing. Bottom-up process-
ing is salience-driven attention (attentional processing driven by the properties
of the objects themselves), and top-down processing is goal-driven attention.
For example, Bottom-up attentional resources are captured to the location of
an unexpected bright light, these processes are pre-conscious, or non-volitional
responses [33]. Top-down processing includes executive attention, which means
attention orienting is under the control of the person who is attending and what
they currently intend to accomplish (i.e., the task at hand) [6].

As we are interested in understanding feature-based attention to distractor or
intended objects, the top-down attention is the focus of this thesis.

Naturally, selective attention is a multisensory process, in which all five sensory
modalities are activated in competition with each other to accomplish a task or
be aware of the surroundings [33]. The five sensory modalities are visual, tactile,
auditory, gustatory, and olfactory. In this thesis, the focus is on visual selective
attention.

1.1.2 Visual Selective Attention

One such sensory driven attention is visual attention, which is further defined by
visual spatial attention and visual feature-based attention. Visual-spatial attention

12
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is driven by the salience of objects, which means attention is captured to objects
move or have a particular presence such as shine, loudness, or distinct color (i.e.,
bottom-up attention). Visual feature-based attention is driven by similarities in
features of the intended object, which means attention is captured when objects
include features similar to the intended object (such as color, shape, and shine in
distractor objects), or are they intended object themselves. This hierarchy, starting
from selective attention and for this thesis, is best visualized in Figure 1.1.

For a conceptual parallel, visual spatial attention can be thought of as with unsu-
pervised learning as selective attention happens without prior knowledge (i.e., no
labels), and visual feature attention can be paralleled with supervised learning.
The participant learns some features of the intended search objects which are
connected to certain targets (i.e., labels). Thus, distractor objects can have selec-
tive attention abilities due to visual feature attention during selective attention.
Similarly, intended objects can have selective attention due to feature attention,
and additionally, due to temporal attention and pre-motor attention, depend-
ing on the completion requirements of the task (to grasp an intended object, for
example).

Figure 1.1: Components of Selective attention. This figure illustrates the 5 senses atten-
tion is driven by and in particular shows the division of visual attention into further components;
spatial and feature-based visual selective attention. Feature-based attention is the focus of
the thesis, which is further defined by the intended object and distractor object.

Following Figure 1.1, let us consider an example to better illustrate visual selective
attention: Say you have lost your blue glasses and you would like to search for
them. You enter your bedroom as you believe that was the last place you saw
them and you start your search through your room. While searching for your
blue glasses, your blue climbing carabiners on your desk distract you (feature-
based attention to distractor object). In the end, you finally find your blue glasses
(feature-based attention to the intended object) on your desk.

In the previous example, since you had a task at hand (i.e. to find blue glasses),
your attention was classified as Feature-Based Visual Attention, where the Intended

13
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Object was your blue glasses and the Distractor Objects were other objects with
similarity to color, shine, or shape. to your intended object. Whenever you diverted
your attention to the distractor objects, your attention was Feature-Based Visual
Attention to distractor objects. In parallel, whenever you diverted your attention
to the intended object, your attention was Feature-Based Visual Attention to the
intended object.

1.1.3 Measuring Attention

Two very important driving factors in deciding how to measure and acquire brain
activity data are Spatial and Temporal resolution. The higher the resolution
both temporally and spatially, the better the data acquisition. For measuring
Selective Attention, a high temporal resolution is important, whereas a high spatial
resolution is less critical.

Electroencephalography (EEG) and Other Tools

As analyzing selective attention requires a high temporal resolution with a decent
spatial resolution, Electroencephalography (EEG) is an ideal method for data
acquisition. In Data and Methods (Chapter 3), the paradigm and data acquisition
methods are explained in further detail.

Figure 1.2: Spatial and Temporal resolutions of commonly use brain activity measure-

ment tools: Source of image: [37].

14
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In addition to EEG, other methods of data acquisition for the analysis of attention
data include Magnetoencephalography (MEG), functional magnetic resonance
imaging (fMRI), and Electrocorticography (ECoG). Other methods of data acqui-
sition for the analysis of brain activity in general include Local Field Potentials
(LFPs), Positron emission tomography (PET), and computed tomography (CT).
Figure 1.2 compares the spatial and temporal resolution of some of these methods
of cortical data acquisition [37].

Temporal Importance

Selective attention is a process that occurs in delay, meaning it has a latency in
its activation. Understanding the “temporal mapping” of selective attention is
imperative for (i) appropriately understanding if the tool selected has a necessarily
high enough temporal resolution and (ii) to understand which are the temporal
regions of interest in the acquired dataset.

Temporally, components of attention are mainly grouped into the sensory com-
ponents and target selection components. Sensory components include the first
component to respond to visual stimuli (C1), the first positive-going component
of attention (P1), the negative-going component to unpredictable stimuli (N1).
Target selection components include the negative-going posterior-contralateral
component of selective attention (N2PC), gaze-congruent anterior directing at-
tention negativity(ADAN), and late directing attention positivity (LDAP).

Figure 1.3: Temporal importance: Given 0 is stimuli onset, this figure illustrates the delay
in activation of all components in attention. C1, N1, and P1 are sensory components (non-
selective attention) and N2PC, ADAN, and LDAP are target selection components (selective
attention). Figure 3.1 shows how this temporal region translate to the dataset’s paradigm,
with only N2PC application to each stimuli (none, distractor, or intended object) onset. All
components have been plotted in a time-line to visualise and highlight the latency in the
selective attention activation for target selection components, information taken from many
sources [20, 5, 34, 13, 15, 23].

Figure 1.3 shows a temporal mapping of the main components of attention. As-
suming 0 is stimuli onset, the early components of visual stimuli response (C1,
P1, N1) are elicited by the processing of stimulus physical features [20, 5, 34, 13].
Target selection components (N2PC, ADAN, and LDAP) are processed later and
reflect selective attention. Target selection components are the regions that index
selective attention, with particular importance going to N2PC, which indexes
selective attention of distractor objects [15] and of intended objects [23].
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Spatial Importance

Figure 1.4: Cortical activity spatial variability in 5 example processes. Visualization of
meta-analysis maps of motor, touch, auditory vision, and attention maps, to show the variable
spatial presence di�erences between each map/process. Motor, Touch, Auditory, Vision,
and Attention all have di�erent activity maps, yet attention seems to have the least "hub"
like activity map. This series of brain images were generated using EduCortex [42], which
visualizes fMRI mega-analysis maps based on specific term searches.

It is important to understand spatial regions of attention associated with attention
for data acquisition and analysis. If one does not know where electrodes should
be placed, the data collection would be less valuable, and so the experiment.
Figure 1.4 shows the spatial variance in the activity of sensory processed, including
attention. This helps contrast and understand the non-regionally specific nature
of attention, important to keep in mind when features are selected in electrode
settings.

In figure 1.4, there are five brain maps taken from EduCortex, a visualization
software developed by Scotti et al [42] allows for search terms then indicates,
with sources, where the regions of activity are for those terms. Here, there are
five terms – Motor, Touch, Auditory, Vision, and Attention. This explains the
difference between attention and the other four sensory mechanisms (Motor,
Touch, Auditory, Vision) terms’ spatial neural response.

On the one hand, sensory mechanisms have an activity “hub” in a specific region.
Motor and touch are in the premotor and sensorimotor regions. The auditory is
in the auditory cortex. Vision is in the visual cortex. In contrast, attention does
not have a strong activity “hub”, in part because of the complex composition
of attention, and additionally because attention has a latent response and by
nature is not as strongly evoked as a sensory stimulus. However, from Figure 1.4,
it is visible that attention encompasses a large spread of surface activity (such as
sensory-motor regions and visual cortex). This is important to keep in mind for
electrode analysis and feature extraction, and to compare with other BCI and Ictal
(i.e., Epileptic) activity classification tactics in the later chapters.

1.2 Why classify Attention?

The last decades have provided important advances in terms of brain and cognitive
mechanisms orchestrating selective attention as well as their role in enhancing
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perception and supporting the learning of new information [23, 33, 30, 45]. The
presence and nature of selective attention to distractor objects [23] and intended
objects (in literature, coined as “target” objects) [15] is well understood and stud-
ied. However, this knowledge is limited, as the processes of intended vs. distracted
attention have yet to be discriminated from each other.

If distraction and intention (target selection) can be classified by only neural input,
particularly in real-world, multisensory environments, this could bring forth
knowledge of the underlying differences in mechanisms. Additionally, this would
further the knowledge regarding selective attention, as traditional neural analysis
methods are limited since they cannot reveal the underlying brain mechanisms.
For these reasons, it is particularly useful to model and understand cognition
processes.

1.3 Why ML?

Now that the main aspects of selective attention and its relations to everyday
functioning are understood, it is time to understand how ML is employed in
attention mechanisms and in other time-series brain activity data.

To help a model distinguishing between selective attention to distractor objects or
intended objects automatically and objectively, it is necessary to understand (i)
the attributes of selective attention signals and (ii) how to incorporate ML in the
application of cortical signals.

Previous literature in section 1.1 has highlighted the main attributes of selective
attention and defined the types of attention this thesis is attempting to discrimi-
nate between. Furthermore, it is important to understand how ML is incorporated
to discriminate between distractor and intended selective attention .

1.3.1 Classifying Neural Data

To discriminate the type of attention, classification is generally employed. Assum-
ing you have an input signal (in this case, EEG) and a label associating it (in this
case, Distractor, Intended, or Neither), you can train an ML classifier to classify the
neural information into one of the labels. Thus, when new, unlabeled information
is presented, the model can predict which label the neural information most likely
belongs to. This process is explained in Figure 1.5.
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Figure 1.5: General Supervised classification procedure. (A) A classifier is trained from
a labeled training set to output a trained model. (B) a new, unseen testing set is used
to evaluate the trained model’s performance by inputting an unlabeled training set and
comparing the predicted labels to true labels for a model accuracy measure.

Data Knowledge

To accomplish the classification of three types of attention, we will use EEG ac-
quired neural recordings from 39 participants performing a selective attention
paradigm. This dataset was collected by Dr. Turoman [45]. This dataset will
follow standard preprocessing procedures of EEG data as mentioned in Turoman
et al [45], additional preprocessing required by ML approaches to identical and
similar time-series datasets [29, 28] and standard ML approaches which have
been used previously in similar datasets for other cortical activity classification
applications [17, 46, 32].

Chapter 2 dives into the state of the art of current classification techniques for
brain activity data of various aims and later focus on classification applied to
specifically attention and N2PC components.

1.4 Summary

Thus, understanding how attention attributes are neurologically and behaviorally
portrayed, and therefore how well-intended or distractor attention can be clas-
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sified can help fine-tune the understanding of selective attention in real-world
setting such as in educational systems. Naturally, understanding attention leads
to redefining and further understanding “intelligence” in association to atten-
tion, and hopefully attempting to minimize the blindness towards the concept of
attention that Dr. Davidson addresses [10].

This much-needed insight in understanding and classifying attentional control
is beneficial to all ages in all learning environments, including workplaces. For
this reason, it is particularly useful to model and understand cognition processes
through means ML, as they can aid in creating a model that can discriminate the
type of attention (distractor, intended, or neither/baseline) once presented with
an organized and labeled training set.

This aim falls in parallel with the goals of Group for Real World Neuroscience
(GROWN), led by Dr. Pawel Matusz, and the MedGIFT group, led by Dr. Prof.
Henning Muller, at University of Applied Sciences Western Switzerland (HES-SO).
GROWN aims to utilize neuroscientific knowledge and tools to improve and better
understand people’s daily functioning in real-world environments, and therefore
improving their quality of life.
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Chapter 2

State of the Art

The objective of this thesis is to find a method that is fast, objective, and can
distinguish the type of attention. Therefore, we aim to apply ML techniques to ob-
jectively determine the type of attention, without relying on subjective evaluation.

As the goal of this thesis is to apply ML techniques to objectively determine
the type of attention, it is imperative to understand the state of the art in the
Visual Selective Attention to Distractor and Intended objects, in both fields of
neuroscience (context) and machine learning (classification). For this reason, the
state of the art is divided into 3 main sections to cover all current knowledge in
the respective fields:

(i) Attention in Neuroscience: Visual Selective Attention

(ii) ML for Cortical Signals: Cortical Signal Classification

(iii) ML in Attention: Classification of Attention

(iv) Relevant ML Concepts

(v) Working Hypotheses Summary

2.1 Attention in Neuroscience

2.1.1 Brain Activity Acquisition: EEG

Selective attention has been studied using various modes of data collection, rang-
ing from fMRI, PET, ECoG, to EEG [24, 37, 3, 4]. To understand how these at-
tentional features can be captured, both in temporal and spatial domains, we
must understand different methods of data acquisition. Previously, in chapter
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1, we highlighted the importance of high temporal resolution and decent spatial
resolution for neural recordings for selective attention . For this reason, we stated
EEG is an ideal technology for the study of attention and attentional dynamics.
Thus, EEG neural recordings of three types of selective attention (Distractor object,
Intended object, and neither) are used to classify selective attention.

2.1.2 EEG

EEG is a tool used to monitor and record electrical activity of the brain, which is
resulting from the currents withing the groups of neurons in the brain [35]. This
electrophysiological monitoring method is non-invasive (see Figure 1.2), with
electrode varying electrode density designs. The electrodes that monitor the elec-
trical activity are places on the surface of the head as a cap, with a similar spatial
orientation of the electrodes as seen in Figure 3.5. For a visual representation of
EEG data collection, see Figure 2.1.

Figure 2.1: This figure illustrates the main steps involved in EEG data collection. Here,
Matteo participating in a research study by responding on the laptop. The behavioral data
(for example: response time, correct trial) is saved locally or transferred to the Data Acquisition
System. Additionally, in order to measure cerebral activity, Matteo is wearing the noninvasive
EEG cap and neural activity in the brain are recorded.

2.1.3 N2PC

N2PC is cortical measure of suppression of distractor object during a selective
attention process. This is valuable, as involuntary vs. voluntary attention informs
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us about the distractor objects’ ability to diverge attentional control. N2PC, a
well-understood event related potential (ERP) correlate of selective attention of
potentially task-relevant objects. N2PC is reflected by an enhanced negativity
200ms over posterior electrodes contralateral to the stimulus location and it
is known to be modulated by top-down visual attention processes. In simpler
terms, N2PC activity is seen 150ms after stimulus onset and has a negative-going
measure.

2.1.4 Visual Selective Attention to Intended Objects

Additionally, Nobre et al [7] confirm the presence of changes in the ERP strength
over N2PC time period triggered by visual intended (target) objects where atten-
tion was captured in visual targets. Additionally, they are able to identify equiva-
lent N2PCs when target items were identified within a memory representation.
They were able to duplicate this findings in N2PC analysis of child participants
of a visual search task[16]. Overall, this shows that N2PC is a good measure of
selective attention to intended (target) objects.

2.1.5 Visual Selective Attention to Distractor Objects

It turns out that the properties of the intended object that we decide to use to
define it by, and so search by, are the driving factors that determine the selective
attention to distractors. This was initially shown in a study by Eimer et al. [15]
and further supported ever since [45, 33]. The nature of the paradigm is similar to
ours, where the participants were asked to search for a color-defined target, but
the target was preceded by an array of different objects (distractors). Similarly, the
paradigm from Turoman et al. used target-defining features so that feature-based
attentional control guides the selective attention of objects in space [45], where
the aim was to study distractor object selective attention in multisensory settings.
Among other results, they were able to notice selective attention to distractor
objects, using traditional N2PC methods and novel Electrical Neuroimaing (EN)
analysis. Thus, this justifies us to try to test if we can classify attention to distractor
from that to target.

2.1.6 Summary of Attention in Neuroscience

There is a benefit to being able to distinguish a distractor selective attention to
an attentional object capture. For this, applying a classification protocol to a
paradigm similar in nature to the Folk et al. [18] task set contingency capture
paradigm can give insight on if the attentional dynamics behind the selective
attentions, whether to distractors or intended objects, can be distinguished.
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N2PC is a marker of selective attention, which is measured using EEG methods.
Hence, the N2PC is well suited as an index of attentional processes towards visual
stimuli of distractor or intended objects. Turoman et al. [45] confirmed that
changes in the ERP strength over the N2PC time period (but not in the traditionally-
used N2PC amplitude) triggered by visual distractors predicted behavioural effects
across tasks where attention was captured in visual targets. Additionally, Nobre
et al [7] confirm the presence of changes in the ERP strength over N2PC time
period triggered by visual intended objects where attention was captured in visual
targets.

Therefore, the presence of attentional control is supported for both distractor
and intended objects, and the next natural step is to identify if it is possible to
train a classification algorithm to successfully classify distractions from intended
attentional control while also considering a baseline condition. To do so, a proper
understanding of classification paradigms applied to cortical activity need to
be understood. Section 2.2 focuses on classifying neural signals, and further
emphasis on selective attention classification is focused on Section 2.3.

2.2 Machine Learning for Classifying Neural Signals:
Non-Attention based

Neural Signal Classification had been investigated primarily in two different re-
search areas:

1 Brain Computer Interfaces (BCI): BCIs aim to translate brain activity into
a command using regression or classification algorithms [28, 29].

2 Epilepsy: Classification of Ictal (i.e. Epileptic) activity, likely real-time for
seizure monitoring[3, 36].

2.2.1 BCI

BCIs translate brain activity into a task-specific command using regression or
classification algorithms. Much like EEG attention data, BCI features can be noisy
and likely contain outliers [47], thus requiring regularization. However, various
experiments in BCI applications show that both simpler linear models [39] and
more complex [19] non-linear models accomplish good classification results,
which is a promising find. It is important to note that, although EEG can have a
low signal-to-noise ratio, it is possible to extract discriminative information to
classify with even simple linear models.
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Classification

From literature [28, 29, 39, 47], the classifier with promising results for multi-class
classification is suggested to be performed with Support Vector Machines (SVMs).
Additionally, using EEG recorded neural signals, SVM classifiers were easily able
to learn even while using raw EEG data [21]. It is important to note that this was a
binary classification task.

An additional method used was the employment of Dynamic classifiers for BCI’s.
Dynamic classification is applied to the temporal features of BCI data, where for
each temporal feature, classifiers are selected dynamically. Dynamic classifiers
are beneficial, particularly if temporal information is necessary to contain [28].
Containing time information is not essential for the goals of this thesis, and this
information is therefore not further applier or discussed.

Features

A few groups applied classification algorithms to directly raw EEG data for BCI
applications [21, 28].

Frequency features: Likely the most relevant application of BCI to the selective
attention goal is the consideration of extracting features from several time seg-
ments, which is what Pfurtscheller et al. [38] did. Their task was to discriminate
between the imagination of right, and left-hand movements from EEG acquired
dataset. To use temporal information like frequency components, they extracted
such information from each desired time segment and concatenated relevant in-
formation to form one feature vector. A promising feature for extracting frequency
components of signals in desired time regions is using Discrete Cosine Transform
(DCT) on a MEG dataset [22].

Raw EEG features: Direct use of the EEG dataset have previously been done. Raw
EEG values, without further preprocessing or extraction, have previously been
used. Kaper et al. have used raw EEG values in Gaussian SVM classification for
an accuracy of 1.0 in a competition task [21]. Additionally, Zhang et al. have used
amplitude values of Smoothed EEG for linear SVM and LDA with accuracy of 0.926
and 0.907, respectively [47].

AutoRegressive features: In order to find spectral features that best separate
the data while keeping the accuracy relatively high, AutoRegressive (AR) feature
selection is a solution. Via AR, Garrett et al. learn the best dissociating spectral
features for a given subject and task, then used the trained LDA, NN, and SVM with
the best dissociating features in real-time. Their accuracy results were 0.66,0.694,
and 0.72, respectively [19]. Schlogl et al. applied adaptive AR to use in spectral
properties of the EEG, using k-nearest neighbours classification, LDA, and SVM,
for an accuracy of 0.42, 0.54, and 0.63, respectively [39].
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BCI Summary

From the BCI state of the art, we retain that SVMs are a promising classification
tool for the classification of neural signals relevant to the task at hand. Additionally,
feature extraction methods which extract temporal information from specific time
segments [38] are most relevant to the classification goal, particularly since it is
applied to EEG data.

2.2.2 Epilepsy

Epilepsy is a disease that causes the brain to have seizures, decreasing the quality
of life of a participant and can be life-threatening. Thus, methods of classify-
ing[36], and even predicting [3], seizure activity is a largely developed field in
Neuroscience.

Classification

Parvez et al. [36] successfully classified seizure EEG signals using least-squares
SVM as an Ictal activity classification technique on features derived from DCT [36].
Bashar et al. were able to reach an accuracy of 0.792 in five subjects for epilepsy
classification using a combination of features from the time-frequency domain
[3].

Features

Ictal activity, which is a characteristic of epileptic brain activity, has a specific
frequency imprint and thus can make locating it successfully if frequency features
are used in classification. In an Ictal activity classification task, Parvez et al. [36]
used DCT feature extraction for extracting the last 25% of DCT coefficients, which
relate to high-frequency components as high Ictal signals are distinguished by the
entropy and energy, which are derived from the high frequencies [36].

Epilepsy Summary

Overall, frequency extraction is an important feature to consider due to the nature
of the epilepsy signal. Like selective attention , according to literature, it has much
information to classify signals. This could be very applicable to selective attention
data, as selective attention neural patterns tend to have a frequency band imprint
as well [24], particularly in the N2PC region.
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2.3 Machine learning for Attention

Neural Signal Classification, specifically for selective attention data, is considered
quite a niche field. Thus, publications in the field are less common. Here are four
selected application of classification to selective attention signals, for a clearer
understanding of ML applications to attention selection datasets.

1 LDA with N2PC signal amplitude: Fahrenfort et al [17]: binary classifica-
tion of target (intended object) selective attention using LDA with EEG signal
amplitude as features.

2 SVM with MEG signal amplitude: Wen et al [46] binary classification of cue
vs target object (distractor vs intended object) from MEG acquired selective
attention data for Multivariate Pattern Analysis using SVMs with signal
amplitude as features.

3 LDA with N2PC signal amplitude: Moorselaar et al [32]: Multivariate anal-
ysis to decode location of target vs distractor using LDA and signal amplitude
features.

2.3.1 LDA with N2PC signal amplitude

In the study by Fahrenfort et al., participants were asked to answer if the color
defined target (intended object) was a digit or a letter. Participants presented
with a cue-target paradigm and classification were asked to determine if, from
EEG signals alone, the classifier can distinguish if the stimuli were presented in
the right vs. left of the screen, or top vs. the bottom of the screen (using LDA).
The features used were signal amplitude (in microV) at each time instance. They
trained an LDA, where the group’s goal was to track feature-based target selection
over time. Thus, they trained a classifier to classify, at each time sample, the
presence of target selection neural activity. This was done by training one LDA
classifier to learn if the target was on the right vs. left of the screen and one other
LDA classifier to learn if the target was on the top vs. the bottom of the screen.
Their classification resulted in a max accuracy score of 0.65.

2.3.2 SVM with MEG signal amplitude

Wen et al. applied Multivariate Pattern Analysis using SVMs to various binary
classification tasks [46]. On average, classifier accuracy reached 0.65-0.67 accuracy,
except for the stimulus identity classifier, which reached a 0.74 accuracy score.
They classified overtime where at each time point, the feature was the amplitude

26



Master’s In Artificial Intelligence: Thesis

of MEG signal (much like Fahrenfort [17]). Additionally, their MEG analysis was
able to classify selective attention earlier than the N2PC time-frame (used in EEG),
suggesting that MEG might contain pre-N2PC attention selection information.
Not as applicable as a result for the applications, but it is indeed interesting to see
the suggested additional information MEG can extract.

2.3.3 LDA with N2PC signal amplitude

Moorselaar et al. [32] applied multivariate analysis to decode location of target
vs. distractor using LDA and signal amplitude features. They trained an LDA
classifier to discriminate between neural signals containing information regarding
the target location for six different target locations, with a 0.26 percent accuracy
score (Chance = 0.16).

2.3.4 Summary

For ML applications in attention selection datasets, no study directly parallels ours.
However, there are similar studies with parallel approaches. From the four studies,
LDA and SVM seem to be strong contestants for the classification of selective
attention data. Additionally, the studies investigated time dynamics, meaning
classification is applied at each time point, thus working with the amplitude of
the signal rather than working with the frequency components.

2.4 Working Hypotheses

From the knowledge gathered about the Neuroscience and Machine Learning
perspective of neural data and, more specifically, attention selection data, here
are some working hypothesis:

• Selective attention is separable in the frequency domain. If selective at-
tention has a distinct signature in the frequency domain (alpha and beta
bands) [25], then selective attention is separable in the frequency domain.

• N2PC regions hold most discriminative information. If, as literature has
shown, N2PC indicates presence of selective attention to both distractor
objects [45, 15] and intended objects [7], then the N2PC region will hold
more discriminative information than non-N2PC regions.
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• Non-specific regions do hold discriminative information. If selective at-
tention is a mechanism that requires various regions of the brain (as shown
in Figure 1.4 [42]), then even non N2PC regions will hold information bene-
ficial to the classification of selective attention EEG signals.

• Baseline class (class 0) is separable from Distractor (class 1) and Intended
(class 2) selective attention. As the aim is to classify 3 types of attention
- Distractor, Intended, or Baseline. Baseline class is a control class, with
less selective attention markers than the other two attention classes. Thus,
Baseline class should be most separable from Distractor and Intended. Ad-
ditionally, Baseline should be less mistaken for one of the two true selective
attention classes.
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Chapter 3

Data, Methods, & Experimental
Setup

This chapter elaborates on:

1 Data: The dataset used to achieve the desired goal.

2 Methods: The methods used for the analysis and experimental procedures.

3 Experimental Setup: The evaluation procedure applied to the experiments.

3.1 Data

The dataset consists of EEG-recorded neural activity of 39 adult participants. Dr.
Turoman recruited the participants as part of her Ph.D. thesis [44]. To better
understand how the dataset can answer the questions and support the hypothesis,
a thorough explanation of the dataset and paradigm used in collecting the dataset
is necessary.

3.1.1 Data: Paradigm

The paradigm is most similar to a previous study performed by Eimer et al [24],
where the goal was to understand selective attention to distractor object known
here as “Cue”. The paradigm also includes an intended object for selective attention
known as “Target”. Additionally, there is a baseline region before distractor object
onset, which is used as a baseline class for the goal of the thesis.
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Figure 3.1: This figure shows all 4 stimuli of the paradigm (A - D) and the time importance
of the three interested regions. (A) is “Baseline” Class 0, (B) is “Cue” Class 1, and (D) is
“Target” Class 2 stimuli. The cross (C) is not used in this study. Additionally, (E) shows the
temporal distribution of the N2PC components for the 3 selective attention stimuli (Distractor
object = Cue, Intended object = Target, and no attention = Baseline).

In a similar setting to Figure 2.1, the participants are asked to perform a research
study. The paradigm was designed to record many conditions (e.g., multiple
senses and spatial cueing). However, this thesis focuses on the visual sense for
visual selective attention, thus using only 1/4 of the dataset.

The participants took approximately 3 hours. The participants were instructed to
search for a predefined color target (in this case, blue diamond) in a search array
and report the intended object’s (blue diamond’s) orientation.

In this case, they were asked to report the orientation of a bar/diamond seen in
Target image (Figure 3.1): to press a button on the left if the item was oriented
horizontally, right button otherwise.

For example, in the sample image in Figure 3.1, the participant was asked to report
the orientation of the blue bar at the beginning of the task. The participant would
first see the base image (Baseline, class = 0), followed by the cue image (which has
the blue color flower at the top right, but it is not a bar, thus deeming it a distractor
object), then followed by the target image (which has the intended object at the
top right) with the vertical blue shape. Therefore, a correct response would be to
press the right button for the vertical blue bar. Each trial consisted of a base array
(Baseline, class = 0), cue array (Cue, class = 1), then target array (Target, class = 2).
The timing of each array is shown in Figure 3.1 with the relevant N2PC regions
of interest for extraction (Distractor object = Cue, Intended object = Target, and
neither = Baseline). In other terms, the goal of this thesis is to classify Baseline,
Cue, and Target objects from EEG data collected with Turoman’s paradigm, in a
fast, objective manner.
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3.1.2 Data: Acquisition

The EEG dataset was collected using a 129-channel HydroCel Geodesic Sensor
Net connected to a NetStation amplifier (Net Amps 400; Electrical Geodesics
Inc., Eugene, OR, USA) where 128 electrodes were used at 1000 Hz sampling
rate. During data acquisition, electrode impedances were kept below 50k!, and
electrodes were referenced online to Cz, a common reference for EEG cap data
collection. Participants were recorded for 3 hours in a task described in Turoman
et al. [45]. This dataset was collected by Dr. Turoman during her Ph.D. work [44].

3.2 Methods

3.2.1 Preprocessing

The preprocessing is based on state-of-the-art works [44, 15, 24]. To parallel
other studies for selective attention, relevant procedures for preprocessing the
attention acquired from EEG were performed. To get an overview of the complete
preprocessing procedure, see Figure 3.2.

Preprocessing: Cartool

Post extraction, the first phase of preprocessing was applied using Cartool soft-
ware [2]. In respective order, data were band-pass filtered between 0.1 Hz and 40
Hz, notch filtered at 50 Hz, and Butter-Worth filtered of phase shift elimination at
-12 dB/octave roll-off. Automatic artifact rejection of +/- 100 micro-Volts was used
to increase the signal to noise ratio. Next, trails were segmented to include base,
cue, and target array neural responses, respecting the time range in Figure 3.1.
The data was further inspected for bad electrodes and screened for noise, eye
movement, and muscle artifacts resulting in the rejection of 11% of trials across all
participants in the dataset. This preprocessing procedure has been replicated as
per Turoman et al. [45]. See Figure 3.2, A-1 to A-3, for the preprocessing illustrated
flowchart.

Preprocessing: Global Field Power (GFP) Normalization

To make the EEG data independent of amplitude strength across all electrodes at
each time point, Global Field Power (GFP) normalization is applied to all datasets.
At each time sample, each electrode value is divided by its standard deviation. GFP
normalization was performed in B-1 (Figure 3.2). Global field power is a measure
of amplitude strength at a certain point across all electrodes. Mathematically, GFP
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Figure 3.2: Overview of the complete preprocessing procedure, from data acquisition
to feature vector formation. (A) is the preprocessing performed in Cartool [2], (B) is further
preprocessing and restructuring of the dataset for the purpose of the projects goals see, and
(C) is the feature extraction with DCT).

is the root mean square across the average referenced electrode values x at a given
time sample i (see Equation 3.1), i.e., the standard deviation of all the electrodes
at that point in time. For ERP’s, this equals the potential across all electrodes, and
it is a measure of potential as a function of time or time-samples.

GF Px =

sPn
i=1 x2

i

n
(3.1)
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Preprocessing: Dataset Split

The dataset was segmented into the base, cue, and target time-regions, each of
length 150ms (at 1000 Hz, this equals 150 samples each). Then, each segmentation
was labeled as 0 or “B” for the Baseline, 1 or “C” for the Cue, and 2 or “T” for the
Target, with additional information being stored with the label, such as participant
code, block number, and trial number. The total trials used across participants is
4063 for each class.

To ensure the generalizability of the thesis’ experiments, the dataset was split by
participants into Train, Validation, and Test sets. The ratio of the split was 40 -
20 - 40 %, respectively. See Figure 3.3, A) - C) for a more visual description of the
organization and structuring of the dataset.

3.2.2 Feature Extraction

In ML, feature extraction is the process of extracting information from a signal that
best represents the unique features of said object/image/signal. One method for
frequency feature extraction is the Discrete Cosine Transform (DCT) [14]. DCT is
a transform of any signal (image or time series) into basic frequency components
of size = signal length – 1.

Discrete Cosine Transform (DCT)

DCT is generally used as a compression mode with very low loss of images and,
more recently, used in speech processing in cepstral feature analysis. Equation 3.2
one dimensional DCT, relevant to the thesis. Additionally, DCT can also be used
as a feature extraction method to extract frequency components of a signal [22,
36], particularly for EEG and MEG data acquisition methods.

yk = 2
N°1X

n=0
xn cos

µ
ºk(2n +1)

2N

∂
(3.2)

For a 150 sample long signal sampled at 1000Hz, the data’s features included
frequencies from 0 to 500 Hz, linearly contained within 149 DCT bins for each
electrode. Prior knowledge of attentional frequency oscillation dictates that selec-
tive attention ranges from 8 Hz to 30 Hz (alpha and beta ranges)[24]. For the data’s
DCT extraction, this range is contained in DCT bins 2 to 10. Thus, the smaller
DCT bins will likely contain more relevant information to selective attention than
others.
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Figure 3.3: Using Cartool software, the standard EEG preprocessing is applied, followed by
extracting EEG data of interest. (A) whole experiment, (B) time intervals of interest (Baseline,
Cue, and Target) within each trial, for each participant, and (C) splitting each trial (of 600
ms) into 3 data samples (150 ms each) with appropriate labels (Baseline, Cue, Target), then
reordering and splitting into train, test, and validation sets. (Distractor object = Cue, Intended
object = Target, and neither = Baseline).

Among the many feature extraction methods for EEG data[28, 29], DCT feature
extraction was most logical to eliminate temporal and amplitude information, as
the hypothesis states that frequency components will hold the most separable
information during the classification of the three classes. DCT feature extraction
steps are visualized in Figure 3.2, C-1 to C-3, which is applied to all datasets (Train,
Validation, and Test). During DCT extraction, an EEG signal of size 128 electrodes
times 150 time samples is transformed into a signal of 128 electrodes times 150
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DCT bins. The first DCT bin, i.e. the DC component, is discarded to result in a
feature matrix of size 128 electrodes times 150 DCT frequency bins (Figure 3.2,
C-1 to C-2). Then, the matrix is restructured to create a 1D feature vector of size
19072 (128*149) features. The restructuring is performed so that, as the indexing
increases, so does the frequency component.

Prior knowledge of attentional frequency oscillation dictates that selective atten-
tion ranges from 8 Hz to 30 Hz, with higher importance in the 8-12 range (alpha
oscillations) [25]. The DCT bins hold information from 0 Hz to 500 Hz. Thus, it is
likely that the initial DCT bins will hold more separable information.

3.2.3 Data Visualization

The goal of data visualization for preprocessed data is to verify and take note if
the data is behaving as we expect it to. If the visualized data is within expected
values, the preprocessing stage starts. If not, the data is tagged for further pre-
processing or is removed from the dataset. This is the nature of many cortical
activity measurements, and it requires a trained eye to “classify” which electrodes
are proper and improper. For example: To interpolate the bad electrodes in the
EEG dataset, visualizing the data is necessary. This way, many anomalies can be
detected, including 50Hz noise and bad electrodes that require interpolation.

Data Visualization: Preprocessing

Figure 3.4 reflects the differences in EEG signal preprocessing (for one trial), from
stage A-1 to stage B-3 of Figure 3.2. In other words, the result of preprocessing
from EEG data acquisition until separating. It is important to note the removed
bad electrodes (in gray), which are interpolated for not losing data. All results are
plotted using the MNE toolbox [31].

Data Visualization: Feature extraction

As mentioned, the selected method for feature extraction is DCT applied to each
electrode. This process is a continuation of the preprocessing steps mentioned in
Figure 3.2 (steps C1 - C3). The electrode matrix of size 128 x 150 was transformed
using DCT resulting in a well-formulated feature vector of 128 electrodes and
150 DCT components. Since only the frequency components of the DCT were of
interest, we removed the first DC component, resulting in a final feature vector of
128 x 149 frequency bins for a length of 19072 features per sample.
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Figure 3.4: Acquired EEG data vs last stage of preprocessing, results, visualized with
MNE [31]. The plot shows all EEG electrodes (128) for one trial of the experimental acquisition,
in butterfly view (all electrodes centered at 0 microV). Di�erence between the figures is a
result of (i) removing bad electrodes (gray signals), (ii) interpolation and (iii) filtering for 50
Hz noise.

3.2.4 Dimensionality Reduction

Dimensionality reduction was performed on the dataset. The aim of dimensional-
ity reduction was to decrease the amount of features needed for the classifier to
learn and perform well. The two most common techniques used were PCA and
LDA.

Dimensionality reduction: PCA

PCA looks for a direction that keeps most of the variability of the data. PCA is a
method that finds the projection which maximizes the variability of the dataset
and how much of the variability is explained. PCA is a very popular technique
used for dimensionality reduction in an unsupervised manner. However, PCA is
not necessarily the most applicable for EEG and brain processes in general due to
the low signal-to-noise ratio of EEG signals. Artoni et al. applied PCA to EEG data
for source separation and found that PCA rank reduction reduced the number
of participants represented in independent component clusters and increased
uncertainty in the independent component brain sources [1]. Through this, PCA
minimizes reconstruction loss.

Additionally, PCA assumes that variance is equal to the relevance of a signal. EEG
datasets, which have a lower signal to noise ratio than other more invasive cortex

36



Master’s In Artificial Intelligence: Thesis

activity measures, include muscle artifact activity, electrical and mechanical noise,
with much more covariance then the desired source (i.e., attention mechanisms).
Nonetheless, if handled properly, PCA is good for reducing the dataset from M to
C dimensions were 1 <C < M .

Dimensionality reduction: LDA

For datasets where dimensionality reduction is used to separate the dependent
variable by preserving their differences, Linear Discriminant Analysis (LDA) is
helpful [9]. LDA finds a low-dimensional projection of n groups or classes so that
they are well separated. LDA identifies an ordered set of n °1 directions that best
maximize the variance between the n groups or classes. As such, LDA’s ability to
separate n classes of training data improves as the data dimensionality increases.
Of course, increasing the dimensionality of the dataset can be troubling as with a
high enough dimensionality, any fixed number of data points can be separated
at one arbitrary dimension. Hence, LDA use requires caution and regularization
when dealing with very high dimensionality but low training datasets [29].

Dimensionality reduction: Manual

One downfall of dimensionality reduction algorithms is that they assume there
is no structure associate with each dimension. In fact, there are a plethora of
structures associated with each concurrently active process explained in the state
of the art. For example, attention requires vision, task-set feature selection, motor
planning, all processes that are concurrently active and difficult, but not impossi-
ble, to extract from LDA or PCA. With careful consideration and proper feature use,
this is suggested to be possible in BCI [29] classification, Ictal activity prediction
and classification [3], and selective attention classification [17, 32].

Nonetheless, we applied manual dimensionality reduction based on the knowl-
edge of the state of the art. In selective attention, certain frequency bands and
certain electrodes should have higher discriminating power than others.

3.2.5 Dataset Normalization

In case the datasets are giving errors or the model scores are not consistent,
whether in the accuracy score or the confusion matrices values, it is beneficial to
perform simple dataset analysis techniques that test:

1 Class balance. Counting all classes have a similar amount of representation.
For the paradigm, the classes are perfectly balanced, as there are as many
Baseline samples and Target or Cue.
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2 Normalization values. The dataset has been feature scaled, which is a
method that brings all values of the feature vector into the range of [0,1].
Feature scaling is performed using the mean and standard deviation of the
Training set. To check how well the normalization is applied to the Validation
and Test sets, the mean and standard deviation values are visualized, in
case they range significantly larger than [0,1]. This can be an indication of
heterogeneity in the dataset.

3.2.6 Classification

Two main classification algorithms have been used, Logistic Regression (LR) [27]
and Support Vector Machines (SVM) [43], implemented using the scikit-learn
library freely available on Python [40].

Classification: LR

Logistic regression is used as a categorical problem solving [27]. It can be applied
to multivariate classification. It is deemed a simpler classification technique but
can provide unique results if feature vectors are adequately selected and if the
data is linearly separable.

For preliminary testing, in an attempt to prove the hypothesis by using a simple
to implement and easy to interpret model, a Logistic Regression classifier was
trained.

Classification: SVM

Pavrez et al. successfully classified seizure EEG signals using least-squares SVM
as an Ictal activity classification technique on features derived from DCT, EMD,
or both [36]. As a non-linear option classifier, SVM classification (SVM) was used
in this thesis, as well. SVM classification attempts to find the hyper-plane that
separates the dataset the best. For non-linear datasets, a general “RBF (Radial
Basis Function)” kernel is used.

Classification: Application

Following the general Supervised classification procedure (see Figure 1.5), super-
vised classification is employed to classify types of attention signals (Baseline, Cue,
and Target). To discriminate the type of attention, the features are frequency com-
ponents extracted from DCT, and the labels associating with the feature vectors
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are Baseline, Cue, or Target (otherwise, Neither attention, Distractor attention, or
Intended object attention.

The chosen classifier is trained to classify the neural information into one of the
labels. Thus, when new, unlabeled information is presented, the model can predict
which label the neural information most likely belongs to.

3.3 Experimental Setup

In this section, I introduce the Evaluation method applied to test the four working
hypotheses. To have a good flow of analysis, I replicate the structuring of the ex-
perimental setup section to the Experimental Results chapter and the Discussions
chapter.

3.3.1 E1: Classifying frequency domain features

To test the hypothesis that selective attention is separable in the frequency domain,
two experiments have been organized. The two experiments use different sets of
DCT bins. Post DCT feature extraction of the EEG dataset (the result of following
the preprocessing procedure explained in figure 3.2), the experiments are as
follows:

E1.a: Compare classification of DCT[1,49] to DCT[50,99] and DCT[100,149]

As attention has an alpha-beta frequency range [24], DCT components in that
range should hold higher separability information. Alpha-beta frequencies are
encoded in the first 50 DCT bins. Thus, the first experiment was to attempt to
classify selective attention in the range of:

• 1 to 49 DCTs

• 50 to 99 DCTs

• 100 to 149 DCTs

This classification was replicated in the above 3 conditions using LR for a linear
classifier and SVM for a non-linear classifier. The parameters of each classifier,
using sklearn library [27, 43] are as follows:

• LR: C = 0.001, fit intercept = False, multi class = ‘ovr’, solver = ‘newton-cg’
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• SVM: kernel=‘RBF’, decision function shape = ‘ovr’

If the results of the LR and SVM classifiers show that for ranges of 1 to 49 DCTs
the performance accuracy was higher than for the other ranges (50 to 99 or 100 to
149), then we do not reject the hypothesis that selective attention is separable in
the frequency domain.

E1.b: Compare classification of DCT[1,49] to DCT[1,99] and DCT[1,149]

Additionally, the classification with the above mentioned LR and SVM was repli-
cated for DCTs from 1 to 99 and DCTs 1 to 149, to compare the performance
accuracies of the alpha-beta frequency features to the use of more (1 to 99) and all
(1 to 149) DCTs:

• 1 to 49 DCTs

• 1 to 99 DCTs

• 1 to 149 DCTs

Additionally, if the performance of the LR and SVM classifiers was lower for DCTs
of 1 to 49 when compared to using 1 to 99 DCTs or 1 to 149 DCTs, we do not reject
the hypothesis that selective attention is separable in the frequency domain.

In order to more strongly reject or not reject the hypothesis, cross validation
techniques are applied to validate the results.

For this, GridSearchCV [8] from the Python library sklearn was utilized. Depending
on the performance accuracy of SVM and LR classifications, cross-validation
using GridSearchCV seemed similar, it was important to apply fine-tuning via
cross-validation techniques using sklearn’s GridSearchCV library on three highest
accuracy performances DCT ranges. The parameters that were cross-validated
were C and gamma for SVM and C andmax iterations for LR. The cross-validation
was 10 fold. Only optimized results of the GridSearchCV were reported to help
reject or not reject the hypothesis that selective attention is separable in the
frequency domain. The highest performance accuracy score and the average
performance accuracy score were compared with other experimental results.

3.3.2 E2: Classifying N2PC and non-N2PC Region features

To test the hypothesis that selective attention is likely more separable in the N2PC
regions, a set of sub-experiments have been organized. The E2 experiment parallel
E1 experiment, with the difference that N2PC and non-N2PC region electrodes be
selected instead of DCT frequency features. These N2PC and non-N2PC regions
are visualized in Figure 3.5.
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Figure 3.5: EEG Cap images showing the regions of interest (from left to right) of a full elec-
trode coverage, N2PC regions (E2.a Electrodes) in red, non-N2PC regions (E2.b Electrodes)
in blue, and the lack of overlap between N2PC and non-N2PC regions.

E2.a: Classifying N2PC electrodes

For this experiment, in order to reject or not reject the hypothesis that (H2) se-
lective attention is separable in N2PC regions, only features from N2PC regions
electrodes were used. In literature, it is highly accepted that N2PC is a marker
for selective attention [45, 16, 24, 33]. In traditional N2PC analysis of EEG data,
the posterior-contralateral electrodes and the surrounding neighbouring elec-
trodes are used, and LR and SVM classification is applied. The parameters of the
classifiers are the same as E1. Electrode selection for the N2PC region includes:

E2.a Electrodes = [e65 e90 e58 e96 e59 e91 e64 e95 e66 e84 e69 e89 e70 e83]

Additionally, much like in experiment E1, cross-validation using GridSeachCV is
applied for E2.a.

E2.b: Classifying non-N2PC electrodes

Although N2PC is a marker of selective attention, non-N2PC regions can still have
discriminating information about attentional selection, as attention has a whole
brain activity presence. To reject or not reject the hypothesis that (H3) non-N2PC
regions contain discriminative information on classifying selective attention, only
features from non-N2PC regions electrodes were used. This included using the
following non-N2PC electrodes:

E2.b Electrodes = [ e35 e36 e37 e38 e39 e40 e41 e42 e43 e44 e45 e46 e47 e48]

To help visualize the selected N2PC and non-N2PC regions, see Figure 3.5. Ad-
ditionally, similarly to experiment E1 and as in standard ML approaches, hyper-
parameter optimization and cross-validation using GridSeachCV are applied for
E2.b.
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3.3.3 E3: Identify which class is the most separable

The goal of this experiment is to test the hypothesis that classes related to selective
attention (such as Cue and Target classes) are separable from the control condition
(Baseline). As the Baseline should not have selective attention activity encoded
in the features, the Baseline class should be most separable from Distractor and
Intended classes. In order to reject or not reject this hypothesis, confusion matri-
ces will be computed and weight coefficients and prediction probabilities will be
analyzed.

E3.a: Compute Confusion Matrices of learned classification models

Confusion matrices are calculated to portray the classification accuracy scored of
each class in mean and standard deviation over a 10-fold cross-validation using
GridSearchCV [8]. Jointly, the ten performance accuracies associated with those
confusion matrices (also with mean and standard deviation) are reported.

The aim of calculating the confusion matrices of the learned models is to better
understand errors the learned model is making, particularly in the class perfor-
mance. To not reject the hypothesis that (H4), Cue and Target classes are separable
from the Baseline class, the errors within Baseline-Cue and Baseline-Target need
to be smaller than the errors within Cue-Target. To do so, the confusion matrices
are plotted. This is applied to both LR and SVM for top-performing DCT frequency
ranges and N2PC regions.

E3.b: Analyse weight coefficients of learned models

To reject or not reject the hypothesis that (H4) Baseline class is more separable
than Cue and Target, analysis on the weight coefficients of each learned classifier
(Baseline, Cue, Target) are plotted in order of DCT features and also in order of
electrodes. The purpose of this is to facilitate the view of patterns/analysis of the
resulting weight coefficient. If a pattern emerges, where some features are consis-
tently of high weight for a class, then it is likely that that feature highly influences
the decision of the classifier. If there is no such pattern seen, particularly between
attention (Cue and Target) compared to non-attention (Baseline), H4 is rejected.

E3.c: Analyse prediction probability of learned classifiers

To reject or not reject the hypothesis that (H4) Baseline class is more separable
than Cue and Target, analysis on the classifiers prediction probability are done.
For this, the trained LR model is used in the ovr setting. The expected results
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of this experiment are to predict the probability (values between 0 and 1) of the
validation set using each classifier within the model. Then, plot the calculated
probability of each class (Baseline, Cue, Target).

To not reject hypothesis H4, errors in prediction probability of the true Baseline
label should be lowest of the 3 labels in the Cue and Target classifiers. If either Cue
or Target classifier prediction probabilities frequencies are higher at 1 for Baseline
than for the other, H4 is rejected.

3.3.4 E4: Dimensionality Reduction to strengthen decisions to
reject or not reject hypotheses

To reject or not reject the four hypotheses and to reach the overall aim of clas-
sifying selective attention, this thesis follows a (i) simple and easy approach at
first, then a (ii) more complex approach, followed by possible (iii) dimensionality
reduction techniques. Dimensionality reduction was applied to the dataset to de-
crease the dimensionality of the feature vector, as the size of the feature vector was
quite large, given the limited number of samples. The goal of dimensionality re-
duction is to further strengthen the confidence in the concluded decision-making.
Dimensionality reduction results are evaluated by performance accuracy on the
test set.

Two dimensionality reduction approaches used in this thesis are PCA[41] and
LDA[26], both from the sklearn library, freely available in Python.

E4.a: LDA

To reduce the number of features, LDA is a preferred technique for attention data
[17, 32]. LDA was applied to the dataset with all DCT and electrode features. Post
LDA transform, LR classification was applied to the LDA transformed dataset, and
a performance accuracy was reported. The before and after LDA transformed
LR performance accuracies were noted. Additionally, confusion matrices were
reported.

E4.b: PCA

For the similar reason as LDA, PCA was used to attempt to reduce the size of
the feature vector. Thus, reducing the dimension of the feature vector. PCA was
applied to the dataset with all DCT and electrode features. PCA was applied to
contain:
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• .50 of variance

• .70 of variance

• .90 of variance

• .95 of variance

• .99 of variance

LR classification was applied to the transformed dataset, and a performance
accuracy was reported. The performance accuracy scores post-PCA was compared
to the average accuracy score of LR with optimized hyper-parameters.
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Chapter 4

Experimental Results

All experiments described in this chapter are to reject or not reject our working
hypothesis. To facilitate the flow of information, this chapter is divided into
four sections reflecting the four working hypothesis formed in the last section of
Chapter 2.

In summary, the 4 hypothesis are as follows:

H1 If selective attention has a distinct signature in the frequency domain (alpha
and beta bands) [24], then selective attention is separable in the frequency
domain.

H2 If N2PC indicates presence of selective attention to both distractor objects
[45, 15] and intended objects [7], then selective attention is separable in the
N2PC region features.

H3 If selective attention is a mechanism that requires various regions of the
brain (Figure 1.4 [42]), Non-specific regions do hold discriminative informa-
tion.

H4 If Baseline does not hold any selective attention information, then Baseline
(class 0) is separable from Distractor (class 1) and Intended (class 2) selective
attention

4.0.1 R1: Classifying frequency domain features

R1.a: Compare classification of DCT[1,49] to DCT[50,99] and DCT[100,149]

The first experiment is to attempt to classify selective attention in the DCT ranges
specified in the experimental setup. This was done in both LR and SVM classifica-
tion methods. The parameters of each classifier, using sklearn library [27, 43] are
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[C = 0.001, fit intercept = False, multi class = ‘ovr’, solver = ‘newton-cg’] for LR and
[kernel=‘RBF’, decision function shape = ‘ovr’] for SVM. The resulting performance
accuracies of these classifiers are shown in Figure 4.1.

Figure 4.1: Classification of DCT[1,49], DCT[50,99] and DCT[100,149] using LR and

SVM classifiers. The average performance accuracy from the 10 fold cross-validation is
plotted for each DCT component range. LR in blue, SVM in green.

Figure 4.2: Classification of DCT: LR and SVM classification results as average per-
formance accuracies from the 10 fold cross-validation for DCT[1,49] to DCT[1,99] and
DCT[1,149]. LR in blue, SVM in green. The maximum performance accuracies for [LR,SVM]
are [0.60,0.60], [0.61,0.62], [0.65,0.65] for DCT[1,49] to DCT[1,99] and DCT[1,149], respec-
tively.

R1.b: Compare classification of DCT[1,49] to DCT[1,99] and DCT[1,149]

As this experiment is similar in setup as the previous one, the explanation is
the same. Average performance accuracies across the 10 fold cross-validation
were performed in three groups of DCT components. The only difference is
the range of DCTs used. Instead of DCT[1,49] to DCT[50,99] and DCT[100,149],
this sub-experiment classified DCT[1,49] to DCT[1,99] and DCT[1,149]. These
results are plotted in Figure 4.2. Additionally, maximum performance accuracies
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for [LR,SVM] were recorded, for later comparison. For [LR, SVM]: [0.60,0.60],
[0.61,0.62], [0.65,0.65] for DCT[1,49] to DCT[1,99] and DCT[1,149], respectively.

For the 10 fold cross validation, an LR classifier was retrained in 10 unique data-
splits. When using all features, both LR and SVM resulted in a performance
accuracy score of 0.59 on average and 0.65 for the best-case scenario. This is
shown in the first plot of Figure 4.3. Both LR and SVM classification performed
similarly (average 0.59, best 0.65 accuracy scores).

Figure 4.3: Performance (accuracy scores) of LR and SVM over 10-fold cross validation.

To make the results generalizable to other new participants, The data-splitting
was initially performed per-patient. In turn, the participant data was split into
train validation, and test sets. Additionally, the training set was used to fit the
model, the validation set for hyper-parameter optimization and general tuning,
and the test set was used to result in the performance accuracy of the classifier.
Both an LR and SVM classifier was used for this experiment. The results for the
ten performance accuracies are shown in Figure 4.3.

For SVM, in addition to the average mean and standard deviations histogram and
box-plot or performance accuracy, the confusion matrices were reported. The
confusion matrices portraying the classification accuracy scored of each class, in
mean and standard deviation. The performance accuracy results are shown in
plot 2 of Figure 4.3, and the confusion matrix is shown in Figure 4.6, right side.

Mean and standard deviation of the train, validation, and test sets were computed,
to check if normalization was applied appropriately. The resulting plots of the
mean and standard deviation are shown in Figure 4.4.

The top graph shows the mean (at x = 0) and standard deviation (x = 1 range) of
the Train (black/grey), validation (red/pink), and test (light blue/blue) datasets.
The bottom three graphs are for each Train Validation and Test set, showing the
distribution of features in each class; Baseline (gray), Cue (red), and Target (Blue).
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Figure 4.4: Figure showing (mean,standard deviation) of the training set, validation set and
test sets. The top graph shows the mean (at x = 0) and standard deviation (x = 1 range) of
the Train (black/grey), validation (red/pink), and test (light blue/blue) datasets. The bottom
three graphs are for each Train Validation and Test set, showing the distribution of features
in each class; Baseline (gray), Cue (red), and Target (Blue).

4.0.2 R2: Classifying N2PC and non-N2PC Region features

The summary of the results of average classification performance accuracy for
all electrodes, N2PC features, and non-N2PC features are shown in Figure 4.5.
This figure includes the resulting performance accuracies of the 10-fold cross-
validation, and the confusion matrices of the ten fold learning, with mean and
standard deviation values. Additionally, maximum performance accuracies for
[LR,SVM] were recorded. For [LR, SVM]: [0.65,0.65], [0.61,0.65], [0.52, 0.53] for
all electrodes, N2PC electrodes, and non-N2PC electrodes, respectively. All DCT
features were used for this analysis (DCT 1-149).
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Figure 4.5: Classification Accuracy scores between LR and SVM on (A) all electrodes, (B)
N2PC electrodes, (C) and non-N2PC electrodes, for Baseline = 0, Cue = 1, and Target = 2.
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R2.a and R2.b: Classifying N2PC electrodes and non-N2PC electrodes

The resulting performance accuracies for the non-N2PC feature classification
are reported in Table 4.1 . Additionally, Table 4.1 shows a numerical summary
of the graphs in Figure 4.5, which includes all features, N2PC features vs. non-
N2PC features average performance accuracies between LR and SVM and related
confusion matrices.

Table 4.1: Table of Average Classification Accuracy scores for the 10 fold cross-validation
between LR and SVM on (i) all electrodes, (ii) N2PC electrodes, and (iii) non-N2PC electrodes

4.0.3 R3: Identify which class is the most separable

R3.a: Compute Confusion Matrices of learned classification models

Confusion matrices were calculated to better understand errors the learned model
was making, particularly in the within class performance. Confusion matrices
were calculated for (i) N2PC vs non-N2PC feature comparisons (Figure 4.5, (ii)
comparing SVM and LR performances (Figure 4.6) , and (iii) Dimensionality re-
duction for PCA and LDA (Figure 4.10 and Figure 4.9, respectively).

Figure 4.6: Confusion Matrices of LR and SVM over 10 fold cross validation. The accuracy
scores are shown for each class true labels (y axis) and predicted labels (x axis), for Baseline
(Class 0), Cue (Class 1), and Target (Class 2). This figure follows the accuracy scores
visualized in Figure 4.3.

In order to not reject the hypothesis that (H4) Cue and Target classes are separable
from the Baseline class, the errors within Baseline-Cue and Baseline-Target need
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.

Figure 4.7: Weight Coe�cients of LR model: Overview of trained LR model coe�cient to
look for patterns. Since there are 128*149 features, it is di�cult to plot everything. Hence,
we used two examples. Bar-plot (A) shows coe�cients for DCT bin 10 for electrodes 64 to
95, and (B) shows coe�cients for Electrode 65 for DCT 1 to 49.

to be smaller than the errors within Cue-Target. To do this, the confusion matrices
are plotted. This is applied to both LR and SVM for top-performing DCT frequency
ranges and N2PC regions.

R3.b: Analyse weight coefficients of learned models

The weight coefficients of each learned classifier (Baseline, Cue, Target) are plotted
in order of DCT features and also in the order of electrodes. The purpose of this is
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Figure 4.8: Classifier predictions for Baseline (Class 0), Cue (Class 1), and Target (Class 2).
Top graph is training data, bottom graph is validation data.
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to facilitate the view of patterns/analysis of the results. These results are shown in
Figure. 4.7.

R3.c: Analyse prediction probability of learned classifiers

The prediction probabilities of the learned LR classifier were performed. The re-
sulting classifier predictions are plotted in Figure 4.7, showing classifier prediction
probabilities for Baseline (Class 0), Cue (Class 1), and Target (Class 2), for both the
training set (top 3 subplots) and the validation set (bottom three subplots).

4.0.4 R4: Dimensionality Reduction to strengthen decisions to
reject or not reject hypotheses

R4.a: LDA

The performance accuracy on the validation set for LR after applying LDA was
0.34. A random chance for a balanced dataset with three classes is 0.33. Results
for LDA classification accuracy are shown in Figure 4.9. Training set performance
is shown, as well.

Figure 4.9: Figure showing LDA dimensionality reduction to training set (row 1) and validation
set (row 2).
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R4.b: PCA

PCA was applied to the dataset to decrease the dimensionality of the feature vector,
in hopes that it will improve the accuracy score of the overall classification. For
this, we varied the percent of PCA variances preserved and measures the accuracy
score. PCA dimensionality reduction was applied to preserve 50, 70, 90, 95, and
98% of the variance. LR performance accuracy before and after PCA was reported.
At 95% variances preserved, applying PCA transform before LR did improve the
average accuracy by 0.001 (from 0.598 to 0.599). Figure 4.10 shows the accuracy
scores over the percentage of the variances preserved.

Figure 4.10: Figure showing PCA dimensionality reduction performance. (A) Accuracy
scores on the validation set over various percentages of variances contained. (B) Confusion
matrices for LR applied without (left) and with (right) PCA dimensionality reduction. Dotted
black line is comparative LR performance accuracy.
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Chapter 5

Discussions

This project aimed to understand if something as generic as paying attention to
visual stimuli, whether intended or distractor objects, can be classified well using
EEG neural data extracted DCT features. More clearly, the question was: is there
a fast, objective method and distinguish types of attention? To accomplish this,
ML techniques (Logistic Regression and Support Vector Classification) were ap-
plied to objectively determine the type of attention, without relying on subjective
evaluation. To evaluate each experiment, model accuracy scores were used as a
performance evaluation technique.

5.1 Hypotheses

To summarize the work-flow from the state of the art to the conclusion, a helpful
illustration is shown in Figure 5.1, which highlights the working hypotheses. The
four working hypotheses that have driven the work of this thesis are:

• H1: Selective attention is separable in the frequency domain.

• H2: N2PC regions hold most discriminative information.

• H3: Non-specific regions do hold discriminative information.

• H4: Baseline class (class 0) is separable from Distractor (class 1) and In-
tended (class 2) selective attention.

Section 5.2 discusses in detail the results obtained from the experiments and ties
them back to the working hypotheses.
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Figure 5.1: Figure illustrating the work-flow from background knowledge to rejecting or failing
to reject the 4 hypotheses. The discussion of the experimental results which lead to the
conclusions seen in this figure are explained in Section 5.2.

5.2 Discussion of Results

5.2.1 D1: Classifying frequency domain features

DCT 1:49 vs 59:99 and 100:149: The results from the experiments of the LR and
SVM classifiers for DCT ranges of 1:49, 50:99, and 100:149 show that for ranges of
1 to 49 DCTs the performance accuracy is higher than for the other two ranges. As
DCT 1:49 contained the selective attention relevant frequency oscillations, and
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the features lead to a higher performance accuracy than the other feature ranges,
the hypothesis that selective attention is separable in the frequency domain (H1)
is not rejected.

DCT 1:49 vs 1:99 and 1:149: Additionally, the performance of the LR and SVM
classifiers is lower for DCTs of 1 to 49 when compared to using 1 to 99 DCTs
or 1 to 149 DCTs. This does not lead us to reject H1, as the selective attention
frequency features are still contained in the three ranges for the second part of
this experiment. H1 is not rejected.

5.2.2 D2: Classifying N2PC and non-N2PC Region features

N2PC: From the results of the N2PC feature classification experiments, N2PC
region has the most discriminating information for classification. In addition
to this, we were able to contain the 65 percent accuracy score even when only
using 10.9 percent of the original number of electrodes by selecting electrodes
associated with N2PC measures. This knowledge of selecting the correct features
was following the N2PC state of the art [15, 18], which follows the electrodes
indicated in Figure 3.5. Significantly decreasing the number of features while
having little to no loss in accuracy scores is a significant result.

Non-N2PC: Although N2PC regions contain most information regarding the dis-
criminability of types of attention, non-N2PC regions do indeed carry information
relevant to discriminability for type attention. Given that change accuracy scores
are 0.33 for the dataset, and accuracy of on average 0.4956 is 17 percent higher
than chance, thus suggesting that discriminating information is indeed coded
within non-N2PC electrodes and regions. Table 4.5 shows these values.

5.2.3 D3: Identify which class is the most separable

It was hypothesized that Baseline would separate better from Cue and Target,
as the nature of the Baseline class does not contain selective attention data. By
means of confusion matrices, analysis of the learned model, this hypothesis is
tested.

Confusion matrices: Confusion matrices were calculated to portray the classifica-
tion accuracy scored of each class in mean and standard deviation over a 10-fold
cross-validation using GridSearchCV [8]. Since the errors within Baseline-Cue and
Baseline-Target were larger than the errors within Cue-Target, H4 was rejected.

Weight Coefficients: Analysis on the weight coefficients of each learned classifier
(Baseline, Cue, Target), either when plotted in order of DCT features and also in
order of electrodes, lack a visible pattern. It is not possible to identify features
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as consistently of high weight for a class, thus these features do not have high
influence on the decision of the classifier. Since there is a lack of pattern in
the weights, particularly between attention (Cue and Target) compared to non-
attention (Baseline), H4 was rejected.

Prediction Probabilities: Errors in prediction probability of the true Baseline
label should be lowest of the 3 labels in the Cue and Target classifiers, but the
results show otherwise. Cue errors in prediction are much higher for Baseline than
for Target. Since Cue or Target classifier predictions are higher at 1 for Baseline
than for the other, H4 was rejected.

5.2.4 D4: Dimensionality Reduction to strengthen decisions to
reject or not reject hypotheses

LDA: LDA did not perform well on the validation set. The resulting performance
accuracy for LR post LDA transformation was significantly close to random change
performance. This was expected, as the dataset had a very large dimension and a
very small number of samples in comparison. LDA was able to find a direction
that split the data best but resulted in over-fitting. In Figure 4.9, Training set
performance is shown to highlight the likely over-fitting on the Train set.

PCA: PCA resulted in a good performance accuracy for LR post PCA transform
using 90 % of variances. However, this could be a coincidence. Since the issue of
high variance in the reported performance scores has been notices, it would be
necessary to apply PCA in a 10-fold cross validation.

5.3 Hypotheses rejected or not rejected

From the results of the experiments and the discussions above, the following
conclusions have been reached:

• H1: Selective attention is separable in the frequency domain. Not rejected

• H2: N2PC regions hold most discriminative information. Not rejected

• H3: Non-specific regions do hold discriminative information. Not rejected

• H4: Baseline class (class 0) is separable from Distractor (class 1) and In-
tended (class 2) selective attention. Rejected
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5.3.1 Discussions Summary

Although employing DCT as a feature extraction procedure is an ideal candidate
for extracting frequency components from signals, the frequencies components
held within DCT bins were not reflective of the desired frequency information.
This is likely due to the DCT bins not holding small enough frequency increments
for the alpha and beta oscillations.

However, DCT for feature extraction did extract relevant selective attention in-
formation, particularly from the ranges that were expected. Using all of the DCT
frequency features resulted in the best accuracy score of 0.65. As the resulting
performance accuracy of 0.65 was as high as other reported results[17, 46]. Thus,
this makes making the resulting performance accuracy comparable with other
selective attention results (see Table 5.1).

Classification
Group Classes Feature Accuracy

Score
Topic

Fanda et al
(us)

3 DCT 0.65 Attention

Wen et al
[46]

2,3 MEG Amplitude 0.74, 0.65-0.67 Attention

Fahrenfort
et al [17]

2 EEG Amplitude 0.65 Attention

Table 5.1: Table of Classification Accuracy score summaries, between other selective
attention studies, as well as other BCI and Epilepsy classification studies.

From Figure 4.5 and Table 4.1, the results suggest that classifying selective atten-
tion with only 14 N2PC electrodes and all DCTs at best performance is only, on
average, 0.02 weaker in accuracy scores than with all 128 electrodes. The figure
suggests that the best GridSearchCV value should be taken with a grain of salt, as
it does not show the variability in the accuracy score, which is important when
variance is large in the reported 10-fold cross-validation accuracy scores.

Additionally, indeed, selective attention is a whole brain process. This was sug-
gested by the analysis of non-N2PC region classification accuracy scores. Although
the accuracy scores of non-N2PC region electrodes were, on average, 0.10 less
than the accuracy scores of N2PC regions, the accuracy scores were higher than
0.33, indicating that there is discriminative information about classifying attention
to distractors or intended objects even in non-N2PC regions.

Comparing Experiment Results

As mentioned above, the best accuracy score reported was 0.65 when all features
were used, with both LR and SVM. To compare each of the experiments, Table 5.2
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is created. In addition to average performance and max performance, the table
shows a ranking of the performances first by max performance, then by average
performance. From this, the second-best performance accuracy comes from the
use of N2PC features followed by DCT 1:49 as third-best performance accuracy.

Experiment Classification
Features Average Perfor-

mance
Max Perfor-
mance

ranking

All features 0.5992 SVM 0.65 SVM/LR 1
1.a DCT 1:49 0.5190 SVM 0.60 SVM 3
2.a N2PC 0.5850 LR 0.65 SVM 2
2.b Non-N2PC 0.4865 SVM 0.53 SVM 4
4.b PCA (*0.95) 0.5990 LR N/A N/A

Table 5.2: Table of Experimental results of classification performance accuracy across the
experimental setups. For PCA, (*0.95) indicates 0.95 of the variance contained.

5.3.2 Limitations:

Although the performance accuracies are comparable to classification perfor-
mances of other selective attention tasks, there are still limitations to consider.
This includes, but is not limited to, features, data scarcity, population sampling,
and experiment limitations. This subsection will explain in more detail each
limitation.

Features:

This thesis was limited to only using DCT features, and would have benefited from
comparing performances of the algorithms by using features such as raw EEG,
smoothed EEG amplitude and other statistical values of the EEG signal, and other
frequency features (non-DCT). Additionally, the use of additional data collection
methods can likely improve the performance, although EEG is a state-of-the-art
device for traditional selective attention analysis.

Data scarcity:

An important finding in this thesis was the high variance in performance accuracy
from the 10-fold cross-validation. To recall, each different split of participants lead
to roughly 10 percent variance in performance accuracy. To decrease this variance
in performance, the algorithm should be trained in datasets that are a more
complete representation of the population. This way, the algorithm can perform
with more consistent accuracy and less variance in performance accuracy.
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Experiment limitations:

The data used for the classification of selective attention comes from a very specific
but honed paradigm that evokes selective attention in participants. Within this
paradigm, there are 2 additional conditions that also use audio stimulation and
two other conditions. To increase the generalizability of the current solution
on classifying responses, it would be beneficial to incorporate other stimuli. In
neuroscience terms, the analysis could benefit from the classification of brain
responses to target-matching (TCCV) vs non-target matching (NCCV or TCCAV)
distractors.

Population sampling:

For the purpose of the study, the population sampling was opportunistic, across
university students, graduate students, and young professionals within Switzer-
land. Although this is a common method for data collection across neuroscience
studies, it is nonetheless a limitation.

5.4 Conclusion

People’s ability to behave effectively in everyday situations is critically dependent
on “selective attention”, which is the ability to promote the processing of objects
that match our current behavioural goals and suppress those objects that do not
match those goals. The aim of this project was to classify these two task-oriented
processes.

Aims

The results showed the classification accuracy for classifying selective attention
with only 14 N2PC electrodes is only, on average, 0.02 weaker in accuracy scores
than with all 128 electrodes. This is a minimal loss in performance in comparison
to only using 10 percent of the original electrodes.

Additionally, the results showed that, indeed, selective attention is a spatially
spread process. This was suggested by the analysis on non-N2PC region classifica-
tion accuracy scores. Although the accuracy scores of non-N2PC region electrodes
were on average of about 0.10 less than the accuracy scores of N2PC regions, the
accuracy scores were higher than 0.33, indicating that there is discriminative in-
formation about classifying attention to distractors or intended objects even in
non-N2PC regions.

61



Master’s In Artificial Intelligence: Thesis

Improvements

The last decades have provided important advances in terms of brain and cognitive
mechanisms orchestrating selective attention as well as their role in enhancing
perception and supporting the learning of new information. Additionally, the last
decades have shown a lot of important advances in ML applications. It would be
beneficial to further integrate the two fields, filling the gaps of reviews, algorithm
performance tests, etc. on attention data.

Although DCT feature extraction performed reasonably, the feature extraction
method could still be improved. Employing another frequencies feature extraction
method could possibly split the alpha and beta oscillations better, thus creating
bins with higher sensitivity to the alpha and beta frequencies, could lead to better
performance.

Moreover, using automatic feature selection techniques would be very beneficial
for biological data, in particular for signals of complex nature, such as attention,
as they are "Unseen" mechanisms and can benefit from unsupervised exploration.
For this reason as well it would be particularly useful to model and understand
cognition processes through means of AI application on selective attention data.

Exit thoughts

The aim of this project was to understand if paying attention to visual stimuli,
whether intended or distracted, can be classified well. For the purpose of the aims,
the results suggest that attention to intended objects and distractor objects can
be classified, although not with high confidence.

Although a performance accuracy of 0.59 on average and 0.65 at best is not a very
good accuracy score for a model performance, is it better than chance (0.33 for a
balanced class problem). It is possible that, with improvements in preprocessing,
other feature extraction methods, and more experiments, this performance could
increase.

N2PC is valuable, as involuntary vs. voluntary attention informs us about the
distractors’ ability to diverge attentional control. Understanding the bio-markers
of voluntary and involuntary attention, and distinguishing each other, could
possibly help understand earlier on flags for attentional dynamics.
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