Running Medical Image Analysis on
GridFactory Desktop Grid

Frederik ORELLANA2, Marko NIINIMAKI P, Xin ZHOUP, Peter ROSENDAHE,
Henning MUELLER? and Anders WAANANEN!

aNiels Bohr Institute, Copenhagen University, Denmark
bMedical Informatics, Geneva University Hospitals and Wmsity of Geneva,
Switzerland

Abstract.

At the Geneva University Hospitals work is in progress talsh a computing
facility for medical image analysis, potentially using el hundreds of desktop
computers. Typically, hospitals do not have a computerstfucture dedicated to
research, nor can the data leave the hospital network faoettsons of privacy. For
this purpose, a novel batch system called GridFactory hes tested along- side
with the well-known batch system Condor. GridFactory’s maenefits, compared
to other batch systems, lie in its virtualization suppod &irewall friendliness.

The tests involved running visual feature extraction fro@0B0 anonymized
medical images on a small local grid of 20 desktop comput&rsomparisons
with a Condor based batch system in the same computers iptesanted. The
performance of GridFactory is found satisfactory.

Keywords. Grid, cluster computing, image analysis

Introduction

Over 70 000 images are produced daily by the radiology deyeant of the Geneva Uni-
versity Hospitals [7]. Proper analysis by researchers ofi suflow of images is impos-
sible with single desktop PC’s. Thus, a batch computingesysind programming tools
for it are needed. A case used in this paper is content bakadhation retrieval (CBIR)
of medical images. In a CPU-intensive process called indpXieatures are extracted
from images. Based on these features, images can be conititezhch other. A typi-
cal medical application of this would be to compare if a nevagm of tissue resembles
earlier images of malignant tumors.

GridFactory is a system for aggregating computing resauodocal and wide area
networks in order to carry out large-scale batch computafidt is currently unreleased
and under development. The work described here was cardedith an early pre-
release of the software. The GridFactory system consis{4)od command line user
interface, used to submit batch jobs to (2) a server runtiaghpache [16] httpd server
with modules providing the interface for job management]) a Java application

1Due to the current requirement that data produced in theifabsipes not leave the hospital, we do not
discuss inter-organizational computing clusters in thiggy; for these, see e.qg. [20].

called GridWorker, running on each worker node, that polisjfrom the server, executes
them and uploads results back to the server.

The GridWorker software was installed on a cluster of 20dath hospital work-
stations running Windows XP in a hospital seminar room (468)][While there are
many batch job systems or “Local Resource Management Sg&{@RMS’s) availablé
GridFactory has some features that make it well suited feirenments like the Geneva
University Hospitals (HUG), namely:

e dynamic pools GridWorkers simply periodically request a job. If a job isad-
able for execution, the server checks the requirementegbthwith the permis-
sions and capabilities of the requesting GridWorker andydcessful) allocates
the job to the GridWorker. If the GridWorker program is intgsted (or the com-
puter running it crashes), the server re-allocates theg@mother requester. This
is useful since the worker nodes in a hospital environmemtoatain normal PC
workstations that the users can turn off or re-boot occadlipn

e software repository integration; jobs can require one or several specific soft-
ware packages to be available on the execution host. Grikkioconsult a soft-
ware catalog that contains information on where to downhadi how to install
software packages. If a matching software package is founa given job, Grid-
Worker downloads and installs it before the job is executéds is useful in gen-
eral, since it removes the burden of manual software packesgalation in the
worker nodes.

¢ virtual machine provisioning; a given set of software requirements may only be
available on a certain operating system. Jobs can alsacékplequire an operat-
ing system (typically Linux) that differs from the one hosfiGridWorker. In this
case, GridWorker can download and boot a virtual machingéthat matches
the required operating system. The job is then executeddnsie virtual ma-
chine. The virtualization layer of GridFactory allows aniytwalization software
to be used. Currently, VirtualBox [23] and QEMU [5] virtualathine images
have been tested and are available in our catalog. Thisréataturally, allows
one to execute Linux jobs in Windows workstations.

o stateless, firewall-friendly HTTPS communicationsboth from the job submit-
ter and job requester to the server. Submissions and requresteed via standard
two-way authenticated HTTPS communication - always itetleby the submitter
or requester (not the server). This means GridWorkers caratgon a fire-walled
environment (for as long as they can send requests to pojtagBbehind net-
work address translation (NAT) sub-networks. The virtuakiines do not need
dedicated IP addresses, either.

e virtual organization integration ; all submitters and resources (including execu-
tion hosts running GridWorkers) are identified by an X.508ifieate®. A virtual
organization is defined by a text file on a web server, conigiai list of distin-
guished names of such certificates. On the GridFactory sgreamissions can
be assigned to such virtual organizations - or to individlisfinguished names.

2popular batch job systems that can utilize Windows XP resminclude Condor [17] and Sun Grid Engine
[22].

SFor convenience, a default test certificate can be usedctig#iy rendering the system insecure, which in
some situations may be acceptable on a closed network.

Servers and GridWorkers can choose only to support ceridiralorganizations.
A person submitting a job can choose to allow only membersedan virtual
organizations to execute her jobs (and access the inpubfitbe jobs).

In related work, batch job processing systems (also knowdwster computing
systems or LRMS’s) have been a subject of many studies,dimgdu6,12,17]. Public
resource computing, made famous by BOINC [4] uses resotieégare maintained by
volunteer participants. Virtualization, i.e. separatihg job execution environment from
the host computer has been promoted in [10]. Grid computifign characterized as
“a system that coordinates resources that are not subjexrtvalized control, using
standard, open, general-purpose protocols and interfackdiver nontrivial qualities of
service” [11] can combine geographically distributed teses by a Grid middleware.

“Campus grids” or “desktop grids” have been discussed iril[4h Practical desktop
grid projects include Sztaki [3] and Enabling Desktop Gifiolse-Science EDGeS [2].
Both these projects use BOINC software.

An exhaustive comparison of batch systems, public resaaegputing and virtual-
ization support in desktop Grids would be impossible in twpe of this paper. However,
we can state the features of each of these that are preseridifeGtory, namely:

e job descriptions and data transfers in the style of a batstery,

o certificate enforced security in all communications,

e initial support to a Grid middleware, namely NorduGrid AR@,[so that ARC
can use a GridFactory cluster as a LRMS resource,

e job executionin a completely isolated virtual machine{th@es not communicate
through network connections).

The rest of this paper is organized as follows. In Sectioné give a short presen-
tation of the GridFactory software. In Section 2, we deseth®e feature extraction task
run by GridFactory. Section 3 presents the measuremertdb efjecution times and how
they compare to those obtained using two other systemsll\siBaction 4 contains a
summary and discussion.

1. GridFactory

The GridFactory system consists of three main componerdsiranand line interface
for job submission and manipulation, a server componeihtgueue and spool daemons;
and the GridWorker client software. A job definition file isfact a “shell” executable
file with extra tags that are only comments for shell, andrprieted by the components.
They define inputs, outputs and requirements for the job.

1.1. Job Description

A compute job is described by a record in the database tahls.r&cord contains in-
formation on where to download input files and upload outpes fithe current status of
the job, the requirements of the jobs etc. All fields of a jotorel are readable through a
web service.

1.2. Job Submission

Job submission can be done with the provided command litidagtior using the Java
API or simply standard HTTPS/WEBDAV directory creation dild uploading. Sub-
mitting a job consists in creating a new directory in the jpbd directory on the server,
served via HTTPS, and subsequently creating a file calldaf fjothis directory. The file

called “job” is a shell script that contains directives indd as comments.

1.3. Job Preparation

The spool daemon on the server periodically scans the sjr@ctory and when a new
job is found, parses these directives in the “job” file anchtes a corresponding record
in the database. This daemon also checks that the requeftedre is available in the
software catalog.

1.4. Job Execution

The software catalog allows dependencies among the sefpankages. These depen-
dencies are resolved by the GridWorker. The resolver masctidiat a package requires
a different operating system than in the node hosting thé\W@oiker. In this case, or in
the case that virtualization is requested by the job or thd\W@wrker configuration, the
job is run inside a virtual machine. The GridWorker regyladans the job database on
the GridFactory server. When a new job is found, input files downloaded from the
server via HTTPS, the job is executed and output files areadgld to the server via
HTTPS. During such a cause of events, the GridWorker relyulgndates the database
with information on the job status.

1.5. Job Query and Manipulation

Once a job has been submitted, the only field of a job recordishaodifiable by the
submitter or the GridWorker is the status field. By modifyitds field, the submitter
can prompt the worker node daemon to kill, pause or resumplher upload the cur-
rent stdout and stderr of the job to the server - from wherauit then be downloaded.
Modifying this field also allows a GridWorker to request thé jand report on its status.

1.6. Example

For our example (see next section), 50 GridFactory jobs werated by an external
script. A job contains a job script with in-lined GridFagtatirectives, as shown below.

#GRI DFACTORY -r VM Li nux/ Sar ge

#GRI DFACTORY -i 1000i magesl.tar python-local.py sources.tar
#GRI DFACTORY -0 features.tar.gz

pyt hon pyt hon-1ocal . py 1000i magesl.tar

The “-r” indicates that the job requires a Linux Sarge exiecu¢nvironment. Input
and output are indicated by “-i” and “-0”, respectively. Tjob is submitted with the
command psub.

Technically, the command psub simply issues a “create negctdiry” command
over HTTPS then upload the script and its inputs to this timgc A GridWorker then
downloads the files and runs the job. When the job is finishegl@ridWorker uploads
the output file(s) back to the GridFactory server.

To keep track of and allow GridWorkers to pick up jobs, thed®vorker server uses
a MySQL database. All interaction of the GridWorkers witfsttiatabase proceeds over
HTTPS via a specially written Apache module.

In this chain of events, compared to traditional batch systehe unique features of
GridFactory are: (1) Scheduling is done by the GridWorké¥File transfers are done
by the GridWorkers and no shared file system is needed. (JV@rikers initiate all
network connections and need no open inbound ports. (4y#fid¢ is over HTTPS. (5)
Software needed by the jobs is installed by GridWorkers erflih (6) In this case, the
software in question is a virtual machine image. (7) Jobswarénside a virtual machine.

2. Feature Extraction with GIFT

The Gnu Image Finding Tool (GIFT, see [1]) is a content-based)e retrieval software
package [21]. The software extracts features from imagesraaiches them with stored
features to find similar images [18]. Though feature extoactindexing) typically takes
only a few seconds per image with current hardware, indebdrge image collections
like the ImageCLEFMed reference database [8] can take t{8&1sours for a collection
of 50’000 images is typical on a modern CPU). To speed up iimgexhe feature extrac-
tion task can be parallelized in such a way that some of tlks tzen be executed with a
batch system.

As in previous reports ([20,19]), we have used a databas@ 008 medical images
with a simple package generator program. Though the otigimeges are in JPEG for-
mat and in varying sizes, they are normalized to 256x2586 piRd/ format, and pack-
aged in sets of 1000 images by the generator. The size of tkage is~400 MB.

The image sets, together with the feature extraction prog@urce code are copied
to the execution nodes. The execution on the nodes congisispacking the set of
images, compiling the feature extraction program and penifug feature extraction for
each of the images with results stored in a local file. AftEjods have finished and their
result files copied to the server, the results can be combined

Producing a 1000 image set takes between 2 to 10 minuteshamndhiple process
of producing the 50 sets takes an average of 200 minutes ordarmcomputer. The
extraction of features from a set typically takes 30 to 60utés? In an ideal case, the
computing nodes readily finish their earlier tasks so thatdltal execution time is “total
image set generation time” plus “total feature extractiomputation time” plus “result
combination time”. A reliable cluster computing systemhnfiast data transfers should
come close to this.

40ne can deduce from the figures that this task could be optitiy using smaller sets. The size of 1000
is for compatibility for our benchmarking. Smaller sets Wbimcrease the overhead, too.

20 CPU local VM cluster with Condor 240 min
20 CPU local VM cluster with GridFactory 270 min

Table 1. Comparison of running times of feature extraction on déferclusters

3. Measurements and Results

Previously, we have tested and compared medical image imgléx local and remote
Grid clusters [19]. Our sample collection consists of 5@®dedical images. The local
cluster’s LRMS was Condor running inside a VMware virtualamiae ([24]). The local
cluster performance was found better, mainly because déthe size of the input files.

Here, we compare the performance of the local cluster rgn@iridFactory with
that of the same cluster running Condor.

The local cluster consists of 20 “old” Compaq Evo 510 (Pentd) 2.8 GHz, 768
MB RAM) computers: The computers were equipped with the standard hospitallinst
lations of Windows XP (with anti-virus software). The netkaonnectivity of these
computers was, likewise, the same as for any hospital desktmputer, i.e. they belong
to the same sub-network as other desktops in the main hbapéa, and get their IP
addresses from the same address pool.

For both solutions (Condor and GridFactory), there wereenloan one computing
nodes available for each of the submitted job. In fact, beeafithe slight over- capacity
of the cluster, at least one node was idle at any given time. résults are shown in
table 1. It should be noticed that in our previous compasgstime same analysis in a
remote cluster took 537 min, so both Condor and GridFactogy local cluster can be
considered efficient.

The reason for GridFactory/QEMU being slightly slower ti@ondor/\VMware is
related to two issues:

e VMware is faster than QEMU. The average job execution timt WiMware
was 42 minutes while it was 49 minutes for QEMU. In modern cotegs, the
difference would be larger due to the fact that VMware wtiizhe virtualization
features of modern CPU’s quite efficiently.

e GridWorker actually copies the input files twice: it first dolvads input files from
the server, then copies them into the virtual machine viaitteal network inter-
face® The longer preparation (“staging”) time of jobs can be sémm(Figure 1).
The graph indicates that one of the computing nodes failéidith a job but that
it was automatically adopted by another node.

Though in our tests, the Condor/VWware solution performeghty better than
GridFactory, we consider that the benefits explained belompensate this disadvan-
tage.

It should be noted that the fact that GridWorker can run onst hrachine and con-
trol jobs running inside a virtual machine is a crucial ségueature. It means that the
job running in the virtual machine can be blocked from haviegvork access, implying

5t should be noticed that the processor of these computes dot support virtualization extensions, thus
making the virtual machines run significantly slower thaeytlwould on more recent hardware; for details
about hardware level virtualization support see e.g. [13].

6The last step is in fact usually more time-consuming tharirémesfer from the server.

120 T T

T T
Staging time (min) —

100 1

80 - 1

60 - 1

Time (minutes)

Job number

Figure 1. Job staging and execution times.

that a desktop user only has to trust the GridWorker softwaret the compute job ex-
ecuting inside the virtual machine. GridWorker could petfiewell have been run like
the Condor daemongside a virtual machine, but then the compute jobs themselves
would run on a machine with network access; in particulahwital area network ac-
cess - something which is often not acceptable in a produsgtup in an environment
with privacy and security requirements like those of a hiaspi-or Condor, this situation

is aggravated by the fact that the Condor daemons runnimggintise virtual machines
require inbound network ports to be open.

It should also be noted, too, that QEMU virtual machine managnt functionality
(e.g. booting up a QEMU virtual machine disk image) is not pdGridFactory. Grid-
Factory relies on such functionality being provided by wsaifte packages in the software
catalog. The current software catalog contains QEMU antu®iBox software pack-
ages. In fact the overhead of copying input files into theuartmachine could easily
be eliminated by using the shared-folder capabilities afuailization engines such as
VMware and VirtualBox.

Finally it should be noted that the GridWorkers could in faave been configured
to run a job while at the same time downloading input files figr mext job. With such a
configuration, GridFactory can be expected to achieve éx@tution times close to the
ideal scenario described above.

4. Summary and discussion

We have carried out preliminary performance tests of a néshtsystem, GridFactory,
by using it to carry out feature extraction on a large numlbienedical images. The run-

ning times were compared to those of previous runs on anbtiea Resource Manage-
ment System.

Despite the fact that GridFactory is not yet a finished or measystem, the results
were encouraging:

Performance-wise GridFactory compares favorably to o#lystems tested previ-
ously. The tests ran slower on GridFactory than on CondartHaureasons for this are
well understood.

Feature-wise, GridFactory is already a potent system witlngegrated software
catalog, virtual machine provisioning, dynamic pools ofker nodes, integrated virtual
organization support and firewall-friendliness. Althouwgit explored in production yet,
in particular the level of security achieved by the noveluatization approach combined
with the virtual organization support is import in a hosp#atting, where it must be
possible to strictly limit who and which machines can gaicess to which files.

References

[1] Gift, GNU image finding tool. http://www.gnu.org/sofese/gift/, 2005.

[2] Edges.http://wwm. edges-grid. eu/,2008.

[3] Sztaki desktop gridht t p: // www. deskt opgri d. hu/, 2008.

[4] David P. Anderson. Boinc: A system for public-resouraenputing and storage. IRifth IEEE/ACM
International Workshop on Grid Computing (GRID'04pges 4-10, 2003.

[5] F. Bellard. Qemu, a fast and portable dynamic translator Proc. Usenix 2005 Annual Technical
Conferencepages 41-46, 2005.

[6] R. Buyya.High Performance Cluster Computing: Architectures and@&ys Prentice-Hall, 1999.

[7] Adrien Depeursinge, Henning Muller, Asmaa Hidki, Pe@e#lexandre Poletti, Alexandra Platon, and
Antoine Geissbuhler. Imagé@based diagnostic aid for interstitial lung disease siicondary data
integration. INSPIE Medical ImagingSan Diego, CA, USA, February 2007.

[8] Thomas Deselaers, Henning Muller, Paul Clough, Hermdey, and Thomas M. Lehmann. The CLEF
2005 automatic medical image annotation tdskernational Journal in Computer Visioir4(1):51-58,
2007.

[9] M. Ellert, M. Gronager, A. Konstantinov, B. Konya, J. [demann, I. Livenson, J.L. Nielsen, M. Ni-
inimaki, O. Smirnova, and A. Waananen. Advanced resourc@ecior middleware for lightweight
computational GridsFuture Generation computer systeri§(2):219-240, 2007.

[10] Renato J. Figueiredo, Peter A. Dinda, and Jose A. B.eBortA case for grid computing on virtual
machines Distributed Computing Systems, International Conferemte:550, 2003.

[11] I. Foster. What is the grid? - a three point checkl@RIDtoday 1(6), July 2002.

[12] E.Heymann, M. A. Senar, E. Luque, and M. Livny. Efficieasource management applied to master-
worker applicationsJ. Parallel Distrib. Comput.64(6):767—773, 2004.

[13] Intel. Intel virtualization technologyintel Technology Journall0(3), 2006.

[14] D. Johnson. Desktop grids. In A. Abbas, editerid Computing — A Practical Guide to Technology
and Applicationspages 75-98. Charles River Media, 2004.

[15] P. Kacsuk, N. Podhorszki, and T. Kiss. Scalable deskpag system. InProc. High Performance
Computing for Computational Science - VECPAR 2@@)es 27-38. Springer, 2007.

[16] B. Laurie and P. LaurieApache: the Definite GuidéD'Reilly, 3 edition, 2002.

[17] Michael Litzkow, Miron Livny, and Matthew Mutka. Conde a hunter of idle workstations. IRro-
ceedings of the 8th International Conference of DistriduBomputing System3une 1988.

[18] Henning Miller, David McG. Squire, Wolfgang Miiller, @Thierry Pun. Efficient access methods for
content-based image retrieval with inverted filESEE Transactions on Image Processiii§), 2004.

[19] Marko Niinimaki, Xin Zhou, Adrien Depeursinge, Ant@rGeissbuhler, and Henning Mdller. Building
a community grid for medical image analysis inside a hokpataase study. Iiworkshop on Grids for
medical imaging at MICCAI 200&eptember 2008.

[20]

(21]

[22]
(23]

[24]

Mikko Pitkanen, Xin Zhou, Antti E. J. Hyvarinen, and Heng Mdiller. Using the Grid for enhancing the
performance of a medical image search engine1lih IEEE Symposium on Computer—Based Medical
Systems (CBMSJyvaskyla, Finland, June 2008.

David McG. Squire, Henning Mdiller, Wolfgang Miller, &thane Marchand-Maillet, and Thierry Pun.
Design and Evaluation of a Content-based Image RetrievaleBy chapter 7, pages 125-151. Idea
Group Publishing, 2001.

Sun Grid Engine Team. N1 grid engine 6 administratioidgu Technical report, Sun Microsystems,
2005.

Sun Microsystems. Sun xvm virtualbox user manual. gz report, Sun Microsystems, 2008. Avail-
able at http://www.virtualbox.org.

VMWarelnc. Vmware — technical white paper. Technicapart, VMWarelnc, 1999. Available at
http://www.vmware.com.

