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Storage Capacity of Opportunistic Information
Dissemination Systems

Gianluca Rizzo, Noelia Pérez Palma, Marco Ajmone Marsan and Vincenzo Mancuso

Abstract—Floating Content (FC) is a paradigm for localized infrastructure-less content dissemination, that aims at sharing information
among nodes within a restricted geographical area by relying only on opportunistic content exchanges. FC provides the basis for the
probabilistic spatial storage of shared information in a completely decentralized fashion, usually without support from dedicated
infrastructure. One of the key open issues in FC is the characterization of its performance limits as functions of the system parameters,
accounting for its reliance on volatile wireless exchanges and on limited user resources. This paper takes a first step towards tackling
this issue, by elaborating a model for the storage capacity of FC, i.e., for the maximum amount of information that can be stored
through the FC paradigm. The storage capacity of FC, and of similar probabilistic content dissemination systems, is evaluated with a
powerful information theoretical approach, based on a mean field model of opportunistic information exchange. In addition, an
extremely simple explicit approximate expression for storage capacity is derived. The numerical results generated by our analytical
models are compared to the predictions of realistic simulations under different setups, proving the accuracy of our analytical
approaches, and characterizing the properties of the FC storage capacity.

Index Terms—Floating content, Distributed caching, Opportunistic communications, Proactive caching.
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1 INTRODUCTION

Networking of mobile users through opportunistic device-to-
device (D2D) communications has recently received considerable
attention from the research community [1], [2], [3], although
technology to support such infrastructure-less scenario initially
was barely available. In recent years, with the development of
more reliable versions of Wi-Fi Direct [4] and Bluetooth Low
Energy (BLE) [5], and with the standardization of Sidelink in
LTE and 5G [6], [7], [8], opportunistic mobile networks have be-
come a viable possibility. Their application domains, traditionally
including scenarios in which infrastructure is not available, such
as disaster areas or battlefields [9], have now spread to pandemic-
driven warnings and spontaneous protests. Indeed, several coun-
tries have recently invested in the development of proximity-
based applications based on D2D communications to help contact
tracing, thus stimulating technology development in this area. In
addition, smartphone apps like FireChat1 and Bridgefy2, exploit
D2D communications to enable information exchanges either
when Internet access is unavailable, or when localized distribution
is desired, or where infrastructure-based communications are not
trusted. For instance, FireChat was the communication medium of
choice in several civil protests.

The key questions about the usefulness of infrastructure-less
communications are about how fast and reliable they are, and
how much information they can store. While several studies have
shown that localized infrastructure-less content dissemination
schemes such as Floating Content (FC) [10], [11], [12], Locus [13]
or Hovering information [14], [15] can be effective in the above-
mentioned contexts, little has been done so far to quantify their
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storage capacity, which is the focus of this work.
In this paper we focus on FC, which aims at disseminating

information over a defined geographic area (called replication
zone or RZ), based solely on direct D2D connectivity [16]. By so
doing, FC stores information spatially in a probabilistic fashion,
despite the mobility of user devices (UEs) and the unreliability of
information exchanges, and with no need for centralized servers.
Thus, FC can deliver the stored content proactively to users which
are expected to traverse a specific region (the Zone of Interest, or
ZOI), before they reach it. Hence, the main performance metric
in such systems is the success ratio, i.e., the average fraction of
nodes that enter the ZOI with content.

Clearly, guaranteeing (probabilistically) content persistence
and a given target performance in such a volatile setting, without
the support of a centralized static infrastructure, comes at a cost.
The main additional cost as compared to traditional centralized
infrastructure-based solutions (e.g., with respect to commonly
studied distributed information storage schemes in which mobile
UEs cache popular content items [17], [18], [19], [20]), is in
a drastic increase both in content redundancy across the user
population, and in the volume of communications required to
reach the target population of users.

A strong point of FC is that, by enabling direct D2D content
transfer and sharing without routing through access points (APs)
or base stations (BSs), it offers a parsimonious approach to
distributed edge storage because it can achieve higher energy
efficiency while decreasing the utilization of BS resources.

A major open issue for the practical viability of FC as a
distributed edge storage system is the characterization of its
scalability, i.e., of the amount of information that FC is able to
store for a given set of system parameters. This is the problem we
address in this paper.
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1.1 Contribution

In this paper, we propose a simple analytical model of the storage
capacity of probabilistic distributed edge storage systems such as
FC, based on a mean field model of the opportunistic information
exchange, which allows for a first order characterization of the
scaling laws of the storage capacity of these systems. Specifically,
the contributions of this paper are as follows:

• We develop an analytical model of FC performance, based on
a mean field model of the dynamics of the population of users
storing the information items, and of the population of users
which are in the process of exchanging (sending or receiving)
such items;

• We derive analytical expressions of the FC storage capacity, as a
function of node mobility and of the geometry of the replication
zone;

• We formulate an optimization problem for the derivation of the
maximum amount of information which can be stored with FC,
showing that it can be solved efficiently. To the best of our
knowledge, this is the first work to characterize analytically
the storage capacity of probabilistic distributed storage schemes
such as FC;

• We evaluate numerically our results, validating our assumptions
against simulation, under different mobility models, showing
the accuracy of our mean field approach, and characterizing
the properties of FC storage capacity as a function of the main
system parameters.

• Leveraging the insights provided by our model on the FC behav-
ior as an opportunistic information storage system, we derive
an extremely simple and intuitive closed form approximate
expression for FC storage capacity.

This paper builds upon the conference publication [21]. With
respect to the conference version, this paper includes the following
new items:

1) We propose a generalized version of our model, which
applies to system configurations in which some of the UEs
are static, e.g., in order to account for the presence of parked
vehicles that participate in the opportunistic information
exchange and storage. We discuss the impact of the fraction
of static users, revealing interesting tradeoffs.

2) We evaluate the impact of non-uniform mobility models on
the accuracy of our approach, by assessing the quality of
the model performance predictions with both synthetic and
measurement-based mobility traces. We study by simula-
tion the Random Waypoint and Random Direction mobility
models in addition to mobility trajectories from the city
of Luxembourg. In this way, we show that our analytical
model is robust with respect to a relaxation of the uniformity
assumption.

3) We derive a simple explicit approximate expression of the
storage capacity of a FC system, thus enabling an immediate
estimation of system performance, and hence a dimensioning
of the main system parameters that allow meeting specified
goals.

The paper is organized as follows. In Section 2, we discuss
some of the previous literature in the field. In Section 3, we
introduce the main system characteristics, and in Section 4, we
present our mean field approach to performance analysis of FC. In
Section 5, we characterize the storage capacity of FC. In Section 6,
we numerically assess the accuracy of our results, and evaluate

the impact of the main system parameters on FC storage capacity.
Finally, Section 7 concludes the paper.

2 RELATED WORK

Our analysis of the FC paradigm is a contribution to a more
general research effort aimed at optimizing the utilization of re-
sources (bandwidth and user storage) in gossip-based information
diffusion paradigms. Since the epidemic spreading of information
may easily saturate network resources (e.g., as a result of broadcast
storms), a large array of techniques and approaches has been
proposed (see, e.g., [22], [23] and references therein) in order to
obtain an efficient use of resources in content diffusion processes.

These techniques mainly depend on the specific goal of the
content diffusion process. In closed systems, in which nodes
cannot leave a given area, the aim of gossip-based schemes is
to achieve completeness, i.e., to deliver content to all users in the
given area, in the most resource-efficient way [24].

The present work however, like the majority of realistic
applications, focuses on scenarios in which nodes may join and
leave [25] the area. These applications adopt different approaches
to identify the set of users to which a given content should be
delivered. An example is given by schemes for popularity-based
peer-to-peer opportunistic content replication, e.g., for cooperative
in-network content caching [26], [27], [28], [29], [30], where
content must be delivered to a subset of nodes: those that requested
such content. In applications in which the delivery delay plays a
key role, (e.g., delivery of data related to unexpected events, or to
potential safety hazards), the target population coincides with (a
large fraction of) all nodes present in the given area at the time in
which the hazardous or unexpected event takes place [22], [23].

In all such systems, control over content availability and
persistence is achieved by involving in the scheme also nodes
which are not among the set of requesters. Thus, a key perfor-
mance tradeoff is between the amount of involved nodes (and thus
resource utilization) on the one side, and content availability and
likelihood of content persistence on the other. Several techniques
for limiting content replication and/or the amount of involved
nodes have been proposed, based on, e.g., a maximum lifetime
or hop count of the content, among others [31]. In this respect, the
specificity of FC schemes lies in associating content with a given
spatial context, and in controlling the amount of nodes involved
in the scheme by means of location-based criteria, such as the
definition of the RZ borders.

Given the infrastructure-less and probabilistic nature of such
distributed storage paradigms, a crucial issue is determining the
conditions under which content persists for a significant amount
of time in the given area. [17] proposes a model for the interval
of the time during which the content floats. [10] introduces the
criticality condition, i.e., a sufficient condition for the content to
float indefinitely with very high probability, under various mobility
models. [32] demonstrates the feasibility of FC (in terms of ability
to sustain content persistence within the RZ for a given period of
time) even in setups with sparse node distributions. [33] proposes
a model for content persistence for outdoor pedestrian mobility
over large open spaces, such as city squares. [34], [35] characterize
the mean time to information loss in several scenarios, based on
synthetic mobility and on measurement-based vehicular mobility
traces. [36], [37] propose a modeling approach based on mean
field theory and a stochastic susceptible-infected-recovered (SIR)
epidemic model to evaluate content lifetime, and to determine
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sufficient conditions for content persistence. Other works (e.g.,
[38], [39]) focus on how to engineer the replication and storage
strategies in realistic settings in order to efficiently guarantee
a given success probability within a given time range. Despite
focusing on resource efficiency, none of these works investigates
those issues arising when several different contents are exchanged
among a same set of nodes, and thus the impact of their approach
on the amount of content which can be supported in a same area
by the FC scheme.

A few works propose techniques for coping with resource
contention among different contents floating in a same set of
nodes. [40] proposes a content-centric dissemination scheme. Its
solution is based on a policy which sets the order of content
exchanges on a contact between two nodes, and the probability
for a node to drop a content in a way which tries to maximize the
total delivery rate over a set of contents of different popularity. The
paper [41] proposes a scheme in which, in scenarios with several
different floating contents and overlapping RZs, users prioritize
the contents to exchange based on measures such as RZ size, or
total amount of users with content in each RZ. In [42], authors
assume that there are multiple different content items present in
the network and that replicating all of them using FC may lead
to overloading the wireless network and/or the storage capacity
of nodes. In order to avoid these issues, they propose a strategy
which controls the number of copies of a particular content item
within a RZ. None of these works however characterizes the limit
performance of FC in terms of maximum number of contents
which can be supported with a given minimum performance, as a
function of system parameters, like we do in this paper.

An important application of gossip-based information diffu-
sion protocols is distributed caching [43], [44], [45]. In VANETs,
self-organized storage or cloudlets adopt vehicle-to-vehicle com-
munications in order to retain information in a given area for a
range of time, particularly in those conditions in which infrastruc-
ture is not available [46], [47], [48]. However, these works focus
on such issues as the relationship between cache hit ratio and
the amount of content redundancy, on communication overhead,
on reliability, leaving open the key issue of the relationship
between the performance of such caching systems and the limit
capacity of the distributed storage system on which they rely.
[34], [49] characterize the mean time during which information
persists in a FC-based storage system. These works are based on
simulations in various settings (such as highways [35], or city
centers), and on an informal definition of FC-based storage. Most
importantly, they still neglect the characterization of the capacity
of such a distributed storage system. Similar to the present paper,
[50], [51] consider scenarios where a few nodes are static, and
act as “repositories” in order to improve content retrieval and
persistence.

Storage capacity quantifies the amount of information that can
be actually stored, as a function of the number and size of contents
to be made available, and hence it is a fundamental descriptor of
the usefulness of such systems. To the best of our knowledge, the
only work in the literature which tackles a problem similar to the
one we adderss in the present paper is [52]. Its authors consider a
FC-based file storage scheme for vehicular nodes over a two-lane
highway, in which the file is split into blocks, and erasure coding
is used to enable recovery of the whole file. For such a specific
setup, and for the time period in which all blocks keep floating
in the RZ, the authors propose a simple upper bound for storage
capacity, which corresponds to the right member of the inequality

TABLE 1: Main notation used in the paper.

Notation Parameter Unit
M Data storage capacity of each node bits
D Total node density m−2

ψ Fraction of moving nodes m−2

ℵ Ratio of static over moving nodes
γ Intensity (mean number of floating elements

per unit area)
m−2

C0 Mean capacity of the link between two nodes
in contact

bits/s

L Content size bits
R Replication Zone (RZ) radius m
i∈ {s, d} Node label (s for static, d for moving)
gi Mean contact rate per unit area

involving static (resp. moving) nodes s−1m−2

α Linear flow s−1m−1

τ0 Transfer setup time s
τs(τd) Contact time static-moving (resp. moving-

moving) nodes
s

fi(τi) PDF of τi

in our Equation (17) in Section 5. However, they completely omit
the issue of characterizing the tightness of the bound as a function
of system parameters. In addition, their approach is based on an
ad-hoc approach which is only suitable for the considered road
geometry and for the patterns of contact and mobility that the
system geometry produces. As a result, their approach cannot be
generalized to other settings, such as, e.g., the urban vehicular
scenarios that we consider in this paper.

3 SYSTEM DESCRIPTION

In this section we briefly discuss the basic FC operations, and we
define the key performance indicators of a FC system. In addition,
we state the main modeling assumptions that we use in the analysis
of the FC system storage capacity, and we introduce our notation.

3.1 Floating Content basic operation

We consider a plane over which two populations of nodes are
present. The two populations comprise moving (or dynamic – we
use the two terms as synonyms in this paper) and static nodes,
respectively. Each node is equipped with a wireless transceiver
and a data storage. Every node knows its position in space.

We say two nodes are in contact when they are able to directly
exchange information via wireless communications.

At a time t0 that defines the start of the FC system operation, a
node (the seeder) generates a piece of content (e.g., a text message,
or a picture)3.

Within a region of the plane called replication zone (RZ)
that contains the location of the seeder at t0, whenever a node
with content comes in contact with a node without it, content
is exchanged. When a node moves out of the RZ, content is
discarded.

When two nodes come in contact, a setup time τ0 is required
before content transfer, because nodes need to detect the presence
of neighbors, verify the availability of content, and set up the
transfer. A content transfer is successfully completed when the
contact time and the channel capacity between the two nodes are
such that content can be transferred in full, and the receiving node
has free storage space for the content.

3. It is also possible to consider the case of multiple seeders that simultane-
ously receive a piece of content, e.g., through the cellular infrastructure.
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Every node can exchange content (i.e., send or receive) with
one node at a time. Moreover, nodes do not interrupt a content
exchange with one node in order to start another exchange with
a different node, unless the former exchange is completed, or the
two nodes are not in contact any more. However, other modes of
communications, e.g., broadcast, can be easily accounted for in
our approach.

From this description, it emerges clearly that in FC, when
proper conditions (in terms of user density and mobility, and of
size of the RZ) are met, content floats (i.e., it persists probabilis-
tically) in the RZ, even after the seeder has left it. In practice,
content never floats forever, unless, e.g., one or more static nodes
are present in the considered area, or it is possible to actively
influence node mobility (such as with UAVs) to avoid content
disappearance from the RZ.

At each contact, each content which is owned by only one of
the two nodes, and for which there is enough memory to store
it at the other node, has the same probability to be chosen for
the transfer, regardless of which of the two nodes it resides on.
Content exchanges between two nodes are unidirectional.

Limited modifications in the system operations can be easily
accounted for in our approach, which can easily be expanded
to include, e.g., bidirectional content exchanges, the effects of
content broadcasting, or any specific priority scheme for contents
to be exchanged, for example based on content relevance or
popularity.

The system corresponding to one content item floating in its
RZ according to the scheme described above is called a Floating
Element (FE). In this work, we focus on systems composed by
several floating elements.

With respect to the relative position of the RZ of each FE, we
consider two types of systems. In distributed floating systems, the
centers of the RZs of each FE are distributed on the plane so that
RZs can partially overlap. This is typical of setups where each
application or end user defines its own ZOI location. In localized
floating systems instead, all FEs share a same RZ and ZOI. This
second scenario allows ruling out the impact of randomness in RZ
overlapping on the storage capacity of the system, and hence it
allows investigating the maximum amount of information which
can be stored in a given location (the RZ) via the FC paradigm.

3.2 Floating Content performance indicators

The goal of the FC paradigm is to ensure, through opportunistic
replications, that the content item is delivered to a given target
population of users. Hence, one of the main performance metrics
for FC is content availability at time t ≥ t0, i.e., the mean
fraction of nodes with content, at time t in the RZ. High values
of availability in the RZ typically correlate with low likelihood
of quick content disappearance, and with high probability of
transferring content to nodes entering the RZ.

The specific definition of the probability of successful delivery
(i.e., the success probability Psucc) varies according to the perfor-
mance objectives induced by the application, and by the way in
which the population of target users is identified.

In general therefore, the expression of Psucc is not only a
function of content availability, of the geometry of the ZOI, and
of user mobility patterns, but also of the specific application
supported by the FC scheme.

Replication Zone (RZ) 

Zone of Interest (ZOI)

Node

Transmission range

Content Item

(1)

(2)

Node movement
Content transfer

(3) Floating 
Element

Content discard

Fig. 1: Basic operations of the Floating Content scheme within a
Floating Element. When two nodes are in range within the RZ, content
gets replicated (1), thus persisting probabilistically in the RZ of the
Floating Element. When a node leaves the RZ, it discards the content
(2). To every node entering the ZOI (3) corresponds a content request,
e.g., on behalf of a user application, and thus a read operation.

a(x) 1 mx
p

Fig. 2: Linear flow α is the rate at which nodes cross a segment of
unit length centered at x, with a direction in the interval (0, π).

3.3 Basic assumptions and notation
We assume that dynamic nodes move according to a stationary
mobility model such that, at any time instant, nodes are uniformly
distributed in space4, with mean density ψD. We assume that
static nodes are distributed over the plane according to a Poisson
Point Process (PPP) with intensity (1− ψ)D.

With τi, i ∈ {s, d}, we denote the node contact time, i.e., the
duration of the time interval during which a static and a dynamic
node (resp. two dynamic nodes) are in contact, and with fi(τi)
i ∈ {s, d}, we indicate the contact time PDF. With C0 we denote
the mean channel capacity between two nodes that are in contact.

Let gi, i ∈ {s, d}, denote the mean rate of contacts per
unit area between static and dynamic nodes, and among dynamic
nodes, respectively.

We call linear flow the rate at which moving nodes traverse
a segment of unit length in a same direction (e.g., from left to
right of the segment), and we denote it by α. In order to derive an
expression for α, let x denote a position in space and θ an angle,
and let α(x, θ) be the angular node flow, i.e., the rate of nodes
moving in direction (θ, θ + dθ) across a small line segment of
length ds centered at x and orthogonal to θ, divided by ds · dθ.
The linear flow α is given by

α =

∫ π

0
α(x, θ)dθ. (1)

In order to simplify notation, in what follows we assume that the
mobility model is isotropic, hence, that α does not depend on the

4. We will discuss the impact of nonuniform user distributions later in the
paper, through simulations.
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position in space of the unit segment, nor on the specific direction
of the node flow. However, note that our approach can be easily
extended to more general, non-isotropic mobility models.

With Si,d, i ∈ {s, d} we denote the probability that a content
transmission completes successfully during a contact with a static
node, or between two moving nodes.

In what follows, without loss of generality, we assume that the
RZ and the ZOI of a FE are circular and concentric, and that the
radius of the ZOI is always strictly less than the radius of the RZ,
R. For simplicity we assume that all RZs have a same RZ radius
and all ZOIs have a same ZOI radius.

Moreover, all contents have the same size L bits, and M is the
size in bits of the memory that can be used for FC in each node.
Note however that our approach can be extended to contents of
different size and to scenarios where nodes have different memory
size, mainly at the cost of increasing the notation complexity.

In distributed floating systems, the centers of the RZ of each
FE are taken to be distributed according to a PPP with intensity
γ. In localized floating systems, the intensity γ is the ratio of the
total number of FEs, over the RZ area.

4 A MEAN FIELD MODEL OF FLOATING CONTENT

In this section we introduce our mean field model of FC, present
our main theorem, and discuss the validity of the mean field model
over finite and infinite time horizons.

4.1 Content diffusion over finite time intervals
In FC, the set of nodes exchanging content within a RZ can be
modeled as a system of interacting objects, in which interactions
bring to changes in the state of the objects via content replication.
When the number of these objects becomes large, the analytical
performance study of such system becomes difficult, due to the
exponential growth of the state space size.

Indeed, in order to model the dynamics of content diffusion
and availability in our system, we focus on the temporal evolution
of a set of parameters, related to different node populations in our
system. If K is the total number of distinct contents in the system,
for a RZ radius R at any time instant t we can associate to the
system the state vectors (N1

s (t, R), ..., Nk
s (t, R), ...NK

s (t, R)),
and (N1

d (t, R), ..., Nk
d (t, R), ...NK

d (t, R)) such that Nk
s (t, R),

(Nk
d (t, R)) is the number of static (resp. dynamic) nodes in the

k − th RZ with content at time t. Such a system can be assumed
to evolve according to Markovian dynamics, and it can therefore
be modelled as a Continuous Time Markov Chain (CTMC).5 In
order to derive meaningful insight into the performance of such
system, in what follows we adopt a technique based on the mean
field interaction model or fluid limit [53], hence on an approximate
model of the interactions between nodes. The first approximation
step of such approach is based on assuming that the following
homogeneous conditions hold:

Definition 1 (Homogeneous conditions). We say that a floating
system satisfies the homogeneous conditions if:
• at t = 0 the mean number of nodes per unit surface possessing

a given content is the same for all contents;
• at any time instant, nodes possessing a given content are

uniformly distributed within the RZ for that content;

5. The Markovian characteristics of the system dynamics descend from the
Poisson distribution of nodes, the random choice of the exchanged content,
and the independence assumptions that will be introduced later in the paper.

• the probability of a node to have a given content is independent
from the probability of any other node to have the same content.

The homogeneous conditions assumption (equivalent to, e.g.,
the “well stirred” assumption in chemistry [54], and to the assump-
tion of stochastic equivalence of nodes within a same class in [55])
allows deriving simpler expressions for the evolution of the main
performance parameters of the system, at the cost of neglecting
spatial inhomogeneities. Note however that our approach can be
extended to account for spatial variations as well as for possible
nonuniform seeding strategies (e.g., through the notion of node
class, as in [55]), though at the cost of an increase in complexity
of the analytic expressions.

In order to model the dynamics of content diffusion and
availability in our system, we focus on the temporal evolution
of four classes of node populations. The first and second class
are composed by those static (resp. moving) nodes possessing a
given content at a given time instant. The other two classes are
composed by those static (resp. moving) nodes which are busy,
i.e., exchanging content, at a given time. Note that the busy state
is not associated with a given content, but with the fact that the
node is involved in an exchange of content at a given time instant,
and that each node can be part of both classes of populations at
the same time.

Let N̄(R) be the mean number of nodes in a RZ. As we have
assumed nodes to be uniformly distributed at any point in time,
and all RZ to be of equal size, N̄(R) does not depend on time,
and it is the same for every RZ. In order to apply the mean field
approximation, instead of the number of (static or dynamic) nodes
with content for each RZ at time t, we consider the ratio between
these quantities and N̄(R), which is therefore the parameter used
for normalizing the state occupancy in every RZ. Specifically, we
consider the following parameters:

• For every radius R and content k, the fraction of static (resp.
dynamic) nodes which possess k (henceforth denoted as the
availability of content k) at time t, denoted with aks(t, R) (resp.
akd(t, R)).

• The fraction of static (resp. dynamic) nodes which are busy, i.e.
exchanging content, at a given time t for a RZ radius R, denoted
with bs(t, R) (resp. bd(t, R)).

For ease of notation, in what follows we drop the indication of
the dependency of variables on time t and RZ radius R, unless
required by the context.

Parameters bs and bd are key in order to model the decrease
of the rate at which contents get replicated successfully when
the mean time required to transfer the exchangeable contents is
comparable to or larger than the mean contact time. Indeed, in
those conditions (which correspond to the conditions in which the
system is approaching the maximum amount of information it can
sustain) a significant amount of content exchanges do not take
place or is delayed because nodes are still engaged in a content
transfer at the time in which they come in contact with other nodes.
Moreover, note that the busy state is not associated with a specific
content, but with the fact that the node is involved in an exchange
of content at a given time instant.

As a consequence of the homogeneous conditions and of
the random scheduling of content transfers, for both static and
dynamic nodes at any time instant the stochastic process of the
fraction of nodes possessing a given content within the RZ for
that content (i.e., of the availability of the given content) has the
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same distribution for all contents, in both distributed and localized
floating systems.

In what follows, for a given choice of RZ radiusR, we indicate
with ai, i ∈ {s, d}, the mean availability at time t, averaged
over all contents, for static and dynamic nodes respectively. The
following result derives the PDF of the number of contents
possessed by a node.

Lemma 1. With the given assumptions, in a floating system
(distributed or localized), the number of contents possessed by a
static (resp. moving) node at time t, denoted as mi, is distributed
as a binomial Bin(n, p), with parameters n =

⌊
γπR2

⌋
and

p = ai, and truncated in
⌊
M
L

⌋
.

For the proof, please refer to Appendix A. The fact that
the distribution is binomial should not be a surprise, given the
independence assumption included in the homogeneous condi-
tions, and given the Markovian assumptions necessary for the
development of a mean field model. The truncation is necessary
to account for the limit in the memory of end user devices, hence
for the maximum number of contents that can be simultaneously
stored at a node.

With m̄i we denote the mean number of contents possessed
by nodes.

On the occurrence of a contact event, a relevant parameter is
the amount of exchangeable contents, i.e., of contents which are
possessed only by one of the two nodes, and for which there is
enough free memory at the receiving node. This parameter is key
in determining the likelihood of a content to be exchanged on a
contact event.

Let i, j ∈ {s, d}, and let xij denote the random variable
modeling the number of exchangeable contents from a node i
(static or moving) to a node j (static or moving) at time t and for
a RZ radius R.

Lemma 2. In a floating system (distributed or localized), the PDF
of xij is given by the expectation, with respect to mi and mj ,
of a binomial PDF Bin(n, p), with parameters n = bmic and
p = 1− aj , and truncated in

⌊
M
L −mj

⌋
.

For the proof, please refer to Section B in the Appendix.

Let E[xij |M = ∞] be the mean number of exchangeable
contents, for the case in which host memory is infinite. A key
parameter for modeling content diffusion within a RZ is the
probability of successful transfer of a single content during a
contact of duration τ . The following result gives an analytical
expression for it, for the considered system.

Lemma 3. The probability of successful transfer of a single
content from a node i (static or moving) to a node j (static or
moving) during a contact is well approximated by

Sij =
E[xij ]

E[xij |M=∞]

∫ +∞
τ0

min

(
1,

⌊
(τ−τ0)

L
C0

⌋
1

E[xij+xji]

)
fi(τ)dτ

(2)

The lemma tells that the success of a transfer when there is
infinite host memory is just the probability that the duration of a
contact initiated in the RZ be larger than what needed to exchange
the data (this is expressed by the term in the integral). Whereas,
in case the memory is bounded to M < ∞, it is enough to
rescale the success probability according to the average number
of exchangeable contents.

In order to correctly model the dynamics of information
exchange over time, another key parameter is the mean time spent
exchanging contents during a contact, which varies according to
whether only one or both of the nodes in contact are moving.

Lemma 4. The mean time spent exchanging content during a
contact between a static node and a dynamic node (denoted with
Ts), and between two dynamic nodes (denoted with Td), are well
approximated by

Ti =

∫ +∞

0
min

(
τ,
E[xij + xji]L

C0
+ τ0

)
fi(τ)dτ (3)

The lemma expresses the fact that the average amount of time
spent exchanging data is obtained by averaging the contact time,
whose distribution conditional to a meeting in the RZ is fi, under
the constraint that data transfer duration is upper-bounded by the
volume of data to exchange, as expressed in (3).

For the proofs of Lemma 3 and 4, please refer to Section C in
the Appendix.

We observe that, in the spirit of the mean field approach, the
derivation of these expressions is also based on a deterministic
approximation, which neglects the stochastic nature of channel
throughput and of the amount of content to transfer. In Section 6
we verify the impact of this as well as other approximations on
the accuracy of the model.

The following result models the asymptotic dynamics of our
system over finite time intervals, for large RZ areas and hence for
a large amount of nodes involved in the process of diffusion of
each content.

Theorem 1. In a floating system (distributed or localized),
for any initial condition (as(0, R), ad(0, R), bs(0, R), bd(0, R))
with bs(0, R) = bd(0, R) = 0, for large R, the quantities
(as, ad, bs, bd) converge almost surely over any finite horizon to
the solution (ās, ād, b̄s, b̄d) (the mean field limit) of the following
ordinary differential equations (ODEs):

dās
dt

=
b̄s
T̄s
ād(1− ās)S̄ds

dād
dt

= (1− ād)
[
ℵ b̄s
T̄s
āsS̄sd + b̄d−ℵb̄s

T̄d
ādS̄dd

]
− 2α

ψDR
ād

db̄s
dt

=
gs

(1− ψ)D
(1− b̄s)(1− b̄d)−

b̄s
T̄s

db̄d
dt

=
gd
ψD

2(1− b̄d)2 + ℵdb̄s
dt
− b̄d−ℵb̄s

T̄d
− 4α

ψDR
b̄d

(4)

with b̄d ≥ ℵb̄s, and with initial con-
dition (ās(0), ād(0), b̄s(0), b̄d(0)) =
(as(0, R), ad(0, R), bs(0, R), bd(0, R)). With S̄i, T̄i, i ∈ {s, d}
we indicate the expressions in Lemma 3, respectively, with ās and
ād instead of as and ad.

For the proof, please refer to Section D in the Appendix. Note
that ∀t, the constraint b̄d ≥ ℵb̄s must be satisfied. I.e., the number
of busy nodes which move cannot be inferior to the number of
busy nodes which are static, as for every busy static node there
is (at least) a busy moving node with which the static node is
exchanging content.

This result states that the probability of observing a difference
between any point of the trajectory of the given system and the
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solution of the ODEs goes to zero as R (and hence the mean total
number of nodes in each RZ) grows. That is, in the limit, the error
made by considering a deterministic system characterized by āi,
and b̄i, i ∈ {s, d}, instead of the actual system, goes to zero.
Moreover, at any time t, for any R, variables āi, and b̄i are the
expected values of ai, and bi, respectively. Note that we consider
bi(0, R) = 0 as we assume that at t = 0 no node has initiated any
content transfer yet.

Finally, note that our focus is on settings for which no strongly
connected component exists in the network graph of static nodes
(i.e., static nodes are out of reach of one another). This makes
sense in those setups in which static nodes are deployed in
a deterministic manner, e.g., to implement content seeding, to
guarantee a rapid content diffusion and thus a minimum level
of content availability. Nonetheless our approach, and the ODEs
in Theorem 1 in particular, can be easily extended to account
for direct exchange of content among static nodes. We observe
however that the only effect of these direct exchanges is a more
rapid diffusion of content among static nodes, without affecting
the system performance once the diffusion transient is exhausted.

4.2 Quasi-stationary regime

In this work, we are mainly interested in the performance of the
system after enough time has passed from the initial seeding of
the content, i.e., at times in which the dynamics of initial content
diffusion are exhausted. However, in a finite system there is always
a non-zero chance of having a content item disappear from its
RZ due to random fluctuations in the population of nodes which
possess that content. The possibility of such an event is present in
any finite floating system, which therefore for t → ∞ inevitably
tends towards the empty state. In our system in particular, this
event may happen when there are no static nodes, or when a given
content is not possessed by any static node at t = 0. As the
CTMC of the system has an absorbing state (the empty state), its
only equilibrium state is the empty system.

Therefore, in what follows we focus on the performance of the
system in its quasi-stationary regime, i.e., at a time from content
seeding which is large enough for the initial dynamics of seeding
to be exhausted, and at the same time small enough for content
not to have been absorbed yet. Indeed, this is the performance
regime which is most relevant, as in any practical setting the
amount of time during which a content should be stored and
made available is not infinite (e.g., due to day/night patterns in
vehicles and pedestrians mobility) but it is often long enough for
the initial transient to have only a marginal impact on the overall
performance.

The computation of an estimate of the time to content extinc-
tion based on the original CTMC is unfeasible due to the explosion
in the number of the states which should be considered. In this
section, under some mild assumptions, we derive a condition for
the content to float for an indefinitely long amount of time (i.e.,
for the quasi-stationary regime to exist), as well as expressions for
the main performance parameters at times from content seeding in
which the initial transient effects no longer influence the system
behavior. In the numerical section we will assess the accuracy of
our model, and we will investigate the conditions under which
the decay of the system towards the empty state has a significant
impact on system performance.

Given the existence of the absorbing state for the original
system (which we denote as S), in order to apply the mean field

approach and compute the performance parameters for the time
before absorption we consider a slightly different system (denoted
with S ′). This new system is obtained from the original one
by assuming that for each content, when the system is empty,
content is re-seeded. Specifically, we assume that, when a content
is absorbed in S , in S ′, at rate ε (constant and independent on any
parameter of the system) a management function selects one node
(or a few nodes) at random in the RZ, and injects the content in
that node(s). Note that, in the time period between content seeding
and content absorption, S and S ′ are indistinguishable. This is
confirmed by the following result, relative to the mean field limit
over finite time intervals:

Theorem 2. For any ε ≥ 0 the mean field limit of systems S and
S ′ are the same.

Proof. This result is due to the fact that the rate ε, being constant
with RZ radius R, vanishes with increasing RZ radius at a rate
R−2, and is hence negligible in the mean field approximation, in
which all neglected terms are O(R−2).

Theorem 2 implies that the content seeding process has a
vanishing impact on system performance in the mean field regime,
as modeled in the previous section. As a result, the mean field
approximation results of Theorem 1 hold also for S ′. This result
allows exploiting Theorem 1 in order to derive a mean field
approximation for the stationary state, which is only defined for
S ′. Then, thanks to the fact that the two systems are indistin-
guishable at times between content generation and absorption,
in a regime in which content absorption is relatively infrequent
(i.e., in a regime where the quasi-stationary state is defined) the
mean field approximation for the stationary state of S ′ is also an
approximation of the quasi-stationary regime of S . In Section 6
we assess the accuracy of our approach.

The following result establishes a relation between the station-
ary state of S ′ and the steady-state solutions of the problem in
(19).

Theorem 3. For any ε > 0, for large R the steady-state solutions
of Equation (19) are an approximation of the state distribution of
S ′ for t→∞.

Proof. The CTMC associated to S ′ has no absorbing states, and
its state diagram presents no cycles. Hence it belongs to the class
of reversible stochastic processes [56]. Therefore, from Theorem
1.2 in [57] it follows that the stationary behavior of the CTMC
associated to S ′ is completely determined by the solutions of the
ODEs (19).

The values of the variables āi, and b̄i, i ∈ {s, d} at the
steady state are therefore the solutions of the following system
of equations derived from the ODEs of Theorem 1:

b̄s
T̄s
ād(1− ās)S̄ds = 0 (5)

(1− ād)
[
ℵ b̄s
T̄s
āsS̄sd +

b̄d − ℵb̄s
T̄d

ādS̄dd

]
− 2α

ψDR
ād = 0 (6)

gs
(1− ψ)D

(1− b̄s)(1− b̄d)−
b̄s
T̄s

= 0 (7)

gd
ψD

2(1− b̄d)2 − b̄d − ℵb̄s
T̄d

− 4α

ψDR
b̄d = 0 (8)
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with the constraints

b̄d − ℵb̄s ≥ 0 (9)

0 ≤ āi ≤ 1, 0 ≤ b̄i ≤ 1, i ∈ s, d (10)

(11)

By solving the system of equations directly, it can be verified
that the solutions which satisfy constraints (9) and (10) are only
two. Specifically, if the system starts from the empty state (i.e.,
one in which as and ad are both zero), the system persists in the
empty state. Consider instead the case in which the system starts
from a non-empty state (i.e., a state in which at least one among
ās(0) and ād(0) are nonzero). Let

y = ℵ b̄s
T̄s
S̄sd

z =
b̄d − ℵb̄s
T̄d

S̄dd

x = y +
2α

ψDR
− z

then the system converges to the unique feasible solution given by

ād =
−x+

√
x2 + 4yz

2z
(12)

only if the criticality condition x ≥ 0 is satisfied, with b̄d, b̄s
given by Equation (7) and (8). Otherwise, the system converges to
ād = 0. Thus, as can be seen from the study of the gradient of
the system of equations, if the criticality condition is satisfied, any
trajectory starting from a nonempty state converges to the unique
nonempty feasible steady-state solution.

The significance of the mean availability of content over
moving nodes in steady state derives from the fact that, in the
mean field limit, it coincides with the mean availability of those
nodes that enter the ZOI, and is therefore key in determining the
success probability.

5 THE STORAGE CAPACITY OF FLOATING CON-
TENT

As we already noted, the FC paradigm can be seen as a way to
implement, through opportunistic replications, a distributed infor-
mation storage service, enabling probabilistic content persistence
and retrieval in a limited area, typically with no direct support from
infrastructure (except possibly for the initial seeding of content).
In this section we characterize the storage capacity of a FC storage
system, i.e., the maximum expected amount of information which
can be stored probabilistically. We first derive a powerful model
of FC storage based on information theory, which allows the
computation of the storage capacity of a FC system. Then, driven
by the results of the information theoretic model, we obtain an
extremely simple explicit expression for the FC storage capacity
in saturation conditions.

5.1 An information theoretic storage model of FC
In order to derive a model for the FC storage capacity in a
way which is analogous to classical information storage systems,
we start by considering a single floating element belonging to a
floating system (be it localized or distributed). For this system, we
define the read and write operations as follows.

The write operation consists in the initial seeding of the
content within its RZ, with the goal of enabling content to persist
probabilistically even after the transient of content diffusion has
passed. From Section 4.2 we know that a seeding strategy which
attributes each content to at least one node within the RZ enables
the system to converge to a nonempty steady state, though in finite
systems more conservative seeding strategies are often necessary
in order to decrease the likelihood of content disappearance during
the initial transient of content diffusion.

In order to define the read operation, we recall that the main
goal of FC is to deliver the content to a given population of
users, in a probabilistic fashion, by proactively populating the
local memory of the target hosts in a distributed, collaborative
manner, based on opportunistic content replications between the
target hosts and all the other users in the RZ. In this context, every
content delivery is a read operation, as it makes available to the
node the stored content. For instance, the ZOI might correspond
to the location of a movie theater, and the content item to a
movie trailer which we assume will start being requested when
users enter the theater. Therefore, to each node entering the ZOI
corresponds a content request, and hence a read operation, which
is considered as failed if the node does not possess the given
content. In what follows, we consider the case in which the ZOI
radius is much smaller than that of the RZ, and the RZ radius large
enough for content availability to be well approximated as uniform
across the whole RZ. In this case Psucc is well approximated by
the mean content availability within the RZ.

In information theory, a storage system is modeled as a
communication channel [58], [59]. In this view, information is
transmitted over the channel through a write operation, and it is
received through a read operation. According to the operational
definition given by Shannon [59], the channel capacity is the
largest amount of bits per channel use at which information
can be sent on the considered channel with arbitrarily low error
probability. For the specific case in which FC is used as a storage
technology, a channel use is the operation of setting a content
to float in the floating area, i.e., a write operation for a content
of size L < M (remember that M is the node memory size).
Let us denote as stored information of a FE the mean amount of
information which can be recovered (i.e., read). Then, similarly
to communication channels, if we consider the maximum of this
quantity over all channel uses (and therefore content sizes), we
have the following definition of storage capacity of a floating
element:

Definition 2 (Storage capacity). The storage capacity of a
floating element with radius R is the maximum of the stored
information, over all content sizes L ≤M .

In what follows, we consider the floating element and its
floating system to be in a stationary state. With ād(R, γ, L) we
denote the mean field limit of the availability of moving nodes for
the stored content, for a RZ radius R. With Psucc(R, γ, L) we
denote the success probability at the mean field limit, which we
assume is a monotonically increasing function of ād.

Theorem 4. In a floating system in quasi-stationary regime, the
mean storage capacity of a floating element is

CFE(R, γ) = max
L≤M

LPsucc(R, γ, L) (13)

Proof. At the mean field limit, every node in the RZ has the same
probability ād(R, γ, L) to possess the content, independently
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from its position. In the communication channel model of storage
systems, a FE can be modeled as a packet erasure channel [60],
with packet size equal to the size of the content, L, and packet
erasure probability 1−Psucc. In such a model, every channel use
is a write operation, consisting in setting a content of size L bits to
float in the floating region, and erasures in the channel derive from
the fact that the read operation is not deterministic. The amount
of bits which can be recovered, on average, on a single channel
use is hence LPsucc(R, γL). The maximum of this quantity over
all channel uses, and hence over all content sizes L ≤ M , is the
storage capacity of the system.

In a floating system composed by more than one floating ele-
ment, the overall amount of information stored is also a function
of how the RZs overlap, hence of both FE intensity γ and RZ
radius R. The following result gives the capacity per unit area of
a floating system for a given FE intensity, and a given RZ area.

Corollary 1 (Area capacity of a floating system). In a floating
system (localized or distributed) in the stationary regime, the mean
storage capacity per unit area is given by

CFS(γ,R) = γ max
L≤M

LPsucc(R, γ, L) (14)

Proof. The system can be modeled as a set of γ parallel, indepen-
dent packet erasure channels per unit area, one per distinct content.
The independence between the channels holds at the mean field
limit and it derives from the “propagation of chaos” result, by
which at the mean field limit for each user the probability to have
a content is independent from the probability of having another
content. For each content, the expression of the capacity of the
associated packet erasure channel is given by Theorem 4.

We observe that the mean amount of information possessed by
a node is given by max(M,γπr2Lād(R, γ, L)). Hence, when the
success probability is defined as the probability to transit in a given
location of the RZ with a copy of the content, the mean amount
of content possessed by a node is equal to the product of the area
capacity and of the area within the transmission range of the node,
and upper bounded by the node storage space M . It is therefore
equal to the minimum between the amount of information which
can be read within the node transmission range, and the available
storage at the node.

In a floating system, the RZ radius modulates the average
amount of users, hence of system resources, dedicated to a given
FE, while the FE intensity tells how many floating contents on
average are sustained by the system per unit area. In what follows
we are interested in how to modulate these parameters in order
to maximize the amount of information per unit area stored in
a floating system. We have therefore the following optimization
problem:

Problem 1 (Maximum area capacity of a floating system).

maximize
R,γ,L

γLPsucc(R, γ, L)

subject to :

Equations (2), (3)

Equations (5), (6), (7), (8)

Constraints (9), (10)

R ≥ 0 (15)

1 ≤ L ≤M (16)

0 ≤ γ ≤ DM

L
(17)

Constraints (5) to (10) allow deriving the expression of the
steady-state variables āi, and b̄i. Constraint (17) derives from the
fact that an upper bound to the intensity γ, hence to the average
number of different contents floating in a given area, is given by
the average number of nodes present in that area, multiplied by the
number of contents which each node can store. As a consequence,
an upper bound to the amount of stored information per unit area
is DM , and it corresponds to the case in which, for each content,
a single copy exists in the system, so that the system has no
redundancy. As for the content size L, we have the following
result:

Proposition 1. If (γ∗, R∗, L∗) is a solution of Problem 1, then
L∗ = 1.

This result derives from the fact that, holding constant every-
thing else, the lower the content size, the lower the amount of
contact time wasted in content transfers which do not complete
due to the end of contact time. Moreover, the lower the content
size, the higher the amount of information which each node can
store in its finite memory, as the memory size is not always
an exact multiple of content size. As a consequence, Problem 1
becomes a maximization problem over R and γ only, with content
size equal to its minimum value L = 1. 6

Finally, it can be easily shown that, for any choice of the other
system parameters, there exists always a RZ radius beyond which
availability decreases monotonically with increasing R. Summing
up, despite Problem 1 is nonconvex and nonlinear, it is function of
two variables over finite intervals, hence can be solved efficiently
by brute force approaches.

5.2 A simplified model for capacity under saturation
As we will see in numerical results, floating systems can be in one
of two regimes with respect to the amount of injected information.
In what can be called the linear regime, stored information in-
creases linearly with injected content, and availability is very close
to one. In the saturation regime instead, the available bandwidth
(or equivalently, the contact time available for content exchanges)
becomes the system bottleneck, since it is fully used to transfer
content. That is, on a contact between two nodes, the likelihood
that the two nodes terminate the exchange before the end of
the contact is very low, and possibly the contact duration is not
sufficient to transfer all contents. In a system with infinite host
memory, bandwidth (paired with contact duration) thus becomes

6. Note that in real systems, in which per-content communication overhead
is non negligible, the optimal content size is not the minimal one (L = 1). For
those systems however, the capacity computed in the ideal case represents an
upper bound to what achievable when overheads are accounted for.
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the storage capacity limiting factor. Our mean field model of FC
capacity shows that the transition between the two regimes is
quite sharp, so that FC performance can be well approximated
by considering each of them separately.

In order to derive a first-order approximate expression of the
capacity in saturation conditions, we assume contact duration
between static and moving nodes (resp. between moving nodes) to
be constant and equal to the mean amount of time taken by a node
to cross a distance equal to 2r (where r is the node transmission
radius), given by 2r/vi where vi is the mean node speed for the
contact between static and moving nodes, and the mean relative
node speed for contacts between moving nodes. We further assume
that (since the system is in saturation) increasing the amount of
injected contents does not change the performance of the system.

Given these assumptions, capacity in saturation conditions can
be approximated as the maximum amount of information that can
be transferred upon nodes contact, given by

CsatFS = C02r

(
(1− ψ)

vs
+
ψ

vd

)
(18)

The results obtained with this approximation will be discussed
in the next section, together with those obtained with the in-
formation theoretic model. Numerical results will show that the
simplified model provides quite close an approximation of the
floating system capacity in saturation conditions predicted by the
detailed model, and estimated by simulations.

It is important to stress that the derivation of this extremely
simple and useful result was possible only thanks to the insight
into the floating system behavior provided by the accurate mean
field model developed in this paper.

6 NUMERICAL ASSESSMENT

In this section, we evaluate numerically the accuracy of our models
by means of simulations, and we characterize the storage capacity
of a floating system as a function of the main system parameters
and of node mobility.

We assume nodes move according to the Random Direction
Mobility Model, with reflection at the boundary of the simulation
area. When two nodes are in contact, we assume the channel data
rate is constant over time and equal to 10 Mb/s. Unless otherwise
specified, nodes have a transmission radius of 30 m, and they have
unlimited memory. For localized floating systems, the simulation
area is a square of side 500 m, the RZ has a default radius of 100
m and it is located at the center of the area.

At the beginning of each simulation run, nodes are distributed
uniformly at random. In order to minimize the probability of
content loss during the content diffusion transient, all nodes within
the RZ for a given content possess it at start time. When node
memory is finite, the set of contents possessed by each node at
start time is a random subset (different for each node, and of total
size equal to the node memory) of all those contents in whose RZ
the node is located. Simulated time has been divided into equally
sized slots, and their duration has been chosen so as to minimize
the effects of quantization in time on accuracy of simulations, and
in particular on the errors in detecting when two nodes are in range
or when a node is within a given RZ. Content size has been set in
such a way to have the start and end of time slots coincide with
the start and end of content transfers. Specifically, it has been set
to 5 Mb in setups with node speed of 0.2 m/s, and to 100 kb for
those with a node speed of 10 m/s. Simulations have been run
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Fig. 3: Information stored per unit area in a distributed (DFS) and
localized (LFS) floating system versus injected information per unit
area. v1 = 0.2 m/s, v2 = 10 m/s, D1 = 800 users/km2, D2 =
4000 users/km2. Simulation are with a 95% confidence interval of
at most 0.35%.
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Fig. 4: Mean availability in a distributed (DFS) and localized
(LFS) floating system versus injected information per unit area.
v1 = 0.2 m/s, v2 = 10 m/s, D1 = 800 users/km2, D2 =
4000 users/km2. Simulation are with a 95% confidence interval of
at most 0.35%.

for a duration of 10000 time slots, which proved to be sufficient
to observe the system out of any transient, and data affected by
transient effects have been discarded.

6.1 Baseline

In a first set of simulations, we considered scenarios with only
dynamic nodes, and we measured the amount of information
stored per unit area in both distributed and localized floating
systems, as a function of the injected information per unit area,
i.e., of the product of the content size times the mean number of
contents per unit area which persist in the system for the whole
duration of the simulation (which coincides with the intensity γ,
when the resulting density of floating contents can be sustained
by the system according to conditions (5) to (10)). As Figs. 3
and 4 suggest, two regimes can be observed. For low amounts
of injected information and with infinite host memory, resource
contention among different floating contents is weak, as the mean
contact time is larger than the mean amount of time required



11

102 103 104 105 106 107

RZ radius [m]

100

105
C

a
p
a
ci

ty
 [
b
its

/m
2
]

Fig. 5: Maximum storage capacity of a floating system over FE
intensity, as a function of RZ radius R, for different configurations
of host memory, and with content size L = 1. v1 = 0.2 m/s,
v2 = 10 m/s, D1 = 800 users/km2, D2 = 4000 users/km2.

to exchange contents. Therefore, each FE performs almost as
if in isolation. Indeed, mean availability remains constant with
increasing injected information, while stored information grows
proportionally to it. For larger values of injected information, the
effects of contention (mainly, on contact time) start to appear, the
mean content availability decreases, and the stored information
saturates. As expected, decreasing the node speed (and therefore
increasing the mean contact time) and increasing the node density
(and therefore the rate of contacts between nodes, and the oppor-
tunities for content replication) have the effect of increasing the
saturation value of the stored information, which coincides with
the capacity of the system.

As Figs. 3 and 4 show, the estimates of mean availability
and of the amount of stored information derived with our mean
field based approach are accurate across different values of node
density, of injected information, and of mean node speed. When
the amount of injected information gets close to the maximum
amount which can be sustained by the system, our mean field
model yields slightly optimistic results, due to the difference
between finite systems and their mean field limit. Indeed, as
the plots show, increasing the mean number of nodes in the RZ
improves accuracy.

Specifically, a reason for such discrepancy is that while
contact events are uniformly distributed within the RZ, in finite
systems, nodes with content are slightly more numerous around
the center of the RZ [10]. As a consequence, there are overall
less opportunities for content replications within a RZ (e.g., at the
border of the RZ). This is also the reason for the slightly more
pessimistic simulation results of distributed floating systems with
respect to localized ones. Indeed, in systems with distributed RZs,
and particularly for low densities of FEs, much of the overlapping
involves mainly the border regions of each RZ. As shown in
the figures, such difference tends to decrease as the FE intensity
grows.

Another reason for the observed discrepancy is the effect of
random fluctuations in a finite population of nodes. Indeed, when
the system gets close to those conditions in which the steady state
solutions of the ODEs in Theorem 1 do not satisfy the constraints
in Equation (9) and Equation (10) (that is, the conditions in
which contents cannot persist in their RZs), the effects of even
small random perturbations in a finite population of nodes with

content gets amplified, because of resource contention and the
consequent loss of efficiency of the content replication process.
This brings to an average decrease in content availability, and
to the difficulty in achieving those values of maximum injected
information forecasted by the model.

In Fig. 3 we also report the predictions of storage capacity in
saturation conditions obtained with the simplified approximate ex-
pression (18). We can see that predictions are extremely accurate,
obviously only in the range of validity of the approximation, i.e.,
under saturation. However, before saturation, stored information
coincides with injected information, so that it is possible to
approximate the curves obtained from the information theoretic
model with two lines, one where stored and injected information
coincide, and one with constant stored information, at the level of
the saturation capacity.

One of the key parameters affecting the mean area capacity of
a floating system is RZ radius, which is related to the total amount
of node memory and content exchanges dedicated to storing
probabilistically a single content. Fig. 5 shows the maximum area
capacity of a floating system (Problem 1) as a function of RZ
radius. As the figure shows, the solution of Problem 1 is achieved
for values of RZ radius only slightly larger than the minimum
values below which contents do not persist in the RZ. For lower
values of RZ radius, content availability, hence maximum storage
capacity, decrease rapidly, as smaller RZs imply less opportunities
for contents to replicate. For values of RZ radius larger than
the optimum instead, the benefits of a larger RZ (in terms of a
larger amount of time spent in the RZ by nodes, bringing more
opportunities for content replication, hence higher availability)
are offset by the fact that a much larger amount of nodes is
involved in content replication, so that the marginal utility of
adding more users to each RZ is negative. By further increasing
the RZ radius, the maximum stored information reaches a regime
where host memory limits start to affect system performance,
further decreasing the marginal utility of adding more users to
each RZ.

As we have seen, for a given content size, node density and RZ
radius, when the density of contents seeded in a floating system is
larger than the maximum amount which can be sustained by the
system in steady state (i.e., if the system operates in conditions
in which there is no feasible solution to Problem 1), according to
our model the system converges to the empty state. In practical
terms, as Fig. 6 shows, this implies that a process of content
disappearance from the system is initiated, and it continues until
the contents which remain in the system can be sustained in the
mean field regime. Similarly, when host memory is finite, if the
system is seeded with a higher number of contents than those
which can be stored in host memory, the total number of floating
contents decreases rapidly during the initial transient of content
diffusion, until it coincides with the maximum number of contents
which can be stored in host memory.

6.2 Impact of static nodes

In the FC scheme, a key role is played by node mobility. On the
one side, mobility induces volatility of content, since nodes that
exit a RZ are allowed to discard the content associated to that RZ
(and we assume they do so in the present paper). One consequence
of such volatility is an increase of the amount of resources (in
terms of user memory, and of rate of content replications) required
to effectively store a given amount of information. On the other
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Fig. 6: Average over 20 simulation runs of the number of floating
contents over time, in a localized floating system, for different initial
number of seeders. Node speed is equal to 10 m/s, and node density
is 800 users/km2.
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Fig. 7: Information stored per unit area in a distributed (DFS) and
localized (LFS) floating system versus injected information, with 15%
of static nodes, for the Random Direction as well as the Random Way-
point (RWP) mobility model. Simulations are with a 95% confidence
interval of at most 0.35%. Node density is 800 users/km2.

side, mobility and the induced pattern of contacts allow content
to replicate and thus persist in the RZ, and to be delivered to the
target users. The question thus arises of what is the impact of that
portion of nodes which are not mobile on the performance of a FC
probabilistic storage system.

To address this issue, we performed a set of experiments in
which a varying fraction of nodes is static. Fig. 7 shows the amount
of stored information in a floating system, when a portion of the
nodes is static. Also in this new set of experiments, our analytical
approach proves very accurate across a variety of settings and for
different choices of system parameters. By comparison with Fig. 3,
it emerges clearly that the presence of static nodes allows at least
a fraction of contents to persist deterministically in the RZ. As
a consequence, in a system with infinite host memory and at the
mean field limit, there is no upper bound to the amount of injected
contents which can be kept floating. However, similarly to the
case with no static nodes, by increasing the injected information
(e.g., by increasing the amount of contents injected while keeping
constant content size), the amount of stored information reaches a
saturation value.

The point of saturation corresponds to a value of injected

k

k

k

Fig. 8: Information stored per unit area in a distributed (DFS) and
localized (LFS) floating system versus injected information per unit
area, with 15% of static nodes. Simulation are with a 95% confidence
interval of at most 0.35%.
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Fig. 9: Capacity of a distributed (DFS) and localized (LFS) floating
system versus node density, for different percentages of static nodes.
v = 10m/s, tx radius 30m, no memory limit, R = 100m.

information at which the mean amount of time spent exchanging
content during a contact is equal to the mean duration of a contact.
Indeed, as the plots show, to a higher node speed corresponds a
lower value of stored information at saturation (i.e., of capacity).
As these results suggest, when host memory is limited, the capac-
ity of the floating system is the minimum between the saturation
value without memory limits, and the host memory.

Also in this case that includes static nodes, we report the
predictions of storage capacity in saturation conditions obtained
with the simplified approximate expression (18), which are again
extremely accurate.

The impact of node speed and therefore of the mean contact
time is also clearly visible from Fig. 8, which shows how capacity
varies as a function of the percentage of static nodes in the system.
As the plots show, when the fraction of static nodes is small,
their effect on system capacity is negligible. When the fraction of
static nodes is significant, however, the mean duration of a contact
increases, and therefore, as observed already, so does the value of
saturation of the amount of stored information.

Another key factor affecting the capacity of a floating system is
node density, which determines the amount of resources involved
in the process of information storage. As shown in Fig. 9 and
Fig. 10, by increasing node density, capacity increases (as ex-
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Fig. 10: Capacity per node of a distributed (DFS) and localized (LFS)
floating system versus node density, for different percentages of static
nodes. v = 10m/s, tx radius 30m, no memory limit, R = 100m.

pected) until it reaches a saturation value which is function of the
fraction of static nodes in the system. The initial increase is due to
the fact that by increasing node density, the rate of contact between
nodes increases (quadratically, for the considered mobility model).
However, for scenarios with a majority of moving nodes, an upper
bound to the amount of exchanges which can take place at the
same time is given by the fact that, if a node is busy exchanging
contents with another one, it is not available for other exchanges
until the current exchange ends. At high node densities, this
decreases the likelihood for a node that just came in contact with
another node to successfully engage in a content exchange.

In these settings, the reason for which the scenario with mainly
static nodes performs better does not reside only on the fact that
mean contact duration is larger. When dynamic nodes are only
a small percentage of the total nodes in the scenario, as the rate
of contacts between static nodes is zero, the overall contact rate is
drastically reduced, and the saturation effects described above start
to appear for much larger values of node density. Finally, note that
our model does not account for the bandwidth saturation which
might take place at high densities. Indeed, for large enough node
densities (or equivalently, large enough transmission rates) nodes
form clusters, thus boosting the likelihood of content persistence
and successful replication, further improving capacity beyond the
bounds given by our model. However, as already stated, as in those
conditions store-carry-and-forward is not any more the main mode
of communication, more efficient paradigms of communications
and content diffusion than FC are available.

One of the main drawbacks of FC as a probabilistic infor-
mation storage system is its reliance on the user’s willingness to
make resources available for the FC scheme. A possible alternative
implementation of such a system may consist in delegating to a
set of static nodes (totems) the task of content dissemination to
moving nodes. This approach would avoid dealing with incentives
for cooperation, at the cost of deploying dedicated infrastructure
for spatial information storage and diffusion. For instance, road-
side units (RSUs) could play the role of totems in a vehicular
communication scenario. In Fig. 11 we plot the density of totems
required to achieve the same capacity as in the case in which
content is exchanged among moving nodes without any infrastruc-
ture. Reported curves start at the density of moving nodes below
which the content does not float. As the figure shows, a very large
amount of totems would be required to achieve the same capacity
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Fig. 11: Density of static nodes required, in a floating system without
content exchange among moving nodes, to achieve the same capacity
as in the case in which content is exchanged among moving nodes and
no static nodes are present. The density of static nodes is expressed as
a percentage of the density of moving nodes. v = 1m/s, no memory
limit, R = 100 m.

Fig. 12: The area of Luxembourg City considered in the simulations.
The circle denotes the RZ, with a radius of 800 m.

achievable with opportunistic content replications among dynamic
users. In practice, the number of totems should be comparable with
the number of dynamic users. E.g., one totem should be deployed
every two or three users, in the cases considered in Fig. 11. The
cost of such infrastructure would clearly be unsustainable for
any operator in any dense scenario like the previously mentioned
vehicular communication scenario.

6.3 Impact of non-uniform mobility models

The results we discussed so far were derived using the random
direction mobility model, which enjoys the property of generating
a uniform distribution of users, as requested by our modeling
assumptions. However, real mobility patterns are more complex,
and they do not share the above property, thus violating one of the
assumptions used for modeling.

In order to validate the robustness of the predictions generated
by our model, we now discuss results obtained with two other
mobility models. The first one is the well-known random waypoint
(RWP) mobility model, that is known to generate clustering of
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users in the center of the simulated area. The second one is a more
realistic mobility model, generated using the SUMO (Simulation
of Urban MObility) tool [61], considering measurement-based
mobility traces of the the city of Luxembourg [62]. We feed
SUMO with vehicular traffic data to produce realistic traces of
vehicle movements over the road grid of the city. Specifically, we
have considered a square area of side 4 km near the centre of
Luxembourg City (see Fig. 12), and the vehicular traces relative to
the time interval going from midnight to 3 AM, so as to observe
a low node density condition. We have considered a RZ radius of
800 m, a transmission radius of 240 m (such as the one achievable
by DSRC [63]), and a data rate of 10 Mb/s. An average of 22.02
cars were present in the RZ during the given time interval, exiting
the RZ at a mean rate of 0.105 cars per second, with a mean
contact time of 37.5 s and generating an average of 0.959 contacts
per second within the RZ.

Results in the case of the RWP mobility model are reported
in Fig. 7, assuming the presence of 15% of static nodes. Our
modeling approach can be seen to be quite accurate in spite of the
nonuniform user distribution generated by mobility.

Results in the case of the SUMO mobility model over the
streets of a portion of Luxembourg city are reported in Fig. 3, for
moving nodes only. Also in this case, results can be seen to be
quite accurate in comparison to model predictions generated with
the corresponding parameters.

We can conclude from these experiments that our model is
quite robust to variations of the node mobility pattern, and in
particular, that it performs well on realistic mobility patterns which
generate non-uniform user distributions.

7 CONCLUSION

In this paper, we have developed a first analytical model to study
the amount of information which can be stored in opportunistic
distributed edge storage systems such as Floating Content. Our
approach enables a first order characterization of the relation
between storage capacity and the main design parameters of such
systems, which is crucial for resource-efficient and QoS-aware
dimensioning.

The insight provided by our model allowed us to obtain an
explicit approximate expression of the FC storage capacity, which
can be a very simple and useful tool for analysis and design of FC
systems.
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APPENDIX A
PROOF OF LEMMA 1
Proof. In distributed floating systems, the number of contents
which a node can possess and replicate at a given point in time
is equal to the minimum between the number of RZs in which
the node is at that time, whose mean is γπR2, and the number
of contents which can be stored in its memory. In localized
floating systems, the number of RZs in which a node is located
is γπR2. Since the probability of possessing a given content is
well approximated by as(t, R) (resp. ad(t, R)), and since by the
homogeneous assumption the probability for a node to possess a
content is independent from other nodes, and the same for all
nodes, the number of contents possessed by a node follows a
binomial distribution, truncated at

⌊
M
L

⌋
.

APPENDIX B
PROOF OF LEMMA 2
Proof. Let us denote with mi, i ∈ {s, d} and mj , j ∈ {s, d}
the amount of contents possessed by each of the two nodes in
contact at time t for RZ radius R, and let xij be the amount
of exchangeable contents at node i (i.e. the amount of contents
possessed by node i but not by node j, and for which there is
enough storage space at node j). The probability that node i has
xij exchangeable contents is equal to the probability that xij out
of themi contents are not possessed by the other node, and that the
remaining contents are possessed by the other node. Moreover, xij
is upper bounded by the available storage space at node j, equal
to M

L −mj . Note that mi and mj are random variables, whose
distribution is given by Lemma 1. Therefore, the distribution of xij
conditioned to mi,mj is a binomial Bin(n, p), with parameters
n = bmic and p = 1 − aj(t, R), and truncated in

⌊
M
L −mj

⌋
.

The PDF of xij is therefore the expectation with respect to mi

and mj of P (xij |mi,mj).

APPENDIX C
PROOF OF LEMMA 3
Proof. Let us consider first the case of a contact between a static
and a moving node. The amount of contacts between two nodes
depend on the amount of exchangeable contents (i.e., of contents
possessed by only one of the two nodes) that each of the two nodes
has, as well as on the ratio between the contact time available
for the exchange, and by the amount of free storage available at
each node for storing the received contents. The probability that a
content will be considered for exchange is the probability that the
node is among those for which there is enough storage space at the
other node, which is well approximated by the ratio between the
mean amount of exchangeable contents for which the other node
has storage space, and the mean amount of exchangeable contents
when the other node has infinite storage space, i.e. by the ratio

E[xij ]
E[xij ,M=∞] .

For a contact of duration τ , the amount of time available for
transferring contents is given by τ − τ0. The mean time taken for
transferring a content is given by L

C0
. Therefore, on average the

maximum amount of contents which can be exchanged during a
contact of duration τ is b (τ−τ0)

L
C0

c. The mean amount of contents

which have to be exchanged during a contact taking place at time
t is given by E[xij + xji]. When this quantity is larger than
zero, if E[xij + xji] ≥ b (τ−τ0)

L
C0

c, then there is enough time for

transferring all contents which can be exchanged. Otherwise, on
average, the likelihood for a single content to be exchanged is
equal to the ratio between E[xij + xji] ≥ b (τ−τ0)

L
C0

c and E[xij +

xji]. Averaging over contact duration, we get Equation (2). The
derivation of Ti follows along the same line.

APPENDIX D
DERIVATION OF THEOREM 1
In order to apply the mean field approximation, a key step is the
derivation of the expression of the mean dynamics (also called
drift), which describes the average local variation of the CTMC
with respect to time [53], [64].

Lemma 5. When the system satisfies the homogeneous conditions,
the drift of the CTMC is given by (notice that, for ease of notation,
we drop the indication of the dependency on time t and RZ radius
R from all the variables):

das
dt

=
bs
Ts
ad(1− as)Sds

dad
dt

= (1− ad)
[
ℵ bs
Ts
asSsd + bd−ℵbs

Td
adSdd

]
− 2α

ψDR
ad

dbs
dt

=
gs

(1− ψ)D
(1− bs)(1− bd)−

bs
Ts

dbd
dt

=
gd
ψD

2(1− bd)2 + ℵdbs
dt
− bd−ℵbs

Td
− 4α

ψDR
bd

(19)

with 0 ≤ ai, bi ≤ 1, ℵ = 1−ψ
ψ , and bd ≥ ℵbs.

Proof. (Lemma 5)Let Ns denote the mean number of static nodes
in a RZ of radius R possessing a given content at time t, averaged
across all j. We have therefore Ns = asN̄(R)(1−ψ) = as(1−
ψ)πR2D, and similarly, for dynamic nodes, Nd = adN̄(R)ψ =
adψπR

2D. Let us compute the rate at which Ns varies over time.
As nodes are static, this quantity can only increase over time. The
increase is due solely to static nodes which exit from the busy
state due to completion of content transfers. The mean rate at
which nodes exit the busy state is given by the ratio between the
mean number of static busy nodes at time t in the RZ, given by
N̄(R)(1−ψ)bs, and the mean time taken by an exchange between
a static and a dynamic node, Ts. Moreover, let us consider one of
these terminating exchanges. The probability that the j-th content
was transferred to the static node during such exchange is equal to
the probability that the dynamic node had the content and that the
static node did not have it, given by ad(1− as), multiplied by the
probability that the j-th content was transferred during the contact
time, given by Sds.

Summing up, we have
dNs

dt = N̄(R)(1−ψ)bs
Ts

ad(1− as)Sds (20)

Normalizing this expression by N̄(R)(1 − ψ) we get the first
differential equation in Equation (19).

The rate of change of Nd is given by the sum of three
components. The first is given by those nodes which complete
a content transfer in a contact with a static node. It is derived in a
similar way as in the previous point, and it is given by:

N̄(R)(1− ψ)bs
Ts

as(1− ad)Ssd
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This exploits the fact that the mean number of busy static nodes
coincides with the mean number of dynamic nodes busy in contact
with static nodes. The second component is the increase inNd due
to contacts among dynamic nodes. The number of busy dynamic
nodes involved in such contacts is given by the difference between
the total number of busy dynamic nodes, and the total number of
busy static nodes, N̄(R)ψbd − N̄(R)(1− ψ)bs.

When a couple of such nodes ends being busy, only one of
the two has acquired the given content. Hence the rate of these
events is given by N̄(R)ψbd−N̄(R)(1−ψ)bs

2Td
. The probability that

the given content has been exchanged during a contact is given by
the probability that only one of the two dynamic nodes in contact
has the content, 2ad(1−ad) multiplied by the probability that the
content is successfully exchanged between the two nodes, given
by Sdd. Hence, the second contribution takes the form

N̄(R)
ψbd − (1− ψ)bs

Td
2ad(1− ad)Sdd

The third contribution is given by those dynamic nodes which
move out of the RZ for the given content. The rate of this type of
events is 4απRbs. Note that this is computed by doubling the rate
at which busy dynamic nodes exit the RZ. Indeed, if a busy node
exits the RZ, two busy nodes are not busy anymore, even if the
other node remains in the RZ. Putting all together, we have

dNd
dt

=
N̄(R)(1− ψ)bs

Ts
as(1− ad)Ssd+

+N̄(R)
ψbd − N̄(R)(1− ψ)bs

Td
2ad(1− ad)Sdd + 4απRbs

(21)

Normalizing by the mean total number of dynamic nodes in a RZ,
we obtain the second differential equation in Equation (19).

Let us now consider the rate at which the mean number of busy
static nodes in a RZ at time t changes over time. Their increase
is due to contacts between a static and dynamic node (an event
which happens with a rate gsπR2 contacts per second), both of
which must be non-busy (with a probability (1 − bs)(1 − bd)).
Their decrease is due to static nodes which complete the process
of content exchange with another node. Such an event takes
place with a mean rate πR2D(1−ψ)bs

Ts
. Putting all together, and

normalizing by πR2D(1 − ψ), we get the third differential
equation in Equation (19).

Finally, we consider the rate at which the mean number of
busy dynamic nodes in a RZ at time t changes over time. The
first contribution is given by those dynamic nodes which come in
contact with static nodes. The contribution due to this population
of nodes is equal to the rate at which the mean number of busy
static nodes in a RZ at time t changes over time, because each of
these contacts involves a static and a dynamic node. The second
contribution is given by content exchanges among dynamic nodes.
With a similar reasoning as above, its expression is given by
gdπR

22(1 − bd)
2. The decrease in the number of busy nodes

is due to two effects. The first is the end of content exchanges
between two nodes in contact, due to either completion of all
the pending transfers, or to the fact that the two nodes are not
in contact anymore, given by πR2Dψbd−(1−ψ)bs

Td
. Finally, the

number of busy dynamic nodes in the RZ decreases when these
nodes exit the RZ. The rate of this type of events is 4απRbd,
i.e twice the rate at which busy nodes exit the RZ. This is due
to the fact that a busy node exiting the RZ stop exchanging

contents (and therefore being busy), hence also the other node
involved in the exchange is not busy anymore, even if it remains
in the RZ. Normalizing by the mean number of dynamic nodes
in a RZ, πR2Dψ, we get the fourth differential equation in
Equation (19).

We can prove now the main result.

Proof. (Theorem 1) First, we show that, for any initial conditions
I(0, R) = (ai(0, R), bi(0, R)), there exists an array I0 such
that limR→∞ I(0, R) = I0 (convergence of initial conditions
[53]). Let us choose I0 = I(0, R). Then for each content k,
if Nk

i (0, R) (NT
k (0, R)) is the number of nodes with the k-th

content in the RZ of content k (respectively, the total number of
nodes in the RZ of content k) at time t = 0 in the RZ, choos-
ing Nk

i (0, R) =
⌊
ai(0, R)NT

k (0, R)
⌋
, and setting to zero the

number of busy nodes at t = 0 allows satisfying the convergence
condition. Given the assumption of stationarity of the mobility
patterns, and of uniform node distribution, the mean total number
of nodes in a RZ for a content k is equal for each content (given
that all RZ have the same shape and size) and we denote it with
N(R). In order to apply the mean field approximation approach,
we start by assuming NT

k (t, R) = N(R), for any content k
an any time t ≥ 0. As a consequence of the homogeneous
condition,N(R) grows proportionally toR. With these properties,
the considered system can be modeled as a Population Continuous
Time Markov Chain (PCTMC) [53]. Specifically, to each value of
R we can associate a PCTMC model with a total number of nodes
N(R). As for the size of the model (i.e., as for the parameter used
for normalizing the state occupancy), we choose the parameter
N(R) itself. Let us consider now a sequence of increasing values
of R, to which we can associate a sequence of PCTMC models,
each with the features described so far. By the nature of the system,
one can easily verify that for any state transition, the state change
vector (i.e., the difference between the state occupancy before and
after the state transition) is independent of R and hence of the size
of the model.

From Lemma 5 it is easy to see that the drift of the generic
PCTMC is continuous. Let I(t, R) = (ai(t, R), bi(t, R)) and
I(t) = (ā(t), b̄(t)) = limR→∞ I(t, R). As our sequence
of PCTMC models satisfies these properties, by Theorem 1
in [53] we have that for any finite time horizon T ≤ ∞,
P
{

limR→∞
(
sup0≤t≤T ‖I(t, R)− I(t)‖

)
= 0

}
= 1. That is,

the sequence of population models associated to R converges
almost surely to the dynamics of the ODEs in Theorem 1.
Finally, in the case in which the number of nodes in each RZ
is not constant, one can follow the same approach and derive an
additional differential equation for the mean number of nodes in
each RZ. Indeed, as we assumed the mobility is stationary, such
differential equation would be a balance equation, giving a mean
number of nodes in each RZ which does not vary over time, and
which is not affected by the evolution over time of the other two
variables of the system. Given such decoupling, the mean field
approach can be applied separately to the mean number of nodes
in each RZ, and to the two variables we have considered so far,
obtaining again the ODEs in (19).


