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Abstract In the past decades, the incidence rate of cancer has steadily risen.
However, earlier and accurate identifications have increased cancer survival
chances, allowing us to consider it as a chronic condition. Nevertheless, post-
surgery therapies lack patients’ adherence, mostly due to a lack of personalized
solutions supporting them daily. Persuading patients to follow the medical
indications correctly is crucial to extend and enhance their life quality.

This paper proposes a cohort and trajectory analysis (CTA) module for
estimating patient survival probability based on patient health records to be
employed within an agent-based personalized chatbot system (named ERE-
BOTS). EREBOTS leverages on the CTA to monitor the progression of the
patients’ conditions, tailor recommendations to the patient, and support the
medical personnel’s analysis and treatment adjustment. Moreover, it provides
a dedicated interface to fine-tune the chatbot behaviors based on patient tra-
jectory analysis. The development of such assistive tool enables to (i) effec-
tively evaluate the significance of prognostic variables (e.g., death or cancer
recurrence), (ii) detect patient’s high-risk markers, (iii) support treatment
decisions, and (iv) improve the patients’ treatment adherence.

Keywords Trajectory and cohort analysis · Multi-agent systems

1 Introduction

Breast cancer is the most common cancer in women worldwide and the sec-
ond leading cause of cancer death in women [1]. From 2013 to 2018, medical
advancements reduced the death rate by 1% per year, increasing the cancer
survival rate up to 90% after five years from the diagnosis [2].

1University of Applied Sciences and Arts Western Switzerland (HES-SO)
Switzerland
name.surname@hevs.ch
Institut Informatique de Gestion, HES-SO Valais-Wallis, 3960 Sierre, Switzerland



2 Gaetano Manzo1 et al.

According to the World Health Organization (WHO), the improvement of
treatment adherence would be more beneficial to the patient’s health than
the development of new drugs [3]. However, the correct identification of some
cancers’ stages and evolution is still a challenging task [4]. Unfortunately, inac-
curate staging systems often lead to insufficient or unnecessary treatments [5].
Therefore, the development of assistive technologies that (i) effectively evalu-
ate the significance of prognostic variables (e.g., death or cancer recurrence),
(ii) facilitate the detection of patient’s high-risk markers, (iii) support treat-
ment decisions, and (iv) improve the patients’ treatment adherence, is imper-
ative.

Scientific and technological research aims to bridge medical and healthcare
personnel with the patients. In the eHealth domain, an increasing number of
studies deal with patient persuasion leveraging on chat-based interactions [6].
In particular, agent-based applications have been successfully employed in
smoking cessation [7], psychology support for patients post-cancer surgery [8],
and healthy lifestyle [9]. These approaches have shown that individuals partic-
ipating in such studies have exchanged an extremely high volume of messages
—inconceivable to be manually processed by the medical personnel. However,
despite the complexity of existing conversational agent systems (e.g., from
menu-based to NLP-base), no existing chatbot-based solutions provide deci-
sion support for physicians based on the analysis of patient trajectories. With-
out these tools, clinicians are eventually incapable of fine-tuning the chatbot
behaviors and personalizing the intervention according to individual patients’
covariates.

The contributions of this paper are listed as follows:

(i) it introduces a cohort and trajectory analysis (CTA) approach for esti-
mating patient survival probability based on patient health records.

(ii) it proposes the employment of an agent-based personalized chatbot
system (named EREBOTS) that leverages on the CTA to monitor the disease
progression, support treatment adjustment, and provides a dedicated interface
for clinicians to fine-tune the chatbot behaviors.

(iii) it provides empirical evidence of the effectiveness of trajectory analysis
for providing insightful prediction and classification results in the context of
breast cancer survivor patient support.

The rest of the paper is organized as follows. Section 2 presents the state of
the art followed by the open challenges in Section 3. The multi-agents frame-
work EREBOTS is detailed in Section 4, together with its components, be-
haviors, and interfaces. The EREBOTS cohort and trajectory analysis module
is presented in Section 5, whereas Section 6 provides its main results. Finally,
Section 7 presents the discussions, whereas Section 8 concludes the paper.
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2 State of the art

2.1 Chatbots for cancer survivors

Chatbots have been successfully used for supporting individuals fighting chronic
diseases, addiction, or metabolic disorders. This is due to both the immediate-
ness, scalability and availability of chatbot services, as well as their increasingly
engaging interaction capabilities. Moreover, thanks to their inherent imper-
sonal nature, patients tend to disclose personal health information (e.g., diet
and sexuality) more easily to a chatbot as compared to a human [10].
In the context of cancer survivors, chatbot technology is highly supported [11].
For instance, Belfin et al. [12] designed a basic chatbot with a state machine
that answers common questions collected from online forums and organized
in a knowledge graph. Such a solution is similar to chatbots employed in cus-
tomer management handling Frequent Asked Question (FAQ). Chatbots have
also been used to upgrade current follow-up procedures. Piau et al. [13] im-
plemented a bot whose primary objective is data collection (i.e., temperature
and adherence to the therapy). The system was tested for 7 weeks, record-
ing 52 sessions with 9 patients, registering a general acceptance towards the
chatbot. Greer et al. [8] confirmed that technology can be an effective vector
to reach young adults with positive psychology stimulation, which proved to
reduce psychosocial distress associated with medical conditions. The authors
recruited 45 individuals within 5 years of completing active cancer treatment
and interfaced them with a chatbot, named Vivibot, for 4 weeks. Such a chat-
bot shared positive psychology skills, daily emotion ratings, videos, and other
sources produced by survivors leveraging on cognitive and behavioral inter-
ventions [14]. As a result, the patients reported a sensible reduction of anxiety
and depression. However, the authors acknowledged that no AI-based content-
personalization mechanism had been employed, which could have boosted the
impact of the study. Chaix et al. [11] proposed Vik, a health care chatbot
supporting breast cancer survivors. Vik answers the patients’ concerns during
their convalescence, contributes to medication adherence (via reminders and
educational content), and shows medication tutorials and side effects. Yet, Vik
does not provide the handover-to-doctors functionality nor real-time monitor-
ing.

Although these works have shown the potential use of chatbots for sup-
porting fragile cancer survivors, the challenge of personalizing interactions and
interventions remains open. The usage of AI-powered models built upon pa-
tient information and their trajectories have been explored in order to fill this
gap as seen in the next section.

2.2 Cancer survivor prediction models

Survival models evaluate the significance of prognostic variables in outcomes
such as death or cancer recurrence, informing clinicians and patients of their
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treatment options [15]. The Kaplan–Meier estimator is one of the most used
survival analysis models for cancer patients [16]. It allows establishing an esti-
mation of the survival function from lifetime data, taking into account censored
data and estimating lost event occurrence at a patient’s follow-up [17]. On the
other hand, the Cox Proportional Hazard (CPH) model [18] is a standard
method that can be adjusted with patient covariates using linear combina-
tions [19].

In the past few years, researchers have developed non-linear models, based
on deep learning architectures, to the problem of survival analysis [20]. In
particular, they focused on neural networks (NN) for classification tasks [21],
event estimations [22], and risk prediction [23]. Those neural networks learn
highly complex and nonlinear relationships between prognostic features and in-
dividuals risks. Moreover, the NN learns the relationship without prior feature
selection or domain expertise, providing personalized recommendations based
on the computed risk of treatment. However, previous studies have demon-
strated mixed results on predicting risk, failing to demonstrate improvements
beyond the linear Cox model [24, 25].

3 Opportunities and Open Challenges

The studies previously presented intersect several disciplines and domains in-
cluding patient trajectory analysis, conversational agents, and eHealth patient
support. The opportunities arising from the combined synergy of these areas
are: (i) the dissemination of health information and coaching instructions;
(ii) the collection of patient data to enable profiling, personalized coaching,
monitoring, and adherence boosting interactions; (iii) the incentive of positive
behavioral change; (iv) the support of persuasive strategies for self-efficacy
evaluation.

Nevertheless, the following open challenges/issues still need to be addressed:

C1 Dynamic personalization: cancer survivors participate in social cam-
paigns and data collection where informative contents are broadcast. How-
ever, the information they receive presents a minimal level of personaliza-
tion. Generating personalized content relying on the combination of pa-
tients’ trajectories combined with patients’ behavioral information is still
an open challenge.

C2 Continuous healthcare supervision: cancer survivors have a labile
mental and physical balance. Nevertheless, besides automated messages
and monitoring/reporting functionalities, no existing chatbot-based sys-
tem operating in this context provides interaction means for the healthcare
professionals. Having an interface dedicated to the medical personnel that
can be used to fine-tune the chatbot behaviors or directly connect with the
patient is still an open challenge.

C3 Evolving models & behaviors: agent-based chatbots can model users
comprehensively. However, the sociological dynamics and implications can



Title Suppressed Due to Excessive Length 5

quickly change, and current solutions cannot model evolving behaviors in
the complex dynamics of current frameworks.

C4 Dynamic persuasive techniques: current techniques are rather prede-
termined (i.e., depending on a rule-set). The challenge is to consider pa-
tients’ conditions with respect to their trajectories and adapt treatments
according to the expected model outcome.

C5 Continuous adherence monitoring: when chatbots are employed, the
adherence is mainly computed elaborating user surveys. Therefore, the
challenge relies on computing and understanding adherence at run-time,
identifying the elements possibly responsible for the divergence.

C6 Privacy compliance: current systems propose human-made data man-
agement, privacy, and visibility descriptions. The actual compliance of such
extracts with the system behavior is not inferrable. Therefore, the chal-
lenge is two-folded: (i) equipping the system with dynamics, empowering
the patient with full control over his data. (ii) generating system extracts
for mirroring and describing system behaviors that deal with the patients’
data.

Cancer survivors could concretely benefit from the accomplishment of such
challenges. Equipping chatbots with behaviors bridging patients’ trajectories
and persuasive techniques can support eHealth systems, which are facing the
strain of a significant demand for patient empowerment. Therefore, employ-
ing agent-based models and techniques can facilitate achieving the above-
mentioned challenges.

4 Architecture of the Agent-based Chatbot Platform

To address the challenges mentioned above, we rely on an agent-based chatbot
platform named EREBOTS. The multi-agent-based architecture of the plat-
form allows autonomous execution of personalized behaviors towards patients
and isolated management of personal data. The EREBOTS platform com-
prises four main components: Database management, Communication Server,
Multi-agent system back-end for the doctor agents, and Patient agents’ back-
end and front-end. Each of these components is deployed on a dedicated Docker
container and managed via Docker Compose.

Figure 1 schematizes the main functional interactions among the compo-
nents mentioned above.

– The Database component manages two types of information: (i) system-
related (non-personal) data, managed through MongoDB, and (ii) user
personal data, which includes consent information, chatbot interactions,
demographics and other data input by the user. Personal data is managed
using Pryv1.

1 https://www.pryv.com/. A GDPR-compliant platform enabling data-stream-based col-
lection and privacy data-visibility management.
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Fig. 1 Main components of the EREBOTS architecture.

– The Communication server for inter-agent communication within the Multi-
Agent Systems (MAS) uses Prosody2, an XMPP server instance. Agents
can broadcast or unicast messages using this platform.

– The Doctor agent is designed to autonomously manage a campaign, includ-
ing the type of interactions defined for the patients and the monitoring of
their activities. It organizes the patients’ data (i.e., merges behavioral in-
formation and medical examination), elaborates patients trajectories based
on machine learning models, updates the forecast trends, and enables fur-
ther analysis (e.g., patient treatment adherence, results, and persuasive
interventions). Overall, the Doctor agent is characterized by three building-
blocks: Persuasion models to foster the Patient(s) behavioral change, the
agent set of Behaviors, and the CTA module.

– The Patient agent manages the patients’ connections and their messages
from the chat platform(s). It deals with registration and user interactions,
such as data-reporting, requests of support, and settings management and
proactive interactions. Although extensible to other messaging systems,
the framework currently supports the following communication interfaces:
(i) Telegram3: a widely used free messaging application for mobile phones
released in 2013. (ii) HemerApp: a dedicated front-end based on Flutter4,
a framework for native multi-platform development. Moreover, three more
building-blocks characterize the Patient Agent: data and models composing
the Patient profile, the set of Behaviors, and the Patient Settings.

2 https://prosody.im/
3 https://telegram.org/
4 https://flutter.dev/
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A dedicated mobile- and web-app is directly connected to the MAS, while
Telegram (passing through dedicated APIs) requires a gateway agent.

5 Model for Cohort and Trajectory Analysis

In our approach, agents deployed in EREBOTS take either the patient or
the doctor (healthcare provider) role, autonomously managing the interac-
tions produced and received through the chatbot messages. Within the doctor
agent, we propose the inclusion of the cohort and trajectory analysis model,
whose purpose is to provide decision-support information for clinicians regard-
ing risks, symptoms, and disease associations.

Figure 2 illustrates the general scheme of the trajectory and cohort anal-
ysis process. Specifically, trajectories represent the patient’s evolution from
the diagnosis of the disease. The CTA requires EHRs data, provided by the
doctor-agent, and behavioral data, provided by the patient-agent. Through
the analysis of the trajectories, it is possible to identify associations between
symptoms and events (e.g., admission, re-admissions, and treatments) and to
quantify risks. Moreover, the trajectory analysis enables us to define several
paths of events that may occur sequentially representing the transition be-
tween one event (e.g., primary tumor detection) and the other (e.g., metasta-
sis) as a probability of occurrence learned from data. Finally, these results allow
the identification of high-risk markers for detrimental treatment effects (e.g.,
depression and anxiety disorder), subsequent cancer disease, and metastatic
cancer disease.

In the following sections, we provide details regarding the methods used
for the CTA. More specifically, we describe: (i) the estimation of survival
probability based on observed patient features; (ii) Machine Learning-based
classification of patients according to their vital or relapse-free status; and
(iii) clustering methods used to group patients into cohorts based in observed
trajectory data.

5.1 Trajectory Estimation

Patient trajectories can be analyzed for different goals. In the context of cancer
survivorship, one key aspect is the prediction of life expectancy, related to the
probability of cancer relapse. To address this challenge, we introduce survival
models, which aim to answer the question: “what is the probability that a
patient survived any time t?.” We denote the survival function as S(t) =
Pr(T > t) where T is the time of an event (e.g., death, relapse, or recovery),
and t is the time from the beginning of an observation period (e.g., surgery
or treatment) to an event. Please notice that S(t) = 1 when t = 0, whereas
S(t) = 0 when t =∞. In other words, with probability 1 the patient is alive at
the beginning of the observation time t, and the probability tends to 0 when the
observation time increases (i.e., S(t1) <= S(t2),∀t1 >= t2). In case the study
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Fig. 2 Trajectory and Cohort Analysis Architecture in EREBOTS

ends or the patient is withdrawn from it, the data is considered censored. Given
a dataset with patients observing time and event outcome, we are enabled to
estimate the survival curve through the Kaplan-Meier Estimator [17]:

S(t) =

t∏
i=0

1− Pr(T = i, t >= i) =

t∏
i=0

1− di
ni
. (1)

With di and ni the number of patients that had an event at time i and
the number of patients that survived at time i, respectively. Please note that
the Kaplan-Meier estimator formula is obtained by using the chain rule for
random variables. The Kaplan-Meier estimator is calculated considering the
notion that the probability can be broken up into the product of probabilities
during specific intervals. Although this is useful to compare different survival
groups and establish the basis for a prediction model, it does not indicate
risk levels for individual trajectories. In order to provide personalized patient
treatments, we need to evaluate the hazard function that analyzes individual
risks answering the question: “What is the immediate death risk for a patient
that survived at time t?”.

The Cox Proportional Hazard model provides the tool to estimate individ-
ual risks as follows:

λ(t) = λ0e
(factor) (2)

where t is the observation period and λ0 is the baseline risk. Whereas, the
factor in 2 identifies the way of modeling patient features (e.g., age, tumor
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stage, and treatments) to estimate patient risk. In this work, given its perfor-
mance in the numerical evaluation, we define the factor risk as a linear combi-
nation of the patient’s features X = (x1, x2, .., xn) and the respective features’
weights Θ = (θ1, θ2, .., θn), with n the number of patient features.Therefore,

λ(t) = λ0e
(θ1x1,θ2x2,..θnxn) = λ0e

(
∑n

i=0
θixi) = λ0e

(ΘtX). (3)

Please notice that the survival function 1 is strictly related to the hazard
function, as follows:

S(t) = e
−
∫ t

0
λ(u)du

, (4)

and vice versa

λ(t) = −S
′(t)

S(t)
(5)

Finally, to address the non-linearity between the features, we use Tree-
based risk models. Besides the non-linear relationship, Tree-based models han-
dle both continuous and categorical data in a time-efficient manner. In partic-
ular, after dealing with missing data, we adopt Decision Trees and Random
Forests models, which provide high-performance levels and interpretations of
their results.

5.2 Survival Classification

The survival and risk approaches described above provide the means for doctor
agents to build a comprehensive trajectory model that can be used to support
clinical decisions. Complementary to these features, we propose incorporating
classification prediction capabilities, which may help understanding an indi-
vidual trajectory based on similar healthcare records.

To identify common patterns of patient data, we define a classification task
based on the use of several machine learning and deep learning models. These
survival classifiers identify the relationship of the features based on the patient
outcome event (e.g., death), while providing interpretable results. They take
as input the data of the patients (e.g., cancer type, tumor stage, and NPI)
and provide as output the label group to which the patient belongs, such as
the patient’s vital status or relapse-free status.

Notice that this first step to cluster patients with similar features requires
a training phase (i.e., supervised learning), contrary clustering approaches pre-
sented later (i.e., unsupervised learning). To prepare the input for the classi-
fication task, a data pre-processing is made that includes data retrieval, data
cleaning, and data wrangling. Moreover, to prevent under- and over-fitting is-
sues, a study of the learning curves is made followed by 10-fold cross-validation.
Technical details and results are included in Section 6.

The classification itself starts first with the task of finding the event proba-
bility of the dependent binary variable (outcome), e.g., to be alive or deceased.
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Using Logistic Regression, a linear relationship is learnt from the given dataset
and then introduces non-linearity through the activation function, such as
ReLu or Sigmoid. To understand the decision boundary of the classification
task (i.e., the range values in which a patient belongs to a group), we use
Support Vector Machine, also known as SVM or Large Margin Classifier. Our
SVM model catches the non-linear relationship among the patient’s features
by using several kernel functions and by applying a regularization term to
overcome high-bias and high-variance issues. Decision trees, random forests,
and stochastic gradient boosting are the tree-based models used for the classi-
fication as well for the trajectory analysis tasks. Those models handle contin-
uous and categorical features, outliers, and missing data. Ensemble learning
methods such as Random Forest combines numerous decision trees providing
as output the mean from every individual tree. Random Forest models bring
about a dissimilarity measure among the observations and unlabelled data,
providing a more accurate output. To conclude our analysis, we employ the
Stochastic Gradient Boosting model, which creates numerous decision trees in
an incremental error-correcting process. Finally, as the last classifier, we use a
deep learning model —Neural Networks, which represent the state of the art of
survival analysis and show high accuracy for datasets with a large population
and features.

5.3 Clustering

While in the previous section the classification methods targeted prediction on
predefined trajectory outcomes, in this section we investigate different cluster-
ing approaches for the patient cohort analysis. Such unsupervised approaches
benefit from the trajectory analysis and overcome the limitations of the clas-
sification task, which is based on the outcome of events such as the vital or
the relapse status of the patient. Using clustering, a doctor agent may be
able to find similar trajectories without pre-defined assumptions about their
individual characteristics.

To fine-tune groups of patients with similar outcomes but different features
(e.g., patient with tumor stage 1 and patient with tumor stage 3, both alive),
we use K-Means, Gaussian Mixture Models, and Trajectory-based clustering
algorithms. The K-means algorithm randomly finds k clustering centers (or
centroids), and then iteratively groups the data point to the nearest cluster-
ing center according to the deviation until the change of all clustering centers
converges. K-means clustering minimizes within-cluster variances, but not reg-
ular Euclidean distances. However, k-means clustering tends to find clusters
of comparable spatial extent, while the expectation-maximization mechanism
allows clusters to have different shapes. For this reason, we use the Gaussian
Mixture model, representing the presence of sub-populations within an overall
population. The Gaussian Mixture model corresponds to the mixture distribu-
tion that represents the probability distribution of observations in the overall
population. Finally, trajectory-based clustering is the measurement of trajec-
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tory similarity (or distance) is one of the key points in defining trajectory
clustering, grouping similar trajectories into the same cluster, and finding the
most common patterns.

6 Model Evaluations

To evaluate our cohort and trajectory analysis approach, we have applied it
in the context of breast cancer support. The fundamental principle is that
these models can autonomously provide personalized prediction of risks prob-
abilities, as well as classification of trajectory patterns, so that they can be
incorporated into an EREBOTS doctor agent. In the following, we describe
first the dataset used during the evaluation, as well as the pre-processing steps,
followed by the trajectory and cohort analysis results.

6.1 Dataset & Pre-processing

In order to train and evaluate our models, we use the METABRIC dataset
(Molecular Taxonomy of Breast Cancer International Consortium [26]). The
METABRIC dataset consists of gene expression data and clinical features
for 2498 patients labeled as follows: 33.34% “Living”, 25.74% “Died due to
breast cancer”, 19.80% “Died due to other causes”, and the rest “not ob-
served”. METABRIC includes 32 features such as age at diagnosis, type of
breast surgery, and ER status. Moreover, the dataset presents the number of
patient’s months of relapse-free status and overall survival status, respectively
with a median relapse time of 99 months and survival time of 116 months.
The mean age at diagnosis is 60, with the youngest patient at the age of 21
and the oldest at the age of 96.

In order to prepare the data for the patient trajectory and cohort analysis,
we performed a data wrangling process. The first step is to select the features
to be analyzed and to drop the insignificant ones. In our models, we consider all
the features present in the dataset, and we drop only those with single values,
which do not add any extra information to our analysis. In the second step, we
handle the different feature types such as continuous and categorical. For the
missing values of continuous features, we impute the median values for each
feature to keep steady their statistical properties. Then, we transform features
by scaling each of them to the range [0, 1] by using a min-max scaler. For the
categorical features, in order not to add bias by imputing extra information, we
consider an extra class “None” for the missing data. Finally, we perform one-
hot encoding for transforming the categorical feature into numerical. Please
notice that the one-hot encoding could drastically slow the process by including
extra features. However, given the low number of features in the METABRIC
dataset, this encoding process does not affect our system performance.
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6.2 Trajectory Analysis

In this section, we illustrate the main results of our trajectory analysis. We
start analyzing the METABRIC dataset using the Kaplan-Meier estimator
(KM).

In Figure 3, we report the KM estimation of the overall METABRIC breast
cancer population for the event of patient’s status (Alive or Dead). The plot
shows the overall survival probability of the breast cancer population over time
(months) and the related Greenwood confident interval of 95%. We see that
80% of the population survived at least 50 months, whereas 60% for at least
10 years.
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Fig. 3 Kaplan-Meier survival probability estimation of the overall breast cancer population
in METABRIC.

Enhancing the granularity of the KM estimator, Figure 4 shows the KM
estimation of the breast cancer population grouped by tumor stage. We can
see the impact of the tumor stage on the survival probability. Indeed, while a
stage 2 tumor patient has a similar trend to the overall KM estimation above
presented, patients with a stage 4 tumor have a huge drop in the survival
probability estimation. According to our estimation, 80% of patients with a
tumor stage 2 survived at least 50 months, whereas only 40% of patients with
tumor stage 4 survived at least 50 months and just a few percentages survived
more than 10 years.

In Figure 5, we report the KM estimation of the breast cancer population
grouped by cancer type. In particular, we arranged 4 types of cancers: Invasive
Ductal, Invasive Lobular, Mixed Ductal-Lobular, and other types that repre-
sent less than 5% of our dataset. From our KM estimation, we notice that all
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Fig. 4 Kaplan-Meier survival probability estimation of the breast cancer population in
METABRIC grouped by tumor stage.

types of breast cancer in our dataset report the same KM estimation except
for the group ”Others”, which reports the best survival probably. However,
given the small population and the numerous missing data, the KM estima-
tion for the group ”Others” presents a huge confident interval and a survival
probability drop at 250 months.

A significant difference in the survival probability concerns the type of
surgery. Figure 6 shows the KM estimation for the breast cancer population
grouped by two surgeries: mastectomy and breast-conserving. We can see that
breast-conserving surgeries provide a higher survival probability than mastec-
tomy surgeries even for patients with similar tumor stages. Indeed, in Figure 6,
we report the KM estimation of both surgeries for patients with stage 2 tumors
(given its similarity with the overall breast cancer population KM estimation).
We notice that tumor stages do not affect the survival trajectory estimation
based on the type of surgery.

A significant discrepancy in the survival estimation probability concerns
the menopause status of the patients, which is strongly related to the pa-
tient’s age. Figure 7 shows the KM survival estimation of the breast cancer
patients grouped by menopause status: pre-menopause and post-menopause.
As Figure 7 shows, patients post-menopause present higher risks than patients
pre-menopause due particularly to the elder breast cancer population in the
post-menopause group.

As a support to the relationship between patient’s age at diagnosis and
patient’s risk, in Figure 8, we present the Cox Proportional Hazard based on
the survival analysis of the breast cancer population in METABRIC. Figure 8
illustrates the relationship of the features with the log of the hazard function
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Fig. 5 Kaplan-Meier survival probability estimation of the breast cancer population in
METABRIC grouped by cancer type.
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Fig. 6 Kaplan-Meier survival probability estimation of the breast cancer population in
METABRIC grouped by surgery type and tumor stage.

presented in Section 8 and the respective confident interval of 95%. Please note
that the defined hazard function is exponential (see equation 3), therefore,
the relationship between the features and the log of the hazard function is
linear. In such a plot, a positive relationship means higher risk (e.g., Tumor
Stage, Lymph nodes examined positive, and PR Status). On the other hand, a
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Fig. 7 Kaplan-Meier survival probability estimation of the breast cancer population in
METABRIC grouped by menopause status.

negative relationship means lower risk (e.g., Integrative Cluster, HER2 Status,
and ER by IHC). As shown in Figure 8, the patient’s age at the diagnosis is
strongly related to higher risk (i.e., the associated weight to the feature is the
highest). On the other hand, Relapse Free Status is strongly related to lower
risk (i.e., the associated weight to the feature is the lowest).

6.3 Cohort Analysis

In this section, we illustrate the main results of our cohort analysis using
the METABRIC dataset. As mentioned, we use supervised and unsupervised
machine learning algorithms such as Logistic Regression, SVM, Decision Tree,
and Neural Networks.

We start analyzing the learning curves of the different classifiers shown
in Figure 9. The figure illustrates the accuracy-test F-score for the survival
classification task, defining patients’ risk, over the number of patients used for
the training phase. We see that the classifiers enhance their accuracy when the
number of patients in the training set increases. In particular for the Neural
Network model, which requires many examples to train its neurons. However,
models such as Decision Tree and Logistic Regression provide the best accuracy
level even for a small number of train examples.

Another important characteristic is the time to perform the cohort analysis.
Indeed, while the trajectory analysis does not require any training phase, the
cohort could imply some delay in the EREBOTS framework.

Figure 10 shows the training time required for each classifier based on the
trainset size (i.e., number of patients used for training). As shown in the figure,
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Fig. 8 Cox Proportional Hazard based on the survival analysis of the breast cancer popu-
lation in METABRIC.

Decision Tree outperforms other classifiers for the specific task of survival
classification. Logistic Regression provides the best accuracy but not the best
fitting time. Finally, the Neural Network classifier, given our hardware, needs
nearly half-second for the training 80% of the METABRIC dataset (about
1600 patients).

In Figure 11, we show the Gaussian Mixture model performing the cohort
analysis based on 10 random patient trajectories. We selected three main areas:
high-risk, medium-risk, and low-risk. On the one hand, patients in the low-
risk area have shown high survival probability. On the other hand, patients in
the high-risk area have shown low survival probability. The Gaussian Mixture
model clusters the patient trajectory in one of the above-mentioned areas
defining the patient risk. The trajectory, based on the Cox Proportional Hazard
model, takes into account the relationship among the patient covariates and
the relationship between patients.
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Fig. 9 F-score for survival classification using Logistic Regression, SVM, Decision Tree,
and Neural Networks.
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Fig. 10 Scalability for survival classification using Logistic Regression, SVM, Decision Tree,
and Neural Networks.

7 Discussion

The CTA enables EREBOTS to provide dynamic personalization of the inter-
actions and story-line addressing the challenge C1. Indeed, the CTA generates
personalized content relying on the combination of patients’ aggregated data
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Fig. 11 Gaussian Mixture model Patients cohort based on their trajectory.

(i.e., trajectories) combined with patients’ behavioral information (e.g., con-
duct in the social campaigns). However, the medical personnel needs function-
alities that go beyond the in-chat personalization/differentiation. Therefore, as
ongoing work, we are investigating how to dynamically integrate user-groups
dedicated to enriching the chatbot interface (HemerApp) and its interactions.

By monitoring and reporting high-risk markers, the CTA provides support
for the medical personnel addressing the challenge of continuous healthcare
supervision (C2). Besides automated messages and reporting functionalities,
EREBOTS provides an interaction means to the doctors. In particular, the
medical personnel can use EREBOTS to fine-tune the chatbot behaviors and
retrieve personalized patient information and risks. Moreover, EREBOTS pro-
vides an initial set of tools to monitor in real-time the running campaign. We
plan to extend our mechanisms with logic-based triggers to involve medical
personnel proactively when needed.

In EREBOTS, the CTA can model the users quite comprehensively, ad-
dressing the challenge of evolving models & behaviors (C3). Indeed, the CTA
enriches the patient’s dataset by including the sociological dynamics, evolv-
ing behaviors, and continuous risk estimation in EREBOTS. Moreover, the
user modeling and knowledge representation can be dynamically reshaped to
satisfy possibly different investigations/campaigns. Currently, it is possible to
execute diverse campaigns in parallel. Nevertheless, the integration of contex-
tually diverse knowledge is an ongoing work.

The CTA can trigger an adjustment of the patient’s therapy, addressing the
challenge of dynamic persuasive techniques (C4). Indeed, the CTA provides
support to the medical personnel, who can evaluate and perform changes in
the therapy/story-line from a personalized chatbot. Moreover, if the action is
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not life-threatening, it can be suggested autonomously by the chatbot without
clinicians’ direct intervention (ongoing work).

By collecting users’ feedback related to the tasks conducted within the
application, EREBOTS aims at tracking/enhancing the user quality of expe-
rience (QoE), addressing the challenge of continuous adherence monitoring
(C5). Indeed, by identifying features responsible for the user divergence, the
CTA enables EREBOTS to understand user adherence at run-time. As ongo-
ing work, we are studying the automation of such feedback classifications and
placing autonomous logic triggers for sensitive feedback raising the attention
of the personnel managing a given campaign.

Finally, concerning C6 (privacy compliance), EREBOTS employs Pryv
as a privacy-compliant stream-based database. Pryv can expose its data us-
ing semantically rich representations [27] and use standard vocabularies (e.g.,
HL7 FHIR). Moreover, when the platform is deployed, an automated behav-
ior composes an informative scrutinizing all the agents’ behaviors within the
system and collects which data is used for which purpose and visible to who.
If a new behavior is added into EREBOTS or an existing one is modified, the
information is updated accordingly.

8 Conclusion

This work coped with the challenge of personalized agent-based chatbots as
virtual assistants for breast cancer survivals and clinicians’ support. In such
context, we presented EREBOTS framework and its Cohort and Trajectory
Analysis module for continuous healthcare personnel supervision, evolving
models and behaviors, and multi-stakeholder personalized therapy. Such a
module has been tested using METABRIC dataset, which allowed us to discuss
the extent of satisfaction of the above-mentioned challenges.

Overall, (i) the CTA enables EREBOTS to personalize mainstream interac-
tion story-lines for dynamic personalization. (ii) By monitoring and reporting
high-risk markers, the CTA provides support for the medical personnel for con-
tinuous healthcare supervision and prognosis. (iii) Our agent-based chatbots
by using the CTA can model the users comprehensively for evolving patient
models and behaviors. (iv) The CTA can trigger an adjustment of the pa-
tient’s treatments for dynamic persuasive techniques. (v) By collecting users’
feedback related to the tasks conducted within the application, EREBOTS en-
hances user quality of experience (QoE) for continuous adherence monitoring.
(vi) Finally, EREBOTS employs Pryv as a privacy-compliant stream-based
database for privacy compliance.
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