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Abstract. Evidence-based practice is highly dependent upon up-to-date systematic
reviews (SR) for decision making. However, conducting and updating systematic
reviews, especially the citation screening for identification of relevant studies, re-
quires much human work and is therefore expensive. Automating citation screening
using machine learning (ML) based approaches can reduce cost and labor. Machine
learning has been applied to automate citation screening but not for the SRs with
very narrow research questions. This paper reports the results and observations for
an ongoing research that aims to automate citation screening for SRs with narrow
research questions using machine learning. The research also sheds light on the
problem of class imbalance and class overlap on the performance of ML classifiers
when applied to SRs with narrow research questions.
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1. Introduction

Summarizing evidence in a specific domain through the process of conducting system-
atic reviews (SR) becomes increasingly difficult with an exponential increase in the num-
ber of primary research publications and an increasing variety of publishers. With this
increased publication-rate, citation screening for conducting the SRs has become time-
consuming and labour intensive. The core of citation screening involves manually cat-
egorizing the studies found in literature search into relevant or non-relevant depending
upon predefined criteria for the research question at hand [1]. This screening is usually
performed by two independent reviewers, who often can not keep up with the manual
process of screening the studies and constantly updating outdated SRs [2].

In the area of physiotherapy and rehabilitation such an exponential increase in the
number of publications is also observed2. For an ongoing review on exercise and non-
exercise interventions in reducing cancer-related fatigue retrieved over 30,000 refer-
ences, about 2,000 of which were published in 2017 alone. It took more than 200 hours
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each for the two independent reviewers to manually assess the titles and abstracts for rele-
vance to the research question before the studies were taken for further meta-analysis [3].

Supervised machine learning based classification approaches are successfully ap-
plied for automation of citation screening but either only for broad and shallow SRs [4]
or SRs that retrieved fewer than 6,000 studies [5]. However, there are SRs that address
very specific research questions leading to narrow, predefined criteria for selection of
relevant studies to be included for meta-analysis. For such narrow SRs, inclusion preva-
lence becomes as low as 10%, which means that out of all the studies retrieved during the
search phase, 90% are excluded as non-relevant. A narrow research question combined
with a low inclusion prevalence leads to class imbalance and class overlap problems for
classification tasks that generally reduce classifier performance [6]. Class overlap cannot
be artificially controlled but class imbalance can be tackled using oversampling or un-
dersampling [7]. In this work, we aim to explore machine learning and natural language
processing to assist citation screening in SRs with a narrow research question and low
inclusion prevalence using word embeddings and random oversampling.

2. Methods

2.1. Datasets

Data sets from the open access literature were used in the work described here.

Word embedding Titles and abstracts (TA) of 2.09 million studies included in the
PubMed Central Open-Access subset (PMC-OA) were used to generate semantic word
embedding using the two most common architectures: word2vec and fastText [8,9].

Data for the screening process The data set used to test automation approaches in-
cluded the studies identified for citation screening in an update to the systematic review
by Hilfiker et al. [3]. The data set included TA from 31,279 studies identified during
the search phase of this SR. These studies were already manually assessed for relevance
and labelled by two reviewers into two mutually exclusive labels. 4,066 studies assessed
as relevant were labelled “include” and the rest were labelled “exclude”. The inclusion
prevalence for this case is only about 13% leading to class imbalance.

2.2. Screening Automation

To automate the screening and explore the effect of class imbalance, six supervised bi-
nary classifiers were trained to classify documents into “include” (relevant) vs. “exclude”
(non-relevant) using the data set of Section 2.1 represented using corpus-specific static
word embedding. This approach follows steps enumerated below.

1. Word embedding generation To generate embedding, the PMC-OA data were lower-
cased and all punctuation except the hyphens were removed. Phrase generation was then
performed using the word2phrase tool3 to identify frequently occurring bi-grams. The
output of phrase generation along with the unigrams was fed to gensim’s word2vec4 and

3https://github.com/travisbrady/word2phrase
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to fastText5 using the hyperparamters in Table 1 to obtain two dense, semantic, real-
valued word embeddings [10].

Parameter Value Parameter value Parameter value

Size 300 Alpha 0.05 bucket* 2000000
Window 5 min alpha 0.0001 minn* 3
min count 5 sample 0.0001 maxn* 6
sg 1 iter/ epoch 5 seed 1
hs 1 negative 5

Table 1. Hyperparameter values used to generate word embeddings using gensim’s word2vec and the fastText
functionality. (*) means that these parameters were available only for the fastText embeddings.

2. Data set for text pre-processing Post deduplication and removal of non-English lan-
guage studies led to 25,540 studies remaining. For these remaining studies, the text was
lower-cased and tokenized into words using NLTK6 (Natural Langauge ToolKit). Irrele-
vant tokens were removed using a predefined set of stop-words provided by NLTK and
PubMed7. Additional corpus-specific stop-words identified during the experiments with
the training set were removed accordingly. The text normalization process converted
British English terms into American English. After token lemmatization, a corpus vo-
cabulary was constructed from all the unique unigram and bigram tokens. To scale this
vocabulary down, uninformative short tokens with fewer than five characters and the to-
kens with vocabulary count lower than five were removed assuming they were not repre-
sentative of the classes.

3. Random oversampling Class imbalance often deteriorates the classifier performance,
so in the present data set it was addressed using naive random oversampling. This method
randomly duplicates data points from the minority class and brings the total number of
instances in the minority class equal to the majority class [6].

4. Feature extraction Feature extraction was performed to generate real-valued, dense
feature vectors from text. These features were used as input to train the supervised ML
classifiers. For non-neural ML classifiers, from each of the 25,540 studies word vectors
were extracted for each token using both generated word embeddings. All vectors for
each token in the individual study were averaged over the entire study normalized by
study length to produce a single 300-dimensional vector representing a particular study.
For the Convolutional Neural Network (CNN), feature extraction was part of the model,
where a static, non-trainable weight matrix generated from the word embedding was
provided with the embedding layer to extract token word vectors during training.

5. Classifier training and evaluation Six classifiers including Logistic Regression (LR),
Support Vector Machines (SVM), k-nearest neighbour (KNN), Decision Trees-CART
(DT), Random Forest (RF), and CNNs were trained and evaluated over the generated
text feature to perform binary classification. Hyperparameter tuning was performed us-
ing GridSearch. A CNN was trained using hyperparamters loosely based on suggestions
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Figure 1. A t-SNE projection for 25,540 studies labelled “include” vs. “exclude” before and after oversam-
pling.

from Zhang et al. [11]. Classifier performance before and after oversampling was evalu-
ated on an unseen validation data set and metrics pertinent to imbalanced classification
like precision, recall, F1 and precision-recall AUC (PR-AUC) score were tracked [7].

3. Results and Discussion

The data set used for training and evaluating the classifiers comprised 2,259 relevant
studies labelled “include” and 23,281 labelled “exclude”. Cosine similarity between class
centroid vectors for the “include” and “exclude” classes before and after oversampling is
0.985814 and 0.985824 respectively. A high cosine similarity is indicative of high class
overlap even after tackling the class imbalance using oversampling (see Figure 1).

The results obtained by applying classifiers on the data set before and after random
oversampling are summarized in Table 2 and 3. Before oversampling, the classifiers fo-
cused on improving the performance for the majority class but in reality they are simply
predicting the majority class as noticeable from the relatively high F1 score for the ex-
clude class. Upon oversampling, the overall classifier performance drastically improves
for the minority class especially the precision (see Table 3), while the precision for the
majority class is reduced with a small improvement in recall.

Class “include” Class “exclude”
Classifier embedding Precision Recall F1 PR-AUC Precision Recall F1

LR fastText 0.4044 0.8990 0.5576 0.6008 0.9891 0.8746 0.9283
SVM fastText 0.6538 0.4640 0.5428 0.6317 0.9463 0.9746 0.9602
KNN word2vec 0.6536 0.6066 0.6288 0.6512 0.9619 0.9685 0.9652
DT fastText 0.2961 0.8627 0.4394 0.4287 0.9837 0.8000 0.8821
RF fastText 0.4995 0.7892 0.6108 0.5921 0.9780 0.9209 0.9485
CNN fastText 0.6545 0.5032 0.5690 0.6388 0.9511 0.9732 0.9620
Table 2. Classifier performance before random oversampling for the “include” and “exclude” classes

If the task is considered a classification task, a high class overlap still leads to un-
acceptable precision and recall values for citation screening implying the inclusion of
false-positive studies and exclusion of false-negative studies. Our future work has two di-
rections: Firstly, experimenting with systematic oversampling techniques like Synthetic
Minority Over-Sampling Technique (SMOTE) and Adaptive Synthetic (ADASYN) and
considering this task as data extraction rather than classification [12].



Class “include” Class “exclude”
Classifier embedding Precision Recall F1 PR-AUC Precision Recall F1

LR word2vec 0.8981 0.8850 0.9116 0.9342 0.8951 0.9090 0.8816
SVM fastText 0.8914 0.8818 0.9012 0.9378 0.8990 0.8792 0.8890
KNN word2vec 0.8860 0.8303 0.9500 0.9321 0.9418 0.8055 0.8682
DT fastText 0.8348 0.8201 0.8510 0.8734 0.8285 0.8463 0.8126
RF word2vec 0.8695 0.8918 0.8488 0.9279 0.8966 0.8757 0.8560
CNN word2vec 0.9034 0.7480 0.8183 0.9318 0.7850 0.9200 0.8471
Table 3. Classifier performance after random oversampling for the “include” and “exclude” classes.

4. Conclusion

To the best of our knowledge, this is the first attempt to explore citation screening au-
tomation for a narrow systematic review topic using domain-specific word embedding
on a range of ML classifiers. The research specifically sheds light on the impact of class
imbalance and class overlap on the classifier performance before and after oversampling
as also discussed by Garcı̀a et al. and Prati et al. [6,7]. Knowledge of these challenges is
useful for further development of automation approaches for citation screening.
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