
Running Medical Image Analysis on
GridFactory Desktop Grid

Frederik ORELLANAa, Marko NIINIMAKI b, Xin ZHOU b, Peter ROSENDAHLa,
Henning MUELLERb and Anders WAANANENa

aNiels Bohr Institute, Copenhagen University, Denmark
bMedical Informatics, Geneva University Hospitals and University of Geneva,

Switzerland

Abstract.
At the Geneva University Hospitals work is in progress to establish a computing

facility for medical image analysis, potentially using several hundreds of desktop
computers. Typically, hospitals do not have a computer infrastructure dedicated to
research, nor can the data leave the hospital network for thereasons of privacy. For
this purpose, a novel batch system called GridFactory has been tested along- side
with the well-known batch system Condor. GridFactory’s main benefits, compared
to other batch systems, lie in its virtualization support and firewall friendliness.

The tests involved running visual feature extraction from 50’000 anonymized
medical images on a small local grid of 20 desktop computers.A comparisons
with a Condor based batch system in the same computers is thenpresented. The
performance of GridFactory is found satisfactory.

Keywords. Grid, cluster computing, image analysis

Introduction

Over 70 000 images are produced daily by the radiology department of the Geneva Uni-
versity Hospitals [7]. Proper analysis by researchers of such a flow of images is impos-
sible with single desktop PC’s. Thus, a batch computing system and programming tools
for it are needed. A case used in this paper is content based information retrieval (CBIR)
of medical images. In a CPU-intensive process called indexing, features are extracted
from images. Based on these features, images can be comparedwith each other. A typi-
cal medical application of this would be to compare if a new image of tissue resembles
earlier images of malignant tumors.

GridFactory is a system for aggregating computing resources on local and wide area
networks in order to carry out large-scale batch computations.1 It is currently unreleased
and under development. The work described here was carried out with an early pre-
release of the software. The GridFactory system consists of(1) a command line user
interface, used to submit batch jobs to (2) a server running the Apache [16] httpd server
with modules providing the interface for job management, and (3) a Java application

1Due to the current requirement that data produced in the hospital does not leave the hospital, we do not
discuss inter-organizational computing clusters in this paper; for these, see e.g. [20].



called GridWorker, running on each worker node, that pulls jobs from the server, executes
them and uploads results back to the server.

The GridWorker software was installed on a cluster of 20 standard hospital work-
stations running Windows XP in a hospital seminar room (see [19]). While there are
many batch job systems or “Local Resource Management Systems” (LRMS’s) available2

GridFactory has some features that make it well suited for environments like the Geneva
University Hospitals (HUG), namely:

• dynamic pools; GridWorkers simply periodically request a job. If a job is avail-
able for execution, the server checks the requirements of the job with the permis-
sions and capabilities of the requesting GridWorker and (ifsuccessful) allocates
the job to the GridWorker. If the GridWorker program is interrupted (or the com-
puter running it crashes), the server re-allocates the job to another requester. This
is useful since the worker nodes in a hospital environment can contain normal PC
workstations that the users can turn off or re-boot occasionally.

• software repository integration; jobs can require one or several specific soft-
ware packages to be available on the execution host. GridWorkers consult a soft-
ware catalog that contains information on where to downloadand how to install
software packages. If a matching software package is found for a given job, Grid-
Worker downloads and installs it before the job is executed.This is useful in gen-
eral, since it removes the burden of manual software packageinstallation in the
worker nodes.

• virtual machine provisioning; a given set of software requirements may only be
available on a certain operating system. Jobs can also explicitly require an operat-
ing system (typically Linux) that differs from the one hosting GridWorker. In this
case, GridWorker can download and boot a virtual machine image that matches
the required operating system. The job is then executed inside the virtual ma-
chine. The virtualization layer of GridFactory allows any virtualization software
to be used. Currently, VirtualBox [23] and QEMU [5] virtual machine images
have been tested and are available in our catalog. This feature, naturally, allows
one to execute Linux jobs in Windows workstations.

• stateless, firewall-friendly HTTPS communicationsboth from the job submit-
ter and job requester to the server. Submissions and requests proceed via standard
two-way authenticated HTTPS communication - always initiated by the submitter
or requester (not the server). This means GridWorkers can operate on a fire-walled
environment (for as long as they can send requests to port 443) and behind net-
work address translation (NAT) sub-networks. The virtual machines do not need
dedicated IP addresses, either.

• virtual organization integration ; all submitters and resources (including execu-
tion hosts running GridWorkers) are identified by an X.509 certificate3. A virtual
organization is defined by a text file on a web server, containing a list of distin-
guished names of such certificates. On the GridFactory server, permissions can
be assigned to such virtual organizations - or to individualdistinguished names.

2Popular batch job systems that can utilize Windows XP resources include Condor [17] and Sun Grid Engine
[22].

3For convenience, a default test certificate can be used - effectively rendering the system insecure, which in
some situations may be acceptable on a closed network.



Servers and GridWorkers can choose only to support certain virtual organizations.
A person submitting a job can choose to allow only members of certain virtual
organizations to execute her jobs (and access the input filesof the jobs).

In related work, batch job processing systems (also known ascluster computing
systems or LRMS’s) have been a subject of many studies, including [6,12,17]. Public
resource computing, made famous by BOINC [4] uses resourcesthat are maintained by
volunteer participants. Virtualization, i.e. separatingthe job execution environment from
the host computer has been promoted in [10]. Grid computing,often characterized as
“a system that coordinates resources that are not subject tocentralized control, using
standard, open, general-purpose protocols and interfacesto deliver nontrivial qualities of
service” [11] can combine geographically distributed resources by a Grid middleware.

“Campus grids” or “desktop grids” have been discussed in [15,14]. Practical desktop
grid projects include Sztaki [3] and Enabling Desktop Gridsfor e-Science EDGeS [2].
Both these projects use BOINC software.

An exhaustive comparison of batch systems, public resourcecomputing and virtual-
ization support in desktop Grids would be impossible in the scope of this paper. However,
we can state the features of each of these that are present in GridFactory, namely:

• job descriptions and data transfers in the style of a batch system,
• certificate enforced security in all communications,
• initial support to a Grid middleware, namely NorduGrid ARC [9], so that ARC

can use a GridFactory cluster as a LRMS resource,
• job execution in a completely isolated virtual machine (that does not communicate

through network connections).

The rest of this paper is organized as follows. In Section 1, we give a short presen-
tation of the GridFactory software. In Section 2, we describe the feature extraction task
run by GridFactory. Section 3 presents the measurements of job execution times and how
they compare to those obtained using two other systems. Finally, Section 4 contains a
summary and discussion.

1. GridFactory

The GridFactory system consists of three main components; acommand line interface
for job submission and manipulation, a server component with queue and spool daemons;
and the GridWorker client software. A job definition file is infact a “shell” executable
file with extra tags that are only comments for shell, and interpreted by the components.
They define inputs, outputs and requirements for the job.

1.1. Job Description

A compute job is described by a record in the database table. This record contains in-
formation on where to download input files and upload output files, the current status of
the job, the requirements of the jobs etc. All fields of a job record are readable through a
web service.



1.2. Job Submission

Job submission can be done with the provided command line utilities or using the Java
API or simply standard HTTPS/WEBDAV directory creation andfile uploading. Sub-
mitting a job consists in creating a new directory in the job spool directory on the server,
served via HTTPS, and subsequently creating a file called “job” in this directory. The file
called “job” is a shell script that contains directives in-lined as comments.

1.3. Job Preparation

The spool daemon on the server periodically scans the spool directory and when a new
job is found, parses these directives in the “job” file and creates a corresponding record
in the database. This daemon also checks that the requested software is available in the
software catalog.

1.4. Job Execution

The software catalog allows dependencies among the software packages. These depen-
dencies are resolved by the GridWorker. The resolver may detect that a package requires
a different operating system than in the node hosting the GridWorker. In this case, or in
the case that virtualization is requested by the job or the GridWorker configuration, the
job is run inside a virtual machine. The GridWorker regularly scans the job database on
the GridFactory server. When a new job is found, input files are downloaded from the
server via HTTPS, the job is executed and output files are uploaded to the server via
HTTPS. During such a cause of events, the GridWorker regularly updates the database
with information on the job status.

1.5. Job Query and Manipulation

Once a job has been submitted, the only field of a job record that is modifiable by the
submitter or the GridWorker is the status field. By modifyingthis field, the submitter
can prompt the worker node daemon to kill, pause or resume thejob or upload the cur-
rent stdout and stderr of the job to the server - from where it can then be downloaded.
Modifying this field also allows a GridWorker to request the job and report on its status.

1.6. Example

For our example (see next section), 50 GridFactory jobs werecreated by an external
script. A job contains a job script with in-lined GridFactory directives, as shown below.

#GRIDFACTORY -r VM/Linux/Sarge
#GRIDFACTORY -i 1000images1.tar python-local.py sources.tar
#GRIDFACTORY -o features.tar.gz
python python-local.py 1000images1.tar

The “-r” indicates that the job requires a Linux Sarge execution environment. Input
and output are indicated by “-i” and “-o”, respectively. Thejob is submitted with the
command psub.



Technically, the command psub simply issues a “create new directory” command
over HTTPS then upload the script and its inputs to this directory. A GridWorker then
downloads the files and runs the job. When the job is finished, the GridWorker uploads
the output file(s) back to the GridFactory server.

To keep track of and allow GridWorkers to pick up jobs, the GridWorker server uses
a MySQL database. All interaction of the GridWorkers with this database proceeds over
HTTPS via a specially written Apache module.

In this chain of events, compared to traditional batch systems, the unique features of
GridFactory are: (1) Scheduling is done by the GridWorkers.(2) File transfers are done
by the GridWorkers and no shared file system is needed. (3) GridWorkers initiate all
network connections and need no open inbound ports. (4) All traffic is over HTTPS. (5)
Software needed by the jobs is installed by GridWorkers on the fly. (6) In this case, the
software in question is a virtual machine image. (7) Jobs arerun inside a virtual machine.

2. Feature Extraction with GIFT

The Gnu Image Finding Tool (GIFT, see [1]) is a content-basedimage retrieval software
package [21]. The software extracts features from images and matches them with stored
features to find similar images [18]. Though feature extraction (indexing) typically takes
only a few seconds per image with current hardware, indexinglarge image collections
like the ImageCLEFMed reference database [8] can take hours(35 hours for a collection
of 50’000 images is typical on a modern CPU). To speed up indexing, the feature extrac-
tion task can be parallelized in such a way that some of the tasks can be executed with a
batch system.

As in previous reports ([20,19]), we have used a database of 50’000 medical images
with a simple package generator program. Though the original images are in JPEG for-
mat and in varying sizes, they are normalized to 256x256 pixel PPM format, and pack-
aged in sets of 1000 images by the generator. The size of the package is∼400 MB.

The image sets, together with the feature extraction program source code are copied
to the execution nodes. The execution on the nodes consists of unpacking the set of
images, compiling the feature extraction program and performing feature extraction for
each of the images with results stored in a local file. After all jobs have finished and their
result files copied to the server, the results can be combined.

Producing a 1000 image set takes between 2 to 10 minutes, and the whole process
of producing the 50 sets takes an average of 200 minutes on a modern computer. The
extraction of features from a set typically takes 30 to 60 minutes.4 In an ideal case, the
computing nodes readily finish their earlier tasks so that the total execution time is “total
image set generation time” plus “total feature extraction computation time” plus “result
combination time”. A reliable cluster computing system with fast data transfers should
come close to this.

4One can deduce from the figures that this task could be optimized by using smaller sets. The size of 1000
is for compatibility for our benchmarking. Smaller sets would increase the overhead, too.



20 CPU local VM cluster with Condor 240 min

20 CPU local VM cluster with GridFactory 270 min

Table 1. Comparison of running times of feature extraction on different clusters

3. Measurements and Results

Previously, we have tested and compared medical image indexing in local and remote
Grid clusters [19]. Our sample collection consists of 50’000 medical images. The local
cluster’s LRMS was Condor running inside a VMware virtual machine ([24]). The local
cluster performance was found better, mainly because of thelarge size of the input files.

Here, we compare the performance of the local cluster running GridFactory with
that of the same cluster running Condor.

The local cluster consists of 20 “old” Compaq Evo 510 (Pentium 4, 2.8 GHz, 768
MB RAM) computers.5 The computers were equipped with the standard hospital instal-
lations of Windows XP (with anti-virus software). The network connectivity of these
computers was, likewise, the same as for any hospital desktop computer, i.e. they belong
to the same sub-network as other desktops in the main hospital area, and get their IP
addresses from the same address pool.

For both solutions (Condor and GridFactory), there were more than one computing
nodes available for each of the submitted job. In fact, because of the slight over- capacity
of the cluster, at least one node was idle at any given time. The results are shown in
table 1. It should be noticed that in our previous comparisons, the same analysis in a
remote cluster took 537 min, so both Condor and GridFactory in a local cluster can be
considered efficient.

The reason for GridFactory/QEMU being slightly slower thanCondor/VMware is
related to two issues:

• VMware is faster than QEMU. The average job execution time with VMware
was 42 minutes while it was 49 minutes for QEMU. In modern computers, the
difference would be larger due to the fact that VMware utilizes the virtualization
features of modern CPU’s quite efficiently.

• GridWorker actually copies the input files twice: it first downloads input files from
the server, then copies them into the virtual machine via thevirtual network inter-
face.6 The longer preparation (“staging”) time of jobs can be seen,too (Figure 1).
The graph indicates that one of the computing nodes failed tofinish a job but that
it was automatically adopted by another node.

Though in our tests, the Condor/VWware solution performed slightly better than
GridFactory, we consider that the benefits explained below compensate this disadvan-
tage.

It should be noted that the fact that GridWorker can run on a host machine and con-
trol jobs running inside a virtual machine is a crucial security feature. It means that the
job running in the virtual machine can be blocked from havingnetwork access, implying

5It should be noticed that the processor of these computers does not support virtualization extensions, thus
making the virtual machines run significantly slower than they would on more recent hardware; for details
about hardware level virtualization support see e.g. [13].

6The last step is in fact usually more time-consuming than thetransfer from the server.



 0

 20

 40

 60

 80

 100

 120

 0  10  20  30  40  50

T
im

e 
(m

in
ut

es
)

Job number

Staging time (min)
Executing time (min)

Figure 1. Job staging and execution times.

that a desktop user only has to trust the GridWorker software– not the compute job ex-
ecuting inside the virtual machine. GridWorker could perfectly well have been run like
the Condor daemons,insidea virtual machine, but then the compute jobs themselves
would run on a machine with network access; in particular with local area network ac-
cess - something which is often not acceptable in a production setup in an environment
with privacy and security requirements like those of a hospital. For Condor, this situation
is aggravated by the fact that the Condor daemons running inside the virtual machines
require inbound network ports to be open.

It should also be noted, too, that QEMU virtual machine management functionality
(e.g. booting up a QEMU virtual machine disk image) is not part of GridFactory. Grid-
Factory relies on such functionality being provided by software packages in the software
catalog. The current software catalog contains QEMU and VirtualBox software pack-
ages. In fact the overhead of copying input files into the virtual machine could easily
be eliminated by using the shared-folder capabilities of virtualization engines such as
VMware and VirtualBox.

Finally it should be noted that the GridWorkers could in facthave been configured
to run a job while at the same time downloading input files for the next job. With such a
configuration, GridFactory can be expected to achieve totalexecution times close to the
ideal scenario described above.

4. Summary and discussion

We have carried out preliminary performance tests of a new batch system, GridFactory,
by using it to carry out feature extraction on a large number of medical images. The run-



ning times were compared to those of previous runs on anotherLocal Resource Manage-
ment System.

Despite the fact that GridFactory is not yet a finished or mature system, the results
were encouraging:

Performance-wise GridFactory compares favorably to othersystems tested previ-
ously. The tests ran slower on GridFactory than on Condor, but the reasons for this are
well understood.

Feature-wise, GridFactory is already a potent system with an integrated software
catalog, virtual machine provisioning, dynamic pools of worker nodes, integrated virtual
organization support and firewall-friendliness. Althoughnot explored in production yet,
in particular the level of security achieved by the novel virtualization approach combined
with the virtual organization support is import in a hospital setting, where it must be
possible to strictly limit who and which machines can gain access to which files.

References

[1] Gift, GNU image finding tool. http://www.gnu.org/software/gift/, 2005.
[2] Edges.http://www.edges-grid.eu/, 2008.
[3] Sztaki desktop grid.http://www.desktopgrid.hu/, 2008.
[4] David P. Anderson. Boinc: A system for public-resource computing and storage. InFifth IEEE/ACM

International Workshop on Grid Computing (GRID’04), pages 4–10, 2003.
[5] F. Bellard. Qemu, a fast and portable dynamic translator. In Proc. Usenix 2005 Annual Technical

Conference, pages 41–46, 2005.
[6] R. Buyya. High Performance Cluster Computing: Architectures and Systems. Prentice-Hall, 1999.
[7] Adrien Depeursinge, Henning Muller, Asmaa Hidki, Pierre-Alexandre Poletti, Alexandra Platon, and

Antoine Geissbuhler. ImageâĂŞbased diagnostic aid for interstitial lung disease withsecondary data
integration. InSPIE Medical Imaging, San Diego, CA, USA, February 2007.

[8] Thomas Deselaers, Henning Müller, Paul Clough, HermannNey, and Thomas M. Lehmann. The CLEF
2005 automatic medical image annotation task.International Journal in Computer Vision, 74(1):51–58,
2007.

[9] M. Ellert, M. Gronager, A. Konstantinov, B. Konya, J. Lindemann, I. Livenson, J.L. Nielsen, M. Ni-
inimaki, O. Smirnova, and A. Waananen. Advanced resource connector middleware for lightweight
computational Grids.Future Generation computer systems, 23(2):219–240, 2007.

[10] Renato J. Figueiredo, Peter A. Dinda, and Jose A. B. Fortes. A case for grid computing on virtual
machines.Distributed Computing Systems, International Conferenceon, 0:550, 2003.

[11] I. Foster. What is the grid? - a three point checklist.GRIDtoday, 1(6), July 2002.
[12] E. Heymann, M. A. Senar, E. Luque, and M. Livny. Efficientresource management applied to master-

worker applications.J. Parallel Distrib. Comput., 64(6):767–773, 2004.
[13] Intel. Intel virtualization technology.Intel Technology Journal, 10(3), 2006.
[14] D. Johnson. Desktop grids. In A. Abbas, editor,Grid Computing – A Practical Guide to Technology

and Applications, pages 75–98. Charles River Media, 2004.
[15] P. Kacsuk, N. Podhorszki, and T. Kiss. Scalable desktopgrid system. InProc. High Performance

Computing for Computational Science - VECPAR 2006, pages 27–38. Springer, 2007.
[16] B. Laurie and P. Laurie.Apache: the Definite Guide. O’Reilly, 3 edition, 2002.
[17] Michael Litzkow, Miron Livny, and Matthew Mutka. Condor - a hunter of idle workstations. InPro-

ceedings of the 8th International Conference of Distributed Computing Systems, June 1988.
[18] Henning Müller, David McG. Squire, Wolfgang Müller, and Thierry Pun. Efficient access methods for

content–based image retrieval with inverted files.IEEE Transactions on Image Processing, (5), 2004.
[19] Marko Niinimaki, Xin Zhou, Adrien Depeursinge, Antoine Geissbuhler, and Henning Müller. Building

a community grid for medical image analysis inside a hospital, a case study. InWorkshop on Grids for
medical imaging at MICCAI 2008, September 2008.



[20] Mikko Pitkanen, Xin Zhou, Antti E. J. Hyvärinen, and Henning Müller. Using the Grid for enhancing the
performance of a medical image search engine. In21th IEEE Symposium on Computer–Based Medical
Systems (CBMS), Jyväskylä, Finland, June 2008.

[21] David McG. Squire, Henning Müller, Wolfgang Müller, Stéphane Marchand-Maillet, and Thierry Pun.
Design and Evaluation of a Content-based Image Retrieval System, chapter 7, pages 125–151. Idea
Group Publishing, 2001.

[22] Sun Grid Engine Team. N1 grid engine 6 administration guide. Technical report, Sun Microsystems,
2005.

[23] Sun Microsystems. Sun xvm virtualbox user manual. Technical report, Sun Microsystems, 2008. Avail-
able at http://www.virtualbox.org.

[24] VMWareInc. Vmware – technical white paper. Technical report, VMWareInc, 1999. Available at
http://www.vmware.com.


