
  

  

Abstract— Hand amputations can dramatically affect the 

capabilities of a person. Machine learning is often applied to 

Surface Electromyography (sEMG) to control dexterous 

prosthetic hands. However, it can be affected by low robustness 

in real life conditions, mainly due to data variability depending 

on various factors (such as the position of the limb, of the 

electrodes or the characteristics of the subject). 

This paper aims at improving the understanding of sEMG for 

prosthesis control introducing the type of hand movement as a 

variable that influences classification performance in both intact 

subjects and hand amputees. 

Five hand amputees and five matched intact subjects were 

selected from the publicly available NinaPro database. The 

subjects were recorded while repeating 40 hand movements. 

Movement classification was performed on the sEMG data with 

a window-based approach (concatenating several signal 

features) and a Random Forest classifier. The results show that 

some hand movements are classified significantly better than 

others (p<0.001) and there is a correspondence in how well the 

same hand movements are classified in intact subjects and hand 

amputees. 

This work leads to advancements in the domain, highlighting 

the importance of the acquisition protocol for sEMG studies and 

suggesting that specific movements can lead to better 

performance for the control of prosthetic hands. 

 

I. INTRODUCTION 

An upper limb amputation is a major injury that can 
strongly affect the daily life of a person. Dexterous, natural 
control of robotic prostheses via machine learning and surface 
electromyography (sEMG) is promising but difficult to reach 
in real life. The most advanced control systems developed in 
scientific research are still far from being comparable to the 
natural control of a real hand and they often lack robustness in 
complex everyday conditions. 

In 2005, the number of people living in the United States 
with a loss of an upper-limb was 41,000 [1]. The primary 
prosthetic upper-limb options are: cosmetic, body-powered, 
and myoelectric. Myoelectric prostheses are devices 
controlled via sEMG, usually using two muscular groups 
(respectively to close and open the prosthesis).  

The use of machine learning techniques has improved the 
control of myoelectric prostheses in scientific research. These 
methods usually use a range of sEMG electrodes to record the 
myoelectric signals of the muscles that used to control the 
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hand. The sEMG activity is analyzed using algorithms for 
pattern recognition to classify the movements that the subject 
intends to do [2]. In a virtual environment, a good 
representation of prosthesis usability was also obtained by 
performing real-time tests [2], [3]. Adapting a user's action to 
the system in a real-time user-machine interaction can help 
reduce some limitations [4]. On the other hand, offline analysis 
has several advantages for preliminary studies and 
benchmarking methods. Recently, additional sources of 
information [4]–[12] were proposed to be included in addition 
to sEMG, including for instance accelerometry, computer 
vision and eye tracking. 

In few cases, the control advancements obtained by 
scientific researchers in this domain have been translated to 
commercial solutions. In 2013, Coapt-engineering1 made a 
new hand prosthesis control system based on real-time pattern 
recognition. Despite the strong improvement, these systems 
still control few movements and do not replicate the natural 
control of a biological hand [13]. 

When dealing with real life conditions, sEMG control 
systems based on machine learning are often affected by low 
robustness, also due to variability depending on factors such 
as the position of the limb, the exact positioning of the 
electrodes,  the clinical characteristics of the subject and even 
the previous use of sEMG prostheses [13]–[15]. The 
positioning of the limb can influence the recorded sEMG 
activity. The effect of this phenomenon on the classification of 
hand movements using machine learning was investigated in 
several studies, together with means to solve it [16]–[20]. 
Various clinical parameters (including remaining forearm 
percentage and phantom limb sensation) strongly influence 
sEMG control performance [21], thus classification accuracy 
depends also on the characteristics of each amputee. 

Hand movements have been widely studied in scientific 
literature. Taxonomies of hand movements tried to group them 
on the basis of qualitative (e.g. [22]) and, more recently, 
quantitative parameters [23]. The scientific literature on 
muscular and kinematic hand synergies also shows that a 
limited number of time-dependent motor modules may 
underlie the execution of a large variety of hand grasps [24]–
[26]. The aim of this paper is to improve the understanding of 
sEMG variability introducing movements as a further variable 
affecting classification performance. The results obtained on 
intact subjects and hand amputees are then compared in order 
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to evaluate if there is any correspondence in how the 
movements are reproduced by the two groups. 

II. METHODS 

A. Subjects  

The subjects  analyzed in this experiment include 5 hand 
amputees and 5 intact subjects respectively from the 2nd and 
3rd NinaPro dataset [27]. The subjects were matched by 
gender, age, height and weight in order to reduce possible 
differences in performance among the groups. All the subjects 
are males and the age, weight and height are reported for each 

subject in Table I. Average age is (38.2  5.8) years for hand 

amputees and (35.4  5.59) years for intact subjects; average 

height is (177.4  7.2) cm for hand amputees and 

(176  9.02) cm for intact subjects; average weight is 

(79.8  9.9) Kg for hand amputees and (77.8  4.21) Kg for 
intact subjects.  

 

B. Acquisition setup 

The acquisition setup includes several sensors (designed to 
record sEMG and hand kinematics) that are connected to a 
laptop performing the data acquisitions. The myoelectric 
activity of the forearm was recorded with a Delsys Trigno 
Wireless sEMG System. The system is composed of 16 sEMG 
electrodes, each containing a three- axial accelerometer. The 

sEMG data are sampled at 2kHz. The baseline noise is 
indicated as less than 0.5 mV RMS [27]. The described 
locations were chosen in order to combine a dense sampling 
approach [28]–[30] and precise anatomical positioning 
strategy [31], [32]. Eight electrodes are placed around the 
forearm at equal distance from each other, at the height of the 
radio-humeral joint. Four electrodes are placed at the main 
activity spots (identified by palpation) of the flexor digitorum 
superficialis, of the extensor digitorum superficialis, of the 
biceps brachii and of the triceps brachii. The acquisition setup 
is described in detail in Atzori et al. [27].  

 

TABLE I.  CHARACTERISTICS OF THE SUBJECTS 

Age Height Weight 
Missing 

limb 

Remaining 

forearm 

percentage 

Years since 

amputation 

Cause of 

amputation 

35 172 79 None N.A. N.A. N.A. 

45 173 73 None N.A. N.A. N.A. 

34 173 84 None N.A. N.A. N.A. 

32 170 75 None N.A. N.A. N.A. 

31 192 78 None N.A. N.A. N.A. 

35 183 81 Left 70 6 Accident 

34 166 68 Right 40 1 Accident 

33 175 80 Right 50 5 Accident 

44 180 95 Right 90 14 Accident 

45 183 75 Right 90 5 Cancer 

N.A. stands for “Not Admitted” 

Figure 1 Hand movements included in the data analysis. 



  

 

C. Acquisition protocol  

Before the experiment, each subject was requested to sign 
an informed consent form and to answer a set of questions 
including age, gender, height, weight and laterality. 
Afterwards, subjects were asked to sit at a desk on an office 
chair while resting their arms on a desktop. In front of them, 
visual stimuli were provided via a laptop that also recorded 
data from the sensors. The experiment included a training 
session (consisting of a condensed mix of movements), and 
several exercises addressing different types of movements. 
Some minutes of rest were included between the exercises in 
order to reduce muscular fatigue. The movements considered 
in this experiment are 40 in total and they were selected from 
the most recent hand taxonomy and robotics literature [33]–
[38] in order to permit most of the activities of daily living 
(ADL). The considered hand movements correspond to the 
NinaPro exercise A and B [27] and, as represented in Fig.1, 
they are divided into: basic hand movements (movement 1-8); 
basic wrist movement (movement 9-17); hand grasps 
(movement 18-40). Each movement was repeated 6 times, 
each repetition lasting 5 seconds and being followed by 3 
seconds of rest. The subjects repeated the movements with the 
right hand, amputees repeated them with the missing limb as 
naturally as possible. Since the main aim of the data was to 
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permit movement classification, all the subjects were asked to 
concentrate on mimicking the movements rather than on 
exerting high forces  [21], [39], [40]. 

 

D. Hand movement classification based on sEMG 

Signal pre-processing was performed before classification. 
Power line interference was filtered to avoid power line 
interference (50 Hz and harmonics) using a Hampel filter. The 
generalized likelihood ratio algorithm was used to correct 
imperfect labeling, mainly originating from the fact that the 
subjects may not perfectly mirror the movements shown on 
screen (also due to reaction times) [27]. 

The movement classification procedure follows Englehart 
et al. [17]. Each movement repetition is divided in time 
windows of 200 ms; each window is labeled with its 
movement number, obtained after relabeling.   Signal features 
were computed using PaWFE2, a publicly available signal 
feature extraction tool that allows to extract widely used 
features in short time using parallel time windows [41]. The 
analysed signal features consist of the normalized 
concatenation of: Root-Mean-Square (RMS), time domain 
statistics (TD) [42], Histogram (HIST) [43], marginal Discrete 
Wavelet Transform (mDWT) [44]. 

Figure 2 Average normalized classification accuracy of each hand movement (expressed in standard deviations from the average classification 

accuracy) for intact subjects (top) and hand amputees (bottom). 

http://ninapro.hevs.ch/code/
https://github.com/manfrat/PaWFE---Parallel-Window-Feature-Extraction/
https://github.com/manfrat/PaWFE---Parallel-Window-Feature-Extraction/


  

The used classifier is a Random Forest [45], with a total of 
100 trees. Repetitions 1, 3, 4 and 6 were used for training, 
repetitions 2 and 5 were used for testing. This approach was  
used in several articles in the past and demonstrated to provide 
reasonable estimates while also having low computational 
costs [27], [46]. The classification was performed on all 
movements. 

Classification accuracy was normalized subtracting the 
sample average and dividing by the standard deviation. The 
Kruskal-Wallis test, Pearson’s correlation and Deming 
regression were used to perform statistical evaluation of the 
results [47], [48]. 

 

III. RESULTS 

The type of hand movement influences the classification 
accuracy and there is a correspondence in how well the same 
hand movements are classified in intact subjects and hand 
amputees (Fig. 2, 3). 

Some movements are classified significantly better than 
others and this is highlighted when considering normalized 
classification accuracy. Classification accuracy varies 
(depending on the movement) both in intact subjects and hand 
amputees. In intact subjects, the average movement-specific 

classification accuracy ranges between (54.65  24.44) % and 

(91.7  6.97) %. In transradial amputees, it ranges between 

(23  18.49) % and (84.37  13.82) %. There are significant 
differences between the average classification accuracy of 
different movements, both in hand amputees and intact 
subjects (respectively p < 0.001 and p < 0.05). After 
normalizing the classification accuracy for each group, the 
differences among different movements get even stronger 
(p < 0.001 for both intact subjects and hand amputees) (Fig.2). 
Normalizing the classification accuracy allows also to identify 
overall classification accuracy patterns depending on the 
group of movements. In particular, the group “basic hand 
movements” is classified on average with higher normalized 
classification accuracy than the group “basic wrist 
movements”, that has higher normalized classification 
accuracy than “hand grasps”. This pattern is followed both by 
intact subjects and hand amputees (Fig.2), as well as the fact 
that normalized classification accuracy of functional 
movements strongly depends on the movement. 

There is a correspondence in how well each hand 
movement is classified in intact subjects and hand amputees. 
Deming regression (Fig. 3) allows to visualize the 
correspondence between the average normalized classification 
accuracy obtained for each movement in intact subjects and in 
hand amputees. Comparing the normalized classification 
accuracy obtained of each movement in intact subjects with 
the results obtained in hand amputees leads to no significant 
differences in any of the 40 movements considered. Pearson’s 
correlation of the average normalized classification accuracies 
obtained for each movement in intact subjects with the 
accuracies obtained for hand amputees is equal to 0.64. The p-
value obtained for the correlation using a Student’s t-
distribution is also below 0.001, rejecting the hypothesis that 
no correlation exists between the average accuracy obtained 
for intact subjects and hand amputees.  

 

 

IV. CONCLUSION 

The results described in this article bring several 

advancements to the domain of sEMG controlled dexterous 

robotic prosthetic hands. 

First, they highlight that the movements included in the 

acquisition protocol influence the performance of the machine 

learning algorithms. Second, they suggest that specific 

movements can lead to better performance than others for the 

control of robotic prosthetic hands. Control robustness of 

prosthetic hands may thus be augmented also by developing 

control systems that are based on groups of movements that 

obtain higher average classification accuracy. The overall 

correspondence of movement-specific normalized 

classification accuracy between intact subjects and hand 

amputees might also be exploited to develop successful 

transfer learning strategies, allowing to train the algorithms 

more quickly and to make them more robust.  

The reasons behind the significant differences of 

classification accuracy among movements can be due to many 

factors, including muscular anatomy but also movement 

execution variability (related for instance to the fact that 

grasps require the interaction with objects, which can be 

performed in many slightly different ways or exerting 

different forces). It is important to analyse these factors in 

further experiments. 

Finally, the study provides further evidence that it is 

possible to group hand movement types according to a few 

parameters, in accordance with the literature on movement 

taxonomies [22] [23] and kinematic or muscular synergies 

[24]–[26]. 

As highlighted in the article, the importance of the 

movements included in the acquisition protocol appears to be 

relevant for all work in the domain. Further studies should 

thus be performed including variations of the movements 

considered, as well as keeping into account confounding 

variables. 

Figure 3 Correspondence of normalized movement classification accuracy 

between intact subjects and amputees. Deming regression of the normalized 

classification accuracy of each hand movement (expressed in standard 
deviations from the average classification accuracy). Confidence intervals 

represent 2.5 standard deviations. 

Y = (0.78  0.57) * x + (0.01   0.35) 
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