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There are ways to facilitate the expansion of the application of radiomics to diseases other than 

tumors, and thus, increase the predictive potential of radiomics. 

Essentials: 

To cope with the heterogeneity inherent to routine data, a close collaboration between radiologists 

and IT-specialists is necessary. 

Deep-learning-based radiomics may help to cope with technical variability in routine imaging data. 

Large study cohorts may provide insights transferable to a more heterogeneous routine population. 

Keywords: 

radiomics, routine data, chest, computed tomography 

List of abbreviations: 

BMD    bone mineral density 

COPD    chronic obstructive pulmonary disease 

CLAD    chronic lung allograft dysfunction 

DXA    dual energy x-ray absorptiometry 

GOLD    global initiative for obstructive lung disease 



 

ILD    interstitial lung disease 

IPF    idiopathic pulmonary fibrosis 

IPSI    image biomarker standardization initiative 

TNM    TNM classification of malignant tumors 

UID    unique identifier 

 	



 

Abstract: 

Radiomics studies for oncological applications, particularly in lung cancer, have been increasing 

exponentially over the last years. The automatic extraction and quantification of imaging features may 

not only characterize histological subtypes of cancer but also help to predict morbidity and overall 

mortality by including cardiovascular, pulmonary and metabolic imaging features of structures other 

than the tumor. However, an adequate sample size as a statistical necessity for radiomics studies is 

often difficult to achieve in prospective trials. By exploiting imaging data from clinical routine, a much 

larger amount of data could be utilized than in clinical trials. Still, there is only little literature on the 

implementation of radiomics in clinical routine imaging data. Reasons are heterogeneous computed 

tomography (CT) scanning protocols and the resulting technical variability in routine CT imaging data. 

In this review, we summarize the recent state of the art of studies aiming to develop quantifiable 

imaging biomarkers in chest CTs beyond cancer. We explain solutions to overcome heterogeneity in 

routine data such as the utilization of imaging repositories, the standardization of radiomic features, 

algorithmic approaches to improve feature stability, test-retest studies and the evolution of deep-

learning for modelling radiomics features. 

  



 

Introduction 

The highly active field of radiomics poses an opportunity to extract comprehensive information from 

medical images for the prediction of disease course, survival or even treatment response in oncology 

(1). In addition to staging, histology, molecular analyses, and performance status, comorbidities of lung 

cancer (e.g., chronic obstructive pulmonary disease (COPD), additional lung fibrosis, or congestive 

heart disease) are also predictors of survival (2). An overly concentrated focus on tumor-specific 

parameters may lead to the exclusion of additional factors, and thus to a neglect of important 

individual traits that support true precision medicine. 

Only recently, the fast-paced development of machine-learning approaches allowed tapping into 

patient records and medical images from the clinical routine for the deduction of predictive markers. 

In the USA, nearly 73.8 million computed tomography (CT) examinations are conducted every year (3). 

The ability to utilize such large amounts of imaging data can greatly benefit the evolution of powerful 

computational imaging analysis methods. 

The prospect of radiomics 

What is radiomics? 

The definition of radiomics is the “high-throughput extraction and analysis of quantitative imaging 

features from medical images” with the aim  to generate predictive models and aid in clinical decision 

support (1). These features are either hand-crafted (i.e., mathematically predetermined such as, 

texture-, shape- and size-based features, as well as first-order statistics), or may be deep learning-

based (4). Each feature constitutes a potential biomarker by providing specific, quantifiable, 

information about the image. Thus, radiomics is not a specific methodology but describes an integrated 

workflow from image acquisition over feature extraction to biomarker discovery (figure 1).  However, 

this integration of different principles that are evolving from year to year leads to an ambiguity in 



 

definition. In the following paragraphs we provide a short clarification on the relations of radiomics, 

machine- and deep learning, as well as (quantitative) imaging biomarkers. 

What is the relation of  radiomics to (quantitative) imaging biomarkers? 

Imaging biomarkers represent biological features of pathologies. For instance, cavitation in lung cancer 

may indicate necrosis due to high growth rate with insufficient blood supply in the center and 

spiculation represents a pattern of local spread of cancer. Some imaging biomarkers may be easily 

deduced from pathophysiological mechanisms (e.g., bronchiectasis in lung fibrosis due to volume 

reduction and traction). Other imaging biomarkers may have no such obvious underlying 

pathomechanism (e.g, the reversed-halo-sign as a pathological pattern of the lung) but are invaluable 

for diagnosis as they are associated with several diseases. Quantitative imaging biomarkers compared 

to qualitative ones are better suited for follow-up evaluations by allowing the comparison of metrics 

such as tumor size or density. 

Radiomics is the approach to extract and analyze a multitude of different imaging features (or 

biomarker candidates), including those which are not accessible by human vision or intuitive 

understanding. To avoid the discovery of imaging features without relevance, they need to be selected 

depending on their capability of predicting, classifying, monitoring or measuring a clinical outcome. 

Thus, radiomics may accelerate the discovery of (quantitative) imaging biomarkers and facilitate the 

subsequent integration of multiple singular imaging biomarkers for a more complete characterization 

of a medical image. An example is given by the study of Humphries et al. (5) in which the addition of 

features learned with a clustering analysis (a method of unsupervised machine learning) improved the 

prediction of pulmonary function in patients with idiopathic pulmonary fibrosis compared to a model 

using a histogram-based densitometric method alone. 

However, biomarkers derived from radiomics are still at the level of analytical validation (the 

demonstration of accuracy, precision, and feasibility (6)), which is the first step in the development of 

an imaging biomarker. Multicenter studies for qualification (the demonstration of an association with 



 

a clinical endpoint (6)) and utilization (assessment of the biomarker’s performance (6)) are still largely 

missing. 

Radiomics in the world of machine learning 

Whereas a radiomics workflow could, in theory, be performed without machine learning (e.g., manual 

segmentation, handcrafted features and statistical analysis), machine learning provides the 

computational methods that make radiomics efficient. Manually segmenting thousands of scans 

containing hundreds of thousands of images is not feasible. We do not have to knowledge for 

handcrafting every possibly relevant imaging feature, especially those that are only relevant in 

combination with others. Finally, machine learning is better suited for dealing with multi-variety and 

multi-dimensional data to make accurate predictions. Thus, machine learning can facilitate an efficient 

radiomics approach at all) steps. 

With the success of deep learning based methods (e.g., neural networks), end-to-end machine learning 

has become an often used tool in data analysis and especially image processing. End-to-end machine 

learning means that all the imaging features are automatedly learned and it has shown to yield 

improved results compared to the two step approach of handcrafted feature extraction and 

subsequent learning of the target task based on these features (7). However, while yielding good 

classification and prediction performance, this approach introduced a black box, making it harder to 

identify and interpret quantifiable features that lead to the decision of the deep learning-based 

method. Imperative goals of biomedical data analysis, are both the learning and understanding of 

underlying mechanisms and the identification of quantifiable biomarkers. To this end, there are 

currently two viable strategies: first, the two step approach of handcrafted feature extraction and 

subsequent machine learning-based analysis with a focus on reproducibility, interpretability and 

transferability of features which might constitute a clinically comprehensible approach. Second, the 

increasingly successful efforts to render deep learning models transparent, offering means to trace 

from model decision to responible image features by approaches such as GradCAM. These approaches 



 

might lead to the “best of both worlds” by exploiting both the superior ability of deep learning to 

identify predictive features, and providing explainability.  

How can radiomics support daily clinical routine? 

The mainly qualitative reports radiologists create from medical images are merely a small part of what 

could be deduced from imaging data by applying quantitative approaches. Similar to a blood sample 

that has not been analyzed yet, most of this type of information is not accessible for human recognition 

and is often limited to specialized techniques (see figure 2). Thus, medical images acquired during 

clinical routine are often excluded from quantitative analysis, possibly omitting an opportunity to 

support decision-making and improve diagnostic accuracy. Each step of this complex workflow needs 

to be rigorously evaluated to ensure the scientific integrity of imaging feature sets, especially if these 

sets are to act as future validated, qualified and utilizable biomarkers with a reliable and accurate 

predictive value that important decisions can be based upon. 

In Table 1, several studies are listed that use radiomics approaches in pulmonary and coronary diseases 

for classification, stratification, and prediction of gene expression profiles, pulmonary function, disease 

severity, possible response to medication and differentiation of pathologies. 

What is the benefit of extracting and analyzing large amounts of imaging features rather than a 

preset few with an underlying pathomechanism already hypothesized? 

Using features that are likely to correlate with a desired outcome due to their known relevance has 

the advantage of including existing knowledge in the analysis (e.g., bronchial wall thickening in COPD 

exacerbations (8)). The multitude of lung reaction patterns in interstitial lung diseases (ILD) is an 

example where this holds true, as the integration of multivariate information (i.e., not only the pattern 

itself, but also its spatial and temporal distribution) gained from a CT scan helps in determining the 

most probable diagnosis and track or predict disease progression (9) (figure 3 and 4). However, this 

may introduce a selection bias and decrease the chances of detecting novel predictive imaging features 

that have not been used by clinicians thus far. By applying a radiomics approach, the relationship of 



 

separate voxels can be analyzed to gain additional non-intuitive information with which to support the 

radiologist in decision-making (10). 

Need to expand the application areas of radiomics: 

Oncology has been the main application for radiomics, and cross-sectional imaging is the primary 

modality. There is much insight to be gained from analyzing tumor heterogeneity; however, 

comprehensive management of lung cancer patients needs to address all present conditions. This 

becomes even more important, as comorbidities are common in this population (e.g., COPD affects 

over half of the lung cancer patients) and constitute a major predictor of survival (2). Another predictor 

of survival and quality of life is sarcopenia (11). The quantitative measurement of skeletal muscle cross-

sectional area has been shown to correlate with clinical outcome parameters (such as mortality and 

postoperative bleeding) in patients with aortic valve replacement (12). A first study investigating 

radiomics features of skeletal muscle tissue gained additional information compared to more simplistic 

imaging biomarkers by discussing the correlation with intramuscular fat deposition (13). Predictive risk 

scores calculated from the combination of imaging features and the patient history may enable a more 

thorough evaluation of an individual case, thus leading to a different treatment decision compared to 

the current staging methods (figure 5). Since the validity and reliability of these imaging features can 

be tested independently across several diseases, their benefit extends beyond oncological 

applications.  

With a standard chest CT scan, both the thorax and parts of the upper abdomen are open for the 

quantification of essential findings (see figure 6 and table 1 in the supplemental material for a list of 

imaging biomarkers). 

 



 

Examples of three diseases show the importance of (radiomics derived) imaging biomarkers in chest 

CTs: 

COPD is considered one of the most prevalent pulmonary diseases in Europe, contributing in important 

ways to a morbidity rate of 4-10% of the adult population who are affected, and resulting in over €20 

billion in direct healthcare costs per year (14). There are prominent changes in the chest CTs of patients 

who suffer from COPD, such as emphysema and airway wall thickening (figure 7). By quantitatively 

evaluating these changes, both temporally and spatially, a new way of personalized risk assessment 

may be developed. 

As an example, emphysema and airway wall thickening found on chest CTs acquired for non-pulmonary 

indications have shown to be independent predictors of COPD exacerbations that led to hospitalization 

or death (8). In (12), the imaging features were well known radiological findings and were graded 

visually; however, other authors showed that with a specialized IT-infrastructure, an automatic 

extraction and quantification was also feasible (15). 

Previous research was focused on the densitometry of emphysema and differing approaches to airway 

measurements (e.g., the full-width-at-half-maximum principle) as quantitative CT imaging correlates 

of COPD (16). Bronchiectasis and mucous plugging are further factors that influence the appearance 

of a lung with COPD that could be quantified, but which are excluded from evaluation by focusing on 

a specific pathological manifestation. The radiomics approach, on the other hand, aims to mine all the 

information from an image. Indeed, a texture-based analysis was able to achieve better results than a 

densitometric approach (17). 

Whereas the above mentioned articles consider pathomorphological imaging changes in their feature 

analysis, it is also possible to visually capture patient clusters with similar pathophysiological 

information  (e.g., lung function) (18). A further example for the discovery of new subgroups of COPD 

is given by a study that used an unsupervised approach to find distinct subtypes of patients that 

correlate with physiological parameters based on imaging features (19). Additional characterization of 



 

COPD-groups may be achieved by integrating features that represent spatial information (20). 

Extrapulmonary imaging features, such as thoracic fat, cardiac features and osteoporosis, are also 

important for the characterization of a patient with COPD (21).  

Osteoporosis is not only a comorbidity of COPD but also one of the most common metabolic disorders 

that constitutes a major risk factor for vertebral fractures (22). A standard way to assess bones is the 

measurement of bone mineral density (BMD), which is limited in its capability to define a population 

at risk (23). To adequately predict vertebral strength, it is essential to consider several factors, which 

has led to the introduction of the term “bone quality” that comprises bone architecture, 

mineralization, and turnover (24). With this, the focus lies on the efficient use of BMD, not only the 

absolute amount. With the help of micro-CT studies, a multitude of trabecular bone parameters has 

been established, such as intra-vertebral heterogeneity of BMD, which is able to predict vertebral 

strength and stiffness, and ultimately, vertebral failure patterns (25). 

The evaluation of intra-vertebral heterogeneity in a larger population requires the corresponding 

features to be accessible in medium- or low-dose CTs. Indeed, a recent study of native chest CTs 

showed a high reliability for the manual quantification of vertebral attenuation values (26). 

However, the problem with the dual use of CT scans (i.e., opportunistically screening patients for 

osteoporosis in CT scans acquired for another purpose) is the low standardization and consequent bias 

of density values. To overcome this problem, several studies used texture analysis, resulting in a 

superior classification performance by combining texture features and density values compared to 

density values alone (27). A retrospective analysis demonstrates the capabilities of a machine learning 

algorithm in predicting vertebrae that showed fractures from the baseline scan (28). Possible bias 

through the application of contrast agents was counteracted by choosing specific texture features with 

stable predictive performance (29). 

Interstitial lung diseases (ILDs) comprise entities that are very hard to diagnose even for experienced 

radiologists. While inter-observer agreement is low between radiologists, the discussion of these cases 



 

in interdisciplinary boards can reduce mortality by identifying patients with a disease course that may 

be positively influenced by the adequate treatment (9). Taking into consideration that patients with 

ILDs commonly receive chest-CT scans repeatedly over several years, this provides an ideal situation 

for applying radiomics analyses and enables the possibility of studying the temporal progression of 

relevant features. Based on images alone, Walsh et al. (30) were able to demonstrate a slight 

superiority of a deep learning based algorithm in diagnosing fibrotic ILDs compared to radiologists. 

Existing tools, such as the Computer-Aided Lung Informatics for Pathology Evaluation and Rating 

(CALIPER) software (31) were successfully utilized to extract additional information and stratify 

patients to groups that have similar clinical phenotypes (18). Stratifying patients may discover those 

that benefit from a treatment, for example by selecting glucocorticoid-sensitive patients in ILDs (32), 

predict survival in idiopathic pulmonary fibrosis (33), or aide in assessing the occurrence of radiation 

pneumonitis (34). 

For ongoing research it will be important to determine possible biological and technical biases, the 

stability of radiomics features and how to deal with these issues. 

Challenges and possible solutions: 

Differences in extracted features across scanner manufacturers and scanner models were tested with 

physical phantoms in (35), and showed strong variations in the features extracted, but also differences 

based on the feature types. On the same data, it was shown that the features can be normalized across 

scanners and that deep-learning-based features can be trained for a certain degree of invariance to 

scanner types (36). 

When retrospective studies require data from several different scanner types and generations, it is 

important to ensure that features extracted from the images are comparable. Learning from older, 

retrospective data is one of the main applications where radiomics features are considered very useful 

and it must be ensured that such results can be transferred correctly. 



 

One source of retrospective data are clinical trials, even-though only 3% of chest CT scans for an 

oncological indication are from clinical trials (37). To develop reproducible and valid signatures from 

imaging features of the lung for a broad population predictors of variation need to be considered (e.g., 

scanner-, protocol- and subject-specific factors of which the influence is typically minimized or avoided 

altogether in clinical trials (38)), as discussed in the following sections. 

Inter-scanner reliability: 

Features of lung cancer extracted from a lung-cancer phantom and lung-cancer patients showed 

reliable results between the phantom and the patients. However, there was a high variability between 

scanners from different vendors (35). In the same study, the feature “texture strength” was proven to 

remain stable, even between different scanners. 

Voxel size / slice thickness 

Although voxel size and slice thickness introduce a large variability, voxel size resampling and the use 

of normalizing factors was shown to be a way to increase the reproducibility of features from CT scans 

with different voxel sizes (39). 

Dose level 

Dose levels and reconstruction algorithms may influence imaging features. Interestingly, the 

interaction of these two technical parameters can be exploited to increase the reliability of the imaging 

features, as the variability introduced by lower dose levels is balanced out by using smoother 

reconstruction algorithms (40). A more detailed evaluation of the tube currents influence on radiomics 

features showed only a low contribution to variability (41). Therefore, it may be plausible to attribute 

the change to other factors, such as the tube voltage. 

Contrast agent and time after injection: 

A distortion of the texture features of pulmonary nodules caused by variation in contrast enhancement 

may be avoided by acquiring images in the time frame between 60 and 150 seconds post injection (42). 



 

Another study suggests an increase in diagnostic performance by not administering contrast agent at 

all for solid pulmonary nodules (43). 

Reconstruction algorithm: 

Whereas texture features have a strong variability with respect to image reconstruction algorithms 

(40), shape- and size-based features remain table (44), further showing the importance of choosing 

adequate imaging feature sets for different preconditions. 

 

The analysis of such predictors, in turn, is possible only with an adequate standardization. Whereas 

biological variability between patients and disease phenotypes cannot be controlled, technical 

parameters can be easily adjusted before a scan. In the future, scanning protocols might not only be 

adjusted for human readers but also for specific machine learning algorithms that could also use raw 

scanner data as an input. To discover technical priority targets for standardization, routine CT scans 

pose a valuable source of data that should be utilized. 

Standardization and quality control of data acquisition  

In the clinical routine, standardization will occur at a lower level than in studies with a fixed design. 

Therefore, it is important to dedicate further research to investigate the stability and susceptibility of 

imaging features to varying acquisition parameters. One option is to resample voxel sizes (39). Another 

option may be to conduct a test-retest analysis specifically designed for the respective study (45). 

Quality control to ensure the scientific integrity of radiomics studies can be easily found in the public 

domain, including a digital phantom of reference features (46), publicly available images from physical 

lung phantoms (47), and a quality score to rate the design of radiomics studies (48). A higher quality 

can be achieved by conducting segmentation (semi-) automatically, as this has a higher accuracy than 

manual segmentation (49). An additional benefit of automation is the reduced amount of working 

time, which is pivotal in the light of sample sizes that could possibly reach four or more digits. 



 

Standardization of radiomics features 

A key value of radiomics analysis is the comparability of features across feature implementations, 

studies, centers, or routine imaging institutions. Initiatives to enable this by standardizing feature sets 

exist in several directions. Implementations of visual features have been shown to vary in important 

ways (50). The IBSI (Image Biomarker Standardization Initiative) (51) has tried to limit differences in 

such implementations by iteratively reducing differences in the implementations of several 

participants, as well as finding the mistakes or differences in the implementations when comparing 

the values of features. This has begun for simple features and is underway for more complex 

frequency-based features. 

Algorithmic approaches to improve feature stability despite image heterogeneity and test-retest-

stability 

A different approach is to train models to become invariant or robust in the face of imaging 

heterogeneity. The step after feature extraction is the identification of features or feature-sets that 

hold predictive information. To do so, selection algorithms use probabilistic frameworks or deep-

learning techniques to generate a prognostic model with high-dimensional feature spaces linked to 

prediction targets. This way of machine-learning uses a first data set for training and at least a second 

one for validation, further increasing the potential need for large sample sizes. Optimization of such 

classification methods reduces performance variation by 30% (52), and therefore, increases the 

stability and predictive value of imaging features selected in this way.  

Domain adaptation is a popular deep-learning approach to reduce the susceptibility of a classifier 

toward unwanted heterogeneous variation. During training of a domain adaptation network, a 

representation is learned that is discriminative toward the desired goal (e.g., detection between 

diseased and healthy) yet invariant to undesired heterogeneity (e.g., 1- and 3-mm slice thickness) or 

domains. Kamnitsas et al. (53) offer one example of such an approach. Their domain adaptation 

algorithm was able to segment traumatic brain injuries in scans that were recorded with a different 



 

protocol than the images in the training dataset. Another way to increase feature stability in 

heterogeneous datasets is to guide feature selection based on the stability in test re-test experiments 

of similar datasets, as described in (54). 

Evolution of radiomics and deep-learning 

Domain knowledge is one of the most valuable inputs that radiologists have when collaborating with 

data scientists. In this regard, domain knowledge comprises both the knowledge about 

pathophysiological and technical factors that contributed to the final image. Traditional machine-

learning approaches rely heavily on the design of “handcrafted” features, with the advantage that 

these handcrafted features may code domain knowledge and are often easier to interpret or even 

standardize than more abstract features (even though many standard texture features remain difficult 

to interpret). Alternatively, modern deep-learning methods aim at end-to-end (e.g., raw-image to 

desired classification) training, inferring image features automatically based on the available data and 

annotations (thus, the steps of feature extraction and feature modelling during the radiomics workflow 

are done inside of a “deep learning black box”). These features can usually be extracted among the 

last layers of a network but are often difficult to interpret. Traditional radiomics aims at translating 

medical images to quantitative form with features that can be interpreted, for example, texture 

features, such as heterogeneity and entropy based on co-occurrence matrices. Domain knowledge can 

thus be included directly, meaning that fewer training data are required to obtain good results. 

Deep-learning-based radiomics, on the other hand, has several advantages (36), for example, building 

features to be invariant to scanner variations. The inconvenience of deep-learning is the necessity of 

large amounts of data to learn very complex models. Further, the amount of data required for training 

is difficult to estimate. Domain knowledge cannot easily be integrated, and at the moment deep-

learning is seen as a black-box model with low interpretability, even though approaches to deal with 

this exist (55) and are rapidly gaining momentum driven by the necessity of explainability and 

interpretability of deep learning models (56). Thus a transition of the field to deep learning, while at 



 

the same time improving the explainability, and the capacity to integrate domain knowledge in these 

approaches can be expected.   

Image repositories to foster algorithmic advances 

Efficient ways to utilize routine CT images can enable access to large amounts of imaging data. A 

further benefit of routine data is the possible investigation of important comorbidities that are 

common in most patients in conjunction with the primary disease and that may have an impact on the 

subsequent therapy. Sampling from the clinical routine population may also reduce the selection bias, 

which can be an inherent problem in designed studies.  

However, study cohorts may initially be beneficial when a high standardization enables concentration 

on fewer unknown variables, such as the influence of technical parameters on imaging features. 

Promising sets of features with a prediction target may then be validated on datasets from the clinical 

routine. The transfer of such predictive models can be facilitated via domain adaptation techniques 

and transfer-learning, making the best possible use of all the knowledge gained from the source-data 

(the study cohort) to highlight features that are not applicable, need adaptation, or are stable in the 

target-data (the imaging data from the clinical routine). 

Publicly accessible databases comprising several thousand CT scans (57) and similarly large trial cohorts 

(58) provide the necessary standardization and adequate sample size, and are open for the high-

throughput exploitation of possible future imaging biomarkers (see Table 2 in the supplemental 

material). In these trial cohorts, outcome parameters are available for most patients, often for several 

follow-up evaluations, including cardiovascular and pulmonary comorbidities, diagnosis and stage of 

lung cancer, and mortality statistics. Exploiting these homogeneous data from organized data 

repositories and trial cohorts can greatly add to the feasibility of radiomics studies. 

Conclusion: 



 

 Radiomics in chest CT studies provides unprecedented opportunities for the discovery of markers for 

detection, classification, monitoring and prediction of oncological and non- oncological diseases alike. 

However, merely reporting the accuracy of algorithms from a given imaging dataset does not allow 

useful conclusions to be drawn for future studies. More important than demonstrating feasibility is the 

analysis of under what circumstances such a feat is possible. This includes an analysis of which technical 

and biological parameters may influence the outcome. Are the different steps of radiomics stable 

between slice thicknesses or in different respiratory phases? Should regions prone to motion, such as 

near the diaphragm or the heart, be excluded from analysis? What is the influence of time after 

contrast agent application or flow? Even if there is no external validation of the results (i.e., from a 

different center or at least scanner), such an analysis will contribute knowledge that is important to 

move the field forward. External validation, however, is pivotal to ensure that the whole process of a 

radiomics analysis is reproducible under different circumstances and cannot be omitted for the final 

conclusion of clinical relevance of a specific application. Exploiting large-scale data repositories and 

existing study cohorts of screening trials may enable the utilization of radiomics for, and its 

implementation in, the analysis of data from the clinical routine. 

As mentioned above, quality guidelines and scores are already available and support researchers in 

planning their radiomics analysis accordingly. By following a process of constant steps forward, rather 

than jumping to the supposedly final algorithm, it will be possible to create a knowledge base of 

technical and biological preconditions that are necessary for a stable and reproducible radiomics 

analysis. Such a knowledge base could then, for instance, be used to tailor scanning protocols for a 

specific clinical question.  

Creating more available data sets for a variety of diseases is another important step to advance 

radiomics, as these data sets can be used for model training and for evaluating generalizability of 

features on independent data. TCIA (The Cancer Imaging Archive) and TCGA (The Cancer Genome 

Atlas) are important steps in this direction but it is important to frequently check with images from 

new machines to assure that the algorithms work well also on heterogeneous data. 
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Figure legends: 

Figure 1: Radiomics workflow – radiomics starts with the image acquisition (including the 

reconstruction), followed by the localisation and segmentation of the region or volume of interest for 

the subsequent feature extraction (these can either be handcrafted or deep learning-based). By 

analysing the stability, discriminative power and redundancy of imaging features, the appropriate ones 

can be selected (this is often done with machine learning-based methods). The process of radiomics 

may end with a signature of imaging features that provide prognostic information. For an efficient 

implementation of radiomics in large datasets, and eventually, in routine clinical data, each step should 

be reproducible with a minimum of manual input. 

Figure 2: A blood sample needs to be treated with additives, which is followed by a specific procedure 

for processing and analysing the sample to yield a quantitative laboratory report. Comparably, the 

acquisition parameters of a CT scan and the following procedure of segmentation, feature extraction, 

and selection (or alternatively, feature modelling) must be chosen depending on the desired 

quantitative radiological results. In the same way as the development of laboratory medicine took 

many years, with the advances of machine-learning techniques and rigorous quality management, a 

radiology report that includes quantitative information from automated feature extraction may be 

achievable. 

Figure 3: Patterns of idiopathic interstitial pneumonias: a) traction bronchiectasis; b) ground glass; c) 

honeycombing; d) irregular reticulation. 

Figure 4: Example of disease progression in IPF using radiomics features: a) axial CT-scan at baseline 

and b) at follow-up; c) visualization of radiomics derived features at baseline and d) at follow-up. The 

color-coding allows a comparison with known visual features, such as ground-glass opacifications, 

bronchiectasis or distorted pulmonary vessels. Radiomics allows to detect and quantify both features 

that may have a known correlate, and complex features that can only be explained mathematically 



 

without a visually accessible correlate. 

IPF = idiopathic pulmonary fibrosis  

Figure 5: Radiomics as part of advanced feature modelling - quantitative imaging biomarkers that 

already exist may be integrated in such a model. The added benefit of using a multitude of features 

that can be extracted by using a radiomics approach is given by the possibility of analysing these 

features in conjunction with the information from other sources. 

For instance, there may be imaging features that provide the same kind of information as other 

imaging- or clinical features, and thus, would be redundant. Such redundancy can be reduced by 

different machine learning techniques. Theoretically, known quantitative imaging biomarkers can be 

integrated into this model as well. However, this would constitute a prior selection of which features 

of the image are important and which are not, carrying the danger of omitting possibly relevant 

features. 

 

Figure 6: Overview of structures and parameters in routine chest CTs that are already accessible for 

the development of biomarkers by machine-learning methods. This demonstrates the general 

possibility of finding additional biomarkers by “mining” imaging features with a radiomics approach, 

and the potential of machine-learning methods to facilitate the process. 

Figure 7: a) Axial image of a healthy lung, b) a lung with centrilobular emphysema, and c) panlobular 

emphysema. Radiomic features may help to differentiate patients at risk of acute exacerbation or 

cardiovascular complications.  

  



 

 
Study # of patients Anatomic site Analyzed endpoint 

Kolossváry et al. Nov 2019 (59) 25 (44 singular 
lesions) 

Coronaries Identification of unstable coronary plaques 

Kolossváry et al. Dec 2017 (60) 30 Coronaries Identification of unstable coronary plaques 
Oikonomou et al. Nov 2019 (61) 167 Perivascular 

adipose tissue 
Gene expression profiles of inflammation, fibrosis 

and vascularity in coronary heart disease 
de Jong et al. Sep 2019 (13) 116 Skeletal muscle 

tissue 
Prediction of sarcopenia 

Lafata et al. Aug 2019 (62) 64 Lung Quantification of pulmonary function 
Yanling et al. Oct 2019 (63) 180 Lung Differentiation of pneumonia vs. paraquat lung 

injury 
Shi  et al. Jun 2019 (64) 49 Lung Identification of opportunistic pulmonary infections 

in HIV patients 
Wang et al. Aug 2019 (65) 115 Lung Differentiation of primary progressive pulmonary 

tuberculosis vs. community-acquired pneumonia 
Ryan et al. Aug 2019 (66) 151 Lung Classification of sarcoidosis stage  
Krafft et al. Nov 2018 (67) 192 Lung Prediction of radiation pneumonitis 

Cunliffe et al. Apr 2015 (34)  106 Lung Prediction of radiation pneumonitis 
Moran et al. Nov 2017 (68)  14 Lung Classification of severity of radiation-induced lung 

injury 
Szigeti et al. Feb 2016 (69) 16 (mouse model) Lung Identification of pollution induced lung disease 
Jacob et al. Mar 2018 (70) 66 Lung Classification of idiopathic pulmonary fibrosis 

severity measured by pulmonary function 
Maldonado et al. Jan 2014 (33) 55 Lung Prediction of survival in idiopathic pulmonary 

fibrosis 
Bartholmai et al. Sep 2013 (31) 14 Lung Classification of interstitial lung disease severity as 

determined by various clinical parameters 
Humphries et al. Oct 2017 (71) 280 Lung Prediction of idiopathic pulmonary fibrosis severity 

measured by pulmonary function 
Raghunath et al. Mar 2014 (18) 1322 Lung Stratification of diffuse parenchymal lung diseases 

based on various clinical parameters 
Feng et al. Oct 2018 (32) 416 Lung Identification of glucocorticoid-sensitive patients in 

interstitial lung disease 
Kloth et al. Apr 2018 (72) 23 Lung Prediction of responders and non-responders of 

stem cell transplantation in systemic sclerosis 
Kloth et al. Dec 2017 (73) 43 Lung Differentiation of active alveolitis vs. fibrosis in 

patients with systemic sclerosis 
Table 1 - Radiomics applications in chest imaging outside of tumors:  
Most studies report on a small number of subjects in the 2-digit or low 3-digit range. Still, such studies are very 
important for the demonstration of feasibility as well as for disseminating methodological experience gained 
during the conduction of the study. For the development of valid, reliable and clinically relevant radiomics-
derived biomarkers, larger, preferably externally validated projects are necessary.  

 


