
Gossip Learning of Personalized Models
for Vehicle Trajectory Prediction

Mina Aghaei Dinani,
Adrian Holzer

University of Neuchatel,
Switzerland

name.surname@unine.ch

Hung Nguyen
The University of Adelaide,

Australia
hung.nguyen@adelaide.edu.au

Marco Ajmone Marsan
Politecnico di Torino, Italy and

Institute IMDEA Networks, Spain
ajmone@polito.it

Gianluca Rizzo
HES-SO Valais, Switzerland, and

University of Foggia, Italy
gianluca.rizzo@hevs.ch

Abstract—Gossip Learning (GL) is a peer-to-peer machine
learning protocol based on direct, opportunistic exchange of
models among nodes via wireless D2D communications, and on
collaborative model training, which has recently proven to scale
efficiently to large numbers of nodes, and to offer better privacy
guarantees than traditional centralized learning architectures.
Existing approaches to GL are however limited to scenarios
in which nodes are static, or in which the node connectivity
graph is fully connected, and they are fragile to node churn
as well as to any change in network configuration. To overcome
this limitation, we present a new decentralized architecture for
GL suitable for setups with dynamic nodes, which benefits from
node mobility instead of being hampered by it. In our approach,
nodes improve their personalized model instance by sharing
it with neighbors, and by weighting neighbors’ contributions
according to an estimate of their marginal utility. We apply our
GL algorithm to short-term vehicular trajectory estimation in
realistic urban scenarios. We propose a new strategy for the
estimation of the neighbors’ instances marginal utility, which
yields satisfactory trajectory estimation accuracy for nodes with
long enough sojourn times.

I. INTRODUCTION

The amount of data produced by affordable edge devices
and sensors has been increasing exponentially over the recent
past, thanks to the increasing pervasiveness of the Internet of
Things (IoT) paradigm, the growing interest in Smart City
applications, and the gradual deployment of 5G networks [1],
[2], [3]. The amount of data traffic is poised to grow faster
than the number of connections because of the increased use
of data hungry applications, such as telemedicine and smart
driving systems [4]. Much of this data is key for enabling
decision making so as to improve the behavior of complex
systems. For example, vehicle trajectory prediction creates new
opportunities for improving transport services and reducing
traffic congestion [5]. An increasing number of services and
applications in the vehicular domain rely on trajectory data and
AI/ML (artificial intelligence, machine learning) techniques to
improve their effectiveness and efficiency.
Standard ML algorithms rely on training over datasets built
from a large number of sources, and typically stored centrally,
on one machine or in a data center. Storing such data in a
central place has become more and more problematic because
of data protection rules, and customer privacy concerns. In ad-
dition, collecting data from different devices can be inefficient
and their transfer can quickly clog the available bandwidth.

Several distributed ML approaches have been proposed to
overcome these limitations [6], [7]. Among these, Federated
Learning (FL), first introduced by Google [8], is based on a
synchronous coordinator-client (server-client) architecture. FL
collaboratively learns a single consensus model for all clients
from decentralized data without the need to store data centrally.
Data remains where it was generated, which guarantees privacy
and reduces communication cost. However, learning heavily
depends on the coordinating server, which causes scalability
issues with large numbers of nodes.
Decentalized ML algorithms have been proposed to tackle
scalability issues. In these algorithms, learning is implemented
collaboratively amongst all nodes with no central server, ag-
gregator or coordinator. One of the state-of-the-art approaches
in this field is Gossip Learning (GL) [9], which implements
a decentralized version of FL. Each node in this distributed
algorithm acts as a client for other nodes. At the same time, it
can act as a coordinating server that merges received models.
GL has been applied to different ML problems. In [10], a
gossip protocol is used in which local models are distributed
over a logically fully connected peer-to-peer network serving
an application of distributed learning for medical data centres.
However, the solution has scalability and connectivity issues
of its own. In [11], a segmented gossip aggregation is in-
troduced. The global model is divided into non-overlapping
subsets. Local learners aggregate the segmentation sets from
other learners. The proposed approach is application-dependent
and not suitable for more general machine learning contexts.
Savazzi et al.[12] proposed a fully serverless FL approach, in
which nodes receive a combined model from their neighbours,
and each one independently performs training steps on its
local dataset. Then, similarly to [10], nodes forward updated
models to their one-hop neighbourhood for a new consensus
step. Their goal is exploiting a serverless consensus paradigm
for FL and enhancing the speed of convergence. Individual
model instances are not personalized to increase local per-
formance. Moreover, the majority of existing GL approaches
consider scenarios in which either each node communicates
with all other nodes, or the connectivity graph is static. By
not accounting for churn and mobility, these approaches are
not applicable in dynamic setups such as vehicular ad hoc
networks (VANETs).
In this work we consider a scenario in which the learning



agents are vehicles moving in an urban setting, and exchanging
information directly in an ad-hoc mode, e.g. via cellular D2D,
WiFi direct, or DSRC [13], [14]. We consider the case in
which each vehicle has to train an LSTM model in order to
predict in an online manner its own trajectory, for purposes
of vehicular traffic management, or for the implementation
of coordinated driving, or for enabling proactive resource
allocation algorithms, e.g. in Mobile Edge Computing (MEC)
schemes [15].
We propose a decentralized GL scheme which is online, peer-
to-peer and based on asynchronous communications. Each
node in this network uses its local dataset to improve the
model instances of nodes it meets opportunistically. At the
same time, each node acts as a coordinating server that merges
received models in order to improve the performance of its own
personalized model instance.
We present three practical algorithms, called DFed Avg, DFed
Pow and DFed MinLoss, to personalize the model instance of
each node, based on iterative model averaging. We evaluate
our approach considering a dynamic time series data set.
We perform our numerical experiments over measurement-
based mobility traces in an urban setting. Result over a clean-
slate scenario suggest that these approaches already perform
well when vehicles spend at least about 20 minutes in the
considered area, even with dynamic, unbalanced and non-IID
data distributions.
The rest of this paper is organized as follows: Section II
describes the system model. In Section III, GL algorithms
are described in details. Section IV is dedicated to numerical
evaluation and results, and finally future work is discussed in
Section V.

II. SYSTEM MODEL

We consider a set of wireless nodes, moving on a finite
region of the plane according to an arbitrary stationary mo-
bility model. We assume nodes know exactly their position at
any point in time. Nodes communicate among them using a
wireless technology (e.g. WiFi, DSLR, Cellular D2D, among
others). We say that two nodes are in contact when they are
able to exchange information directly.
We assume that the given region of the plane is partitioned
into cells. Location, size and shape of the region, as well as of
each cell are typically determined by the specific application
scenario requiring trajectory prediction. For instance, in a setup
where vehicles offload part of their computing tasks to a MEC
service, a cell of our system may correspond to the coverage
area of the roadside unit(s) to which a specific MEC server
is associated. The choice of the region instead depends on
the spatial range of the specific service requiring trajectory
predictions.
In addition to these cells, we define an outside cell, consisting
in the area of the plane lying out of the given region. Without
loss of generality, let us assume time to be divided into slots,
and let ∆ be the slot duration. Let v be the unique identifier of
a vehicle in the given scenario. Starting from the slot at which
the v− th vehicle enters the given region (which we denote as
slot 1), each vehicle samples its position in space at each time

slot. If t is the label of the t− th slot since ingress time, with
(xt, yt) we denote the vehicle position at the beginning of that
slot. The resulting time series {(xt, yt)}t=1,...,t0 constitutes the
local dataset of the vehicle up to the t0 − th slot from node
ingress.
As explained, we consider a scenario in which at any slot each
user (vehicle) tries to predict its own location h slots ahead in
the future. The outside cell is used to predict whether a node
will get out of the given region in h slots. In order to avoid
trivial prediction tasks (due to e.g. regular mobility patterns
of vehicles) in what follows we adopt a clean-slate model, by
which we assume that nodes entering the given region possess
an empty local dataset. This models the worst-case condition in
which vehicles in the scenario are new to the area considered,
and thus they cannot rely on data collected before entering the
given region for elaborating a prediction of their trajectory.
Though far from ordinary operating conditions in a realistic
setting, the clean-slate assumption allows a first conservative
assessment of our approach, in a way which is independent
from any context-dependent assumption on the composition
or the size of the initial dataset. As in machine learning
techniques more data imply (at least the opportunity of) better
performance for the model trained on that data, results obtained
in a clean slate scenario may be seen as lower bounds on the
actual performance achievable with our approach in a realistic
scenario. Of course, note that our approach can be easily
extended and adapted to the case in which such assumption
does not hold, though in that case the performance (as well as
the necessary adaptations) would be a function of the specific
assumptions made on the composition of the initial dataset of
each node.

III. A DISTRIBUTED ARCHITECTURE FOR GOSSIP
LEARNING

In this section, we outline the architecture of our new GL
protocol, whose goal is to endow each node in the scenario
with a machine learning based model capable of accurately
predicting its trajectory.

A. A LSTM architecture for trajectory prediction

In order to implement our learning architecture, we assume
that each nodes employs a Long Short Term Memory (LSTM)
network, a special kind of Recurrent Neural Network (RNN)
already proposed in the literature to predict vehicle trajectories
[16]. For the task of time series forecasting, when a sequence
of input and output multi-variant data is available [17][18],
encoder-decoder LSTM has been shown to outperform other
approaches for motion prediction, such as Kalman filtering
[19] or Support Vector Machines [20], as their lack of depth
does not allow satisfactory prediction performance.
Thus, we assume that each node that traverses the considered
region uses his local dataset to train an encoder-decoder LSTM
model. Once the model is trained, at every time slot each node
feeds the LSTM model with the last α samples of the time
serie representing the vehicle’s own trajectory in the last α
time slots, and it outputs a prediction on where the node will
be in h time slots in the future.

2



The detailed architecture of the encoder-decoder LSTM model
is as follows. This model is the concatenation of two
LSTM layers (encoder and decoder), each with 50 neu-
rons. The LSTM encoder accepts as input a time series
{(xt, yt)}t=t1,...,t1+α of size α by 2, representing vehicle
trajectories over α consecutive time slots. The output of the
first LSTM layer (encoder) is a fixed-length vector which
captures the temporal structure of the past trajectory. The
second LSTM layer (decoder) maps the vector representation
back to a variable-length target sequence. The target sequence
is the cell trajectory c1, ..., ch of length h, i.e. a sequence
of h cell labels describing the cell in which the vehicle is
predicted to be, from time slot t1 + α + 1 up to time slot
t1 + α + h. The resulting LSTM network is trained over a
sequence of epochs, i.e. of learning iterations performed over
the entire dataset. In each epoch, a node trains once the local
model instance using its local dataset, and it updates the model
parameters. We adopt a mini-batch Gradient Descent training
approach, in which the training during one epoch is partitioned
in two or more batches of size 32. Finally, we have adopted the
Adam optimizer [21] in our model because of its computational
efficiency and simplicity, as it requires little memory, and is
well suited for problems with many parameters. It is also
appropriate to cope with non-stationary objectives. Please note
that the number of neurons, the batch size, the number of input
time steps as well as the other hyperparameters of our LSTM
network and of the training process have been tuned through
extensive simulations and testing.

B. A framework for collaborative training in dynamic settings

In this section we describe a decentralized, collaborative
algorithm for training the LSTM network, in a way which
maximizes the accuracy of the prediction for each user. An
outline of our proposed strategy for decentralized GL is
presented in Algorithm 1.
Our algorithm is structured as follows. We assume the time
spent by each node in the region to be divided into two stages.
Initialization stage. It starts from the time slot in which the
node enters the considered area (or from the beginning of the
scheme if the node is already present in the given region at
that point in time), and it lasts V slots. During this stage, the
node does not possess yet a sufficiently large dataset to train its
local model. Thus the node does not perform any prediction,
but it collects data and it builds its local dataset.

Finally, at the end of the initialization stage, each node
initializes the model by training it on its local dataset.
Exploitation stage. This second stage starts at slot V +1, and
terminates when the node exits the given region.
Three are the main activities of each node in this stage. Firstly,
the node keeps expanding its local dataset, by adding in real
time data about its current trajectory. In the exploitation stage,
the validation set, which is used to evaluate the performance
of the training process, is constituted by the last V samples of
the trajectory of each node.
Moreover, in the exploitation phase each nodes uses its LSTM
model to issue a prediction about the cell in which it will be
in h slots.

Algorithm 1 Decentralized GL algorithm.
Kv
j is the set of nodes in their exploitation phase which come

in contact with node v during the j − th round.
for every node v do

for slot 1 to V do . Initialization stage
Update local dataset

end for
Train the initial model instance wv

0 over local dataset.
wv

1 =CLIENTUPDATE(wv
0 )

for Each round j do . Exploitation stage
for Every node k ∈ Kv

j do
Send model instance wv

j

Receive model update wv,k
j

Receive model wk
j

. Train model wk
j on local dataset

wk,v
j =CLIENTUPDATE(wk

j )
Send model update wk,v

j to node k
end for

. Merge all received model updates
wv

j ←MERGEMODELS({wv,k
j }k∈Kv

j
)

Update local dataset
Train wv

j over local dataset.
end for

end for

function CLIENTUPDATE(wv
j ) . Run on client k

Split local dataset into B batches
Let w ← wv

j

for batch b ∈ 1, ..., B do
w ← w − η5 (w; b)

. η is the learning rate
end for
return wv,k

j ← w
end function

The third and foremost activity of the exploitation stage is the
training of the local model of the node, through a collaborative
training, supported by all the nodes with which the given node
comes in contact. The goal is to improve the accuracy of
the local model over that which can be achieved by relying
exclusively on local training. To this end, from the beginning
of this stage, each node partitions time into rounds, of duration
equal to one or more slots.
From the beginning of a round, and for all its duration,
the given node (which we denote as server node) sends the
coefficients of its local instance of the LSTM model to all
nodes which are within its transmission range (which we
denote as client nodes). Every client node that receives the
model instance trains it using a subset of its own dataset.
Once each client node has completed the training of the
received instance, it sends it back to the server node if it is
still in range and if the round has not passed, and discards it
otherwise. At the end of the round, and similarly to traditional
Federated Learning, the server node combines the model
instances received from clients during the given round, to build
a meta-model which is used for issuing trajectory predictions,
and for initiating a new training round. Note that each node
has control of its data, and never shares its dataset with others.

3



Instead, nodes share their model instances, thus providing
support for protection of data confidentiality. Note also that
the frequency of the training of the meta-model over the local
dataset is a parameter which can be tuned and adapted to
the specific setup considered. In particular, it depends on the
duration of a round (in terms of number of slots), and it can
be performed at the end of every round, or every n rounds.
We observe that the scheme we just described bears a close
resemblance to classical FL algorithms. However, differently
than classical FL, every node in the exploitation stage is at
the same time playing the role of the server (or coordinator)
for his own personal learning task, for which it is building its
own local model, and of client node for other nodes’ learning
tasks. That is, each node in the exploitation stage (and thus
with a substantial dataset) is available for training the models
of all other nodes which come in contact. In this, they play a
similar role as client nodes in FL, receiving a model instance
from another node, and sending back to it an updated version
of the received model instance. Differently than FL however,
all client nodes participating in the training process in a round
are all those nodes which the server node meets during the
round. Moreover, each client is not required to be in contact
with the server node for the whole round, as in FL. Instead,
it may initiate the exchange with the server node at any time
within the round, provided that the contact duration is long
enough to allow for model exchange and training.
Among the many hyperparameters of our scheme, a key role
is played by the total number of epochs for each training step.
Our scheme adopts two different values for this parameter.
When acting as client, and training other nodes’ models, we
chose a maximum number of epochs equal to one. Indeed,
though our scheme differs in important ways from traditional,
centralized FL, they both share the same client-coordinator
structure, for which it has been shown [8] that choosing a
single epoch maximizes accuracy while minimizing training
time.
When a node trains its local model on its own local dataset
instead, the total number of epochs is chosen in such a way
as to avoid overfitting while maximizing accuracy.
A key aspect of our GL approach is represented by the strategy
used by each server node to combine the model instances
received by client nodes in order to produce an updated version
of its local model instance (also denoted as meta-model). In
what follows, we propose three different approaches to merge
model instances received from neighbours and create a local
model instance by using collaborative learning techniques. The
performance of the three approaches will be then discussed in
the numerical evaluation section.
It is important to stress that, in the considered setting, the
strategies for the merging of model instances are the key factor
influencing the system performance, due to the continuously
changing set of neighbour nodes. For this reason, in this paper
we concentrate on such strategies and on the corresponding
model instance weighting approaches.

C. Decentralized Averaging (DFed Avg)

The DFed Avg approach is based on the way of combining
models which is most frequently used in the literature for FL
algorithms. With this approach, wv is computed through a

Algorithm 2 DFedAvg
nk is the number of samples in the local database of client k
which have been used for training

function MERGEMODELS({wv,k}k, nk)
N ←

∑
k∈Kv

j

nk

wv ←
∑

k∈Kv
j

nk
N
wv,k

Return wv

end function

weighted sum over all clients model instances, in which the
contribution of each client node is weighted by the proportion
of the number of its samples involved in the training phase
(nk) over the total number of samples in the training phase
(N ). This approach gives more weight to a model instance
which has a larger number of samples. The underlying idea
is that to a larger amount of data points used for training it
corresponds a more accurate model.

D. Decentralized Powerloss (DFed Pow)

The DFed Pow approach weights each neighbor contribu-
tion to the meta-model according to a notion of similarity (in
terms of roads and regions of the city covered) among the
datasets of the server and of the client nodes. Specifically,
the server node uses its local validation set to evaluate the
loss value lk of each of the updates of the model received
by client nodes. As a loss function, we considered the well
known categorical cross-entropy [22], which compares the
probability vector given as the output of the model with a one-
hot encoded vector representing the true class, and through a
logarithmic formula computes the amount of loss. The result
is a loss value which increases as the predicted probability
diverges from the actual label.In computing the meta-model,
each client contribution is proportional to the inverse of a
function which grows exponentially with loss. Specifically, to
the model update of each user k we assigned a weight given by

10−lk∑
k′ 10

−l
k′

, where the normalization term at the denominator
is a sum over all clients which returned a model in the given
round.

E. Decentralized Minimum Loss (DFed MinLoss)

Finally, in the DFed MinLoss approach, the server selects
among the received model updates the one with the lowest loss
value (computed as in DFed Pow), and it takes it as its local
model instance. This approach originates from the observation
that in DFed Pow the meta-model does not always perform
better than the single model updates which compose it.

IV. NUMERICAL EVALUATION

In this section we present the results of the numerical as-
sessment of our framework for decentralized Gossip Learning.

4



Algorithm 3 DFed Pow
lk is the loss of model update from node k (i.e. of wv,k) over
validation set of node v.

function MERGEMODELS({wv,k}k)
for every node k ∈ Kv

j do
Compute lk
P ←

∑
k∈Kv

j

10−lk

wv ←
∑

k∈Kv
j

10−lk

P
wv,k

end for
Return wv

end function

Algorithm 4 DFedMinLoss

function MERGEMODELS({wv,k}k)
for every node k ∈ Kv

j do
Compute lk

end for
Compute k′ = argmin

k∈Kv
j

lk

Return wv,k′

end function

Fig. 1: Map and road grid of Luxembourg City center. The area within
the red square corresponds to the region considered in our simulations.

In order to implement a realistic scenario in our simulation ex-
periments, we adopted the dataset of the Luxembourg SUMO
Traffic (LuST) Scenario [23], consisting in measurement-based
vehicular traces over 24 hours from the city of Luxembourg,
with a typical topology common in mid-size European cities,
and with realistic traffic demand and mobility patterns. In
particular, we considered a square region of side 1050 m
(Fig. 1) in the city center, within which we assumed that
predictions of vehicle trajectories are required. We partitioned
such region into 49 square cells of side 150 m, compatibly
with the case in which each cell corresponds to the coverage
area of a MEC-enabled small cell base station. As in many
real scenarios, vehicular traffic flows exhibit non-stationary
properties which might affect the accuracy of our GL trained
models. In order to limit such effects of the variations of traffic
flows over time, we observed the performance of our scheme
over a time interval of one hour (specifically, from 6 : 30 AM
to 7 : 30 AM, where vehicular traffic is sufficiently intense
and stationary). Such time interval has been chosen to be,

on one side, long enough to allow our training framework to
progress substantially, but short enough for the average pattern
of vehicular traffic flows not to vary significantly. In the given
region, on average about 300 vehicles are present at every time
instant in the time interval considered, and every vehicle is in
the range of about 60 other vehicles, of which on average only
half are in the exploitation phase and are thus able to act as
clients.
For implementing the simulations of opportunistic commu-
nications among vehicles, we adopted the Omnet++ [24]
framework, while Keras [25] was used for implementing our
GL algorithm. We assumed vehicles sample their position in
space every 5 s, i.e. at rate comparable to that common in many
present day car fleet management applications. Moreover, we
assumed to require a prediction about a vehicle’s position
in 10 seconds in the future. Such forecast horizon is of the
same order of magnitude of those required in, e.g., predictive
collision avoidance systems, or in MEC resource preallocation
strategies. Our LSTM model input being composed by 24
steps, it requires at least the last two minutes of the trajectory
of a car in order to issue a trajectory prediction. We considered
each node performs model training over its entire local dataset,
adopting a local batch size of 32 data points (coherently with
the indications in [26] [27], and a 10−3 learning rate, as
suggested in [28].
Given that in the scenario considered the average sojourn time
of vehicles in the given region has been around 20 minutes,
after several experiments for each node we have chosen for the
initialization phase a duration of about half of this time, i.e. 9
m 30 s. Indeed in the given setting such a duration is, on one
side, short enough to have a substantial amount of nodes in
the exploitation stage at each point in time (about 50%), and
thus contributing to our collaborative training. On the other,
it is long enough to have a substantial training set at each
node, and thus to allow the collaborative training to progress
at a reasonable rate within the residual sojourn time of each
vehicle. Given the relatively short duration of the exploita-
tion phase, we have experimentally verified that the periodic
training of the local model instance on the local database
during the exploitation phase has no significant impact on
model accuracy. Note however that these considerations are
strictly related to the characteristics of the chosen scenario,
and specifically, to the size and shape of the given region,
as well as the mean node speed. In order to perform a first
evaluation of our approach, we have assumed that the tasks of
model training, of computing a meta-model, and of exchanging
a model are instantaneous, thus modeling the case in which
the limiting factor of our training framework is given by the
way in which training and meta-model computing task are
implemented, rather than by their duration.
In order to assess the performance of the training process, the

test set consisted in the data points of the trajectory of each
vehicle within the last 5 minutes of the vehicle’s sojourn time
within the given region. With such a choice for the test set
(henceforth denoted as static), at each point in time during the
exploitation stage the evaluation is done on data points about

5



Fig. 2: Mean accuracy versus iterations for our GL algorithm, for the
three model merging schemes, and baseline model, with static test
set, in the Luxembourg scenario.

Fig. 3: Mean loss versus iterations for our GL algorithm, for the three
model merging schemes and baseline model with static test set, in the
Luxembourg scenario.

parts of the map which are generally far from those in which
the node is located. This holds also, on average, for the dataset
of the client nodes. Finally, in order to better appreciate in
what measure our collaborative training improves over purely
local training, we have considered this latter approach as as a
baseline, and we have characterized its performance.
Fig. 2 and Fig. 3 show accuracy and loss of our GL schemes,
averaged over the 30 cars in the area with longest sojourn time,
for the static test set approach. As these figures show, one
consequence of choosing a static test set is that on average the
initial loss is high (and the accuracy low) for all of the three
meta-model building approaches, and sometimes even lower
than the baseline. The figures also show that these parameters
keep on improving steadily across the iterations of our GL
training scheme.
These results show also that despite every node enters the
scenario with an empty dataset, a substantial improvement
in model accuracy can be achieved within a relatively small
amount of rounds. The two plots indicate that, when vehicles
spend a sufficiently large amount of time in the scenario,
GL schemes can collaboratively train models which achieve
a substantially better performance with respect to their initial,
locally trained models, and over relatively short timespans.
Moreover, the plots Fig. 2 and Fig. 3 seem to suggest that,
as expected, the main potential factor contributing to such
improvement is the progress in model training, i.e. the gradual

Fig. 4: Mean loss versus iterations for our GL algorithm with a short
size rolling test set, for the three model merging schemes, in the
Luxembourg scenario.

inclusion over time in the trained model of an ever larger
amount of data about trajectories in the given region.
As for the relative performance of the three approaches to
meta-model elaboration, Fig. 2 and 3 show that weighting
each contribution to the meta-model based on the relative size
of the local training set, outperforms approaches based on
loss estimation. This might be due to the fact that while the
validation set (over which loss is evaluated in the DFed Pow
and DFed MinLoss approaches) consists in the last V slots of
a user’s trajectory, and thus to a region of space very close to
where the user will be in h slots, the test set is relative to a
portion of the user trajectory which is (generally, except for
the final part of the vehicle’s trajectory) far enough from the
current vehicle position (and from where it will be) to make the
performance over the validation set not indicative of the actual
prediction accuracy of the model. I.e., as the model evolves
constantly to adapt its performance to the specific prediction
task and to the context in which the prediction is formulated,
it would make more sense to take as test set data points which
are as much as possible related to that same spatio-temporal
context.
In order to address this issue, in a new set of experiments, at
each time slot t we have adopted as test set the data points
relative to the time interval (i− l, i+ h) where l is the length
of the LSTM input (24 slots), and h is the forecast horizon
(equal to 2 slots in our experiments). This should allow a more
relevant assessment of model performance, as it is performed
over the same segment of a vehicle trajectory over which
the prediction is performed. As Fig. 4 and 5 show, when
assessed with a rolling test set the performance (both in terms
of accuracy and of loss) of the models trained with our GL
approach is generally less pessimistic than with a static test set.
In addition, it remains approximately constant as the number of
rounds increases, if not for fluctuations which are due to spatial
in homogeneities in node density, in the structure of the road
grid, and to bursts of nodes arriving and leaving the considered
region. Moreover, in this setting the loss-based meta model
building approaches perform generally better than the strategy
based on the relative size of the local dataset of client nodes,
with the DFed Pow performing slightly better than the DFed
MinLoss. This is likely due to the fact that test set and

6



Fig. 5: Mean accuracy versus iterations for our GL algorithm with a
short size rolling test set, for the three model merging schemes, in
the Luxembourg scenario.

validation set are now relative to contiguous regions of space
and time interval, making loss measured over the validation set
a more relevant indicator of the performance over the (rolling)
test set. Note that improvement over the baseline becomes
noticeable only after that a substantial amount of rounds has
passed. This is due to the fact that the baseline algorithm
has been obtained via training over a dataset which typically
contains only a very limited number of cell transitions. Thus,
it performs poorly whenever the node moves to another cell,
an event whose likelihood grows with time, thus steadily
worsening the performance of the purely locally trained model
over time.

V. CONCLUSIONS AND FUTURE WORK

The preliminary results presented in this paper suggest that
the performance of nodes with too small/poor datasets, or short
sojourn times might be improved by having nodes with better
models spread them opportunistically, and let other nodes use
such received models as starting point for the GL algorithm.
We thus plan on expanding the approach discussed in this
paper with other forms of model exchanges among vehicles,
which can better enable vehicles with short sojourn times
and/or small datasets to contribute significatively to the model
sharing scheme. Moreover, we plan on performing a thorough
assessment of our algorithms on a variety of other vehicular
scenarios, and to characterize their convergence properties.

REFERENCES

[1] H. B. Sta, “Quality and the efficiency of data in “Smart-Cities”,” Future
Generation Computer Systems, vol. 74, pp. 409–416, 2017.

[2] B. Cheng, S. Longo, F. Cirillo, M. Bauer, and E. Kovacs, “Building a big
data platform for smart cities: Experience and lessons from santander,”
in 2015 IEEE International Congress on Big Data. IEEE, 2015, pp.
592–599.

[3] N. Javaid, A. Sher, H. Nasir, and N. Guizani, “Intelligence in IoT-Based
5G Networks: Opportunities and Challenges,” IEEE Communications
Magazine, vol. 56, no. 10, pp. 94–100, 2018.

[4] U. Cisco, “Cisco annual internet report (2018–2023) white paper,” 2020.

[5] Z. Xiao, P. Li, V. Havyarimana, G. M. Hassana, D. Wang, and K. Li,
“GOI: A Novel Design for Vehicle Positioning and Trajectory Prediction
Under Urban Environments,” IEEE Sensors Journal, vol. 18, no. 13, pp.
5586–5594, 2018.

[6] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” Advances in neural information processing sys-
tems, vol. 30, pp. 4424–4434, 2017.

[7] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J. Franklin, and
M. I. Jordan, “MLbase: A Distributed Machine-learning System.” in
Cidr, vol. 1, 2013, pp. 2–1.

[8] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics. PMLR, 2017, pp. 1273–
1282.

[9] R. Ormándi, I. Hegedűs, and M. Jelasity, “Gossip learning with linear
models on fully distributed data,” Concurrency and Computation:
Practice and Experience, vol. 25, no. 4, pp. 556–571, 2013.

[10] M. Blot, D. Picard, M. Cord, and N. Thome, “Gossip training for deep
learning,” arXiv preprint arXiv:1611.09726, 2016.

[11] C. Hu, J. Jiang, and Z. Wang, “Decentralized federated learning: A
segmented gossip approach,” arXiv preprint arXiv:1908.07782, 2019.

[12] S. Savazzi, M. Nicoli, and V. Rampa, “Federated learning with cooper-
ating devices: A consensus approach for massive IoT networks,” IEEE
Internet of Things Journal, vol. 7, no. 5, pp. 4641–4654, 2020.

[13] A. Asadi, P. Jacko, and V. Mancuso, “Modeling D2D communications
with LTE and WiFi,” ACM SIGMETRICS Performance Evaluation
Review, vol. 42, no. 2, pp. 55–57, 2014.

[14] K. Abboud, H. A. Omar, and W. Zhuang, “Interworking of DSRC
and cellular network technologies for V2X communications: A survey,”
IEEE transactions on vehicular technology, vol. 65, no. 12, pp. 9457–
9470, 2016.

[15] Z. Sun and M. R. Nakhai, “An Online Mirror-Prox Optimization
Approach to Proactive Resource Allocation in MEC,” in ICC 2020 -
2020 IEEE International Conference on Communications (ICC), 2020,
pp. 1–6.

[16] F. Altché and A. de La Fortelle, “An LSTM network for highway
trajectory prediction,” in 2017 ITSC. IEEE, 2017, pp. 353–359.

[17] B. Kim, C. M. Kang, J. Kim, S. H. Lee, C. C. Chung, and J. W. Choi,
“Probabilistic vehicle trajectory prediction over occupancy grid map
via recurrent neural network,” in 2017 IEEE ITSC. IEEE, 2017, pp.
399–404.

[18] P. Ondrúška and I. Posner, “Deep tracking: Seeing beyond seeing using
recurrent neural networks,” in Proceedings of AAAI, 2016, pp. 3361–
3367.

[19] A. Carvalho, Y. Gao, S. Lefevre, and F. Borrelli, “Stochastic predictive
control of autonomous vehicles in uncertain environments,” in 12th
International Symposium on Advanced Vehicle Control, 2014, pp. 712–
719.

[20] P. Kumar, M. Perrollaz, S. Lefevre, and C. Laugier, “Learning-based
approach for online lane change intention prediction,” in 2013 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2013, pp. 797–802.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[22] D. R. Cox, “The regression analysis of binary sequences,” Journal of
the Royal Statistical Society: Series B (Methodological), vol. 20, no. 2,
pp. 215–232, 1958.

[23] L. Codeca, R. Frank, and T. Engel, “Luxembourg SUMO Traffic (LuST)
Scenario,” in IEEE VNC, Dec 2015, pp. 1–8.

[24] A. Varga, OMNeT++. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 35–59.

[25] F. Chollet, Deep Learning with Python and Keras: The practical manual
from the developer of the Keras library. MITP-Verlags GmbH & Co.,
2018.

[26] Y. Bengio, “Practical recommendations for gradient-based training of
deep architectures,” in Neural networks: Tricks of the trade. Springer,
2012, pp. 437–478.

[27] D. Masters and C. Luschi, “Revisiting small batch training for deep
neural networks,” arXiv preprint arXiv:1804.07612, 2018.

[28] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, tools, and techniques to build intelligent sys-
tems. O’Reilly Media, 2019.

7


	Introduction
	System model
	A distributed architecture for Gossip Learning
	A LSTM architecture for trajectory prediction
	A framework for collaborative training in dynamic settings
	Decentralized Averaging (DFed Avg)
	Decentralized Powerloss (DFed Pow)
	Decentralized Minimum Loss (DFed MinLoss)

	Numerical Evaluation
	Conclusions and future work
	References

