
Unsupervised Learning-based Nonrigid
Registration of High Resolution Histology

Images

Marek Wodzinski1[0000−0002−8076−6246], Henning Müller2[0000−0001−6800−9878]

1AGH University of Science and Technology
Department of Measurement and Electronics, Krakow, Poland

wodzinski@agh.edu.pl
2University of Applied Sciences Western Switzerland (HES-SO Valais)

Information Systems Institute, Sierre, Switzerland
henning.mueller@hevs.ch

Abstract. The use of different dyes during histological sample prepa-
ration reveals distinct tissue properties and may improve the diagnosis.
Nonetheless, the staining process deforms the tissue slides and registra-
tion is necessary before further processing. The importance of this prob-
lem led to organizing an open challenge named Automatic Non-rigid His-
tological Image Registration Challenge (ANHIR), organized jointly with
the IEEE ISBI 2019 conference. The challenge organizers provided 481
image pairs and a server-side evaluation platform making it possible to
reliably compare the proposed algorithms. The majority of the methods
proposed for the challenge were based on the classical, iterative image
registration, resulting in high computational load and arguable usefulness
in clinical practice due to the long analysis time. In this work, we propose
a deep learning-based unsupervised nonrigid registration method, that
provides results comparable to the solutions of the best scoring teams,
while being significantly faster during the inference. We propose a multi-
level, patch-based training and inference scheme that makes it possible
to register images of almost any size, up to the highest resolution pro-
vided by the challenge organizers. The median target registration error is
close to 0.2% of the image diagonal while the average registration time,
including the data loading and initial alignment, is below 3 seconds. We
freely release both the training and inference code making the results
fully reproducible.
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1 Introduction

Registration of histology images acquired using different stains is a difficult and
important task that makes it possible to fuse information and improve further
processing and diagnosis. The problem is challenging due to: (i) a very high
resolution of the images, (ii) complex, large deformations, (iii) difference in the
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appearance and partially missing data. A dedicated challenge named Automatic
Non-rigid Histological Image Registration Challenge (ANHIR) [1,2,3] was orga-
nized in conjunction with the IEEE ISBI 2019 conference to address the problem
and compare algorithms developed by different researchers. The challenge orga-
nizers provided a high quality and open dataset [1,4,5,6,7], manually annotated
by experts and reasonably divided into training and evaluation sets. Moreover,
an independent, server-side evaluation platform was developed that made it pos-
sible to reliably compare the participant’s solutions [3].

The challenge participants proposed several different algorithms, mostly us-
ing the classical, iterative approach to the image registration [2]. The three
best scoring methods were quite similar. The winner team (MEVIS) [8] pro-
posed a method consisting of brute-force initial alignment followed by affine and
B-Splines-based nonrigid registration. The researchers used the normalized gra-
dient field (NGF) similarity metric [9] and strongly optimized code resulting
in undoubtedly the best and clinically applicable method. The team with the
second-best score (UPENN) [10] proposed an algorithm consisting of background
removal by stain deconvolution, random initial alignment, affine registration and
diffeomorphic, nonrigid registration based on the Greedy tool [11,12]. The third
best team (AGH) [13] developed a method similar to the winners with the differ-
ences that instead of the NGF they used the modality independent neighborhood
descriptor (MIND) [14], and used the Demons algorithm to directly optimize the
dense deformation field replacing the B-Spline deformation model, as in [8]. In-
terestingly, only a single team proposed a method based on deep learning [15].
However, the team first re-sampled the images to a relatively low resolution and
second, they fine-tuned the deep network using the landmarks provided for the
evaluation, thus introducing strong bias into the results. Nonetheless, since their
method was amazingly fast and therefore potentially the most useful in real-
world applications, we feel inspired to propose a method based on deep learning
that works for high resolution images without the requirement to fine-tune the
network using manually annotated landmarks to achieve results comparable to
the best scoring solutions based on the classical approach.

One of the challenges related to deep learning registration is connected to
image size. High resolution images cannot be simply propagated through the
network because the number of parameters required to provide an appropriate
receptive field and accurate registration results would be too high to fit in the
GPU memory. There are several approaches that decrease the GPU memory
consumption by e.g. using B-Splines transformation model instead of the dense
deformation field [16] or using a patch-based approach [17]. However, it is not
well-established how to deal with patches that cannot be directly propagated
through the network after unfolding due to the GPU memory constraints, which
is the case for the high resolution histology images (full images are in the range
of 100k x 100x pixels).

In this work, we propose a nonrigid registration method based on deep net-
works trained in an unsupervised way in a multi-level, patch-based and multi-
iteration framework. The proposed approach works for images with any resolu-
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tion using a single GPU, both during the training and the inference. The results
are comparable to the best scoring teams using a traditional, iterative approach
while being significantly faster during the inference. We make the source code
freely available that, together with the open access to the data set, makes the
results fully reproducible [18].

2 Methods

We assume that the input to the proposed method consists of images initially
aligned by an affine registration. In this work, we used the affine registration
method described in [19] that accurately aligns the large majority of the image
pairs.

The first step is to transfer the source and target images to the GPU memory.
The image transfer is being done only if a single GPU is used and both images
fit into the memory. Otherwise, if a multi-GPU computing cluster is used and
the memory transfer is done later. Second, the images are re-sampled to a pre-
defined number of levels, building a classical resolution pyramid. This approach
allows the method to calculate significantly larger deformations. Then, starting
at the lowest resolution, the images are unfolded into overlapping patches with
a given size and stride. The patches overlap because we use only the centers of
the calculated displacement fields. The displacement vectors calculated at patch
boundaries are not reliable because the real displacement may point outside
the given image patch. The unfolded patches are grouped in the tensor batch
dimension with a pre-defined size. This parameter controls the GPU memory
usage and can be adjusted differently during the training and inference. If a
multi-GPU computing cluster is used, the groups are divided between the GPUs.
For each group, the patches are passed through the deep network.

We used the encoder/decoder U-Net-like architecture [20] with the batch nor-
malization replaced by the group normalization [21] and max-pooling replaced
by strided convolutions. The network architecture is part of Figure 1.

As the next step, the current group is warped with the resulting displacement
field and the loss is calculated, backpropagated and the optimizer is updated.
In this work, we use the negative NCC as the cost function and the curvature
as the displacement field regularization term [15,22]. The objective function can
be defined as:

S(M,F, u) = −NCC(M,F ) + αCURV(u)→ min, (1)

where NCC denotes the normalized cross-correlation, CURV is the curvature
regularization, α is the regularization parameter controlling the deformation
smoothness, and M,F, u are the warped moving patches, target patches and the
displacement fields respectively.

The displacement fields calculated for each group are being concatenated.
After the groups are processed, the displacement field patches are folded back
into a single displacement field, which is then composed with the current de-
formation field, using the same patch size and stride as during the unfolding.
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Fig. 1: Visualization of the proposed framework and the deep network architec-
ture.
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The whole process is repeated for a pre-defined number of times for each resolu-
tion, resulting in a multi-iteration registration. The network weights are shared
between iterations at a given level. However, they differ between the pyramid
levels. Finally, after each level, the calculated deformation field is up-sampled to
the next pyramid level. The source patches are not interpolated more than once.
Instead, the deformation fields are being composed together after each iteration
and pyramid level. As a result, the interpolation error is negligible. The method
is summarized in Algorithm 1 and visualized in Figure 1.

Algorithm 1: Algorithm Summary.

Input : M (affinely registered moving image), F (fixed image), N (number of
pyramid levels), M (iterations per level), P (patch size), S (stride),
G (group size)

Output: u (deformation field)
1 PM,PF = create pyramids using M, F and N
2 u = initialize with an identity transform on the coarsest level
3 for each resolution in N do
4 Fc = get current level PF and unfold using P, S
5 if current resolution > 0 then
6 Mc = warp current level PM using u

7 Mc = unfold Mc using P, S
8 v = initialize with an identity transform and unfold using P, S
9 for each inner iteration in M do

10 if current iteration > 0 then
11 Mc = warp Mc with v

12 Mg,Tg = divide Fc,Mc into G-sized batches
13 vi = initialize with an empty tensor
14 for each group do
15 vt = model(Mg,Tg)
16 if training then
17 Mw = warp Mg with vt

18 S(Mw,Tg,vt) = use equation (1) and update optimizer (free
GPU memory for the next group)

19 vi = concatenate(vi, vt)

20 v = v ◦ vi

21 v = fold v using P, S
22 u = u ◦ v

23 return u

The proposed method has 5 main parameters: (i) number of pyramid levels,
(ii) number of iterations per level, (iii) patch size, (iv) stride, and (v) group size.
Increasing the number of pyramid levels makes it possible to calculate larger de-
formations, however, at the cost of increasing the registration time. The number



6 Marek Wodzinski, Henning Müller

of iterations per level is important for registering fine details, but similarly to
the number of resolutions, increasing the value leads to longer registration time.
The patch size is connected with the deep network architecture, its value should
be chosen to correctly utilize the network receptive field. The stride defines how
much the unfolded patches overlap. Finally, the group size defines the number of
patches registered simultaneously. The larger the value, the faster the registra-
tion, as well as the GPU memory consumption. The patch size, stride and group
size were established by calculating the theoretically required receptive field. The
number of pyramid levels and number of iterations per level were tuned by a
simple brute force search (the range of reasonable value is low).

The framework was trained using the Adam optimizer, with a fixed number
of epochs, without using the early stopping technique. Only the images denoted
as training by the challenge organizers were used during training, while the
evaluation set was used for the validation. However, no decision was made based
on the validation set results. Overfitting was not observed. The training set was
augmented by small, random affine and color transformations. Schedulers were
used, different for each pyramid level, decreasing the learning rate by a given
factor after each epoch. No information about the landmarks was used during
training. We make the source code freely available [18].

3 Results

The dataset consists of 481 image pairs, 230 in the training and 251 in the eval-
uation set. The landmarks are provided only for the training set, the evaluation
of the remaining images must be done using the challenge platform, indepen-
dently of the method authors. There are 8 different tissue types stained using 10
distinct dyes. The images vary from 8k to 16k pixels in one dimension. The full
dataset description, including details about the acquisition, landmarks annota-
tion, tissue abbreviations, and image size, is available at the challenge website [3].
The evaluation metric used to compare the participant’s method is based on

Table 1: The normalized average processing time (in minutes) calculated by the
automatic ANHIR evaluation system. The registration time is reported for RTX
2080 Ti.
Ours MEVIS AGH UPENN TUNI CASIA DROP CKVST BTP
0.033 0.141 8.596 1.374 8.977 4.824 3.388 7.488 0.684

the target registration error, divided by the image diagonal, defined as:

rTRE =
TRE√
w2 + h2

, (2)

where TRE denotes the target registration error, w is the image width and h is
the image height. We use the median of rTRE to compare the methods, follow-
ing the original challenge rules. The average difference between two landmarks
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Fig. 2: The median rTRE calculated by the ANHIR evaluation system for all
cases and each tissue separately. For team and tissue abbreviations see [2,3].

annotators was 0.05% while the best scoring methods achieve accuracy at the
level of 0.2% of the image diagonal [2].

In Figure 2, we compare our method to the best solutions in terms of the
median rTRE, for all cases together and for each tissue type separately. We also
show the normalized average registration time in Table 1. An exemple checker-
board visualization of the images before the registration, after the affine regis-
tration and after the proposed nonrigid method is shown in Figure 3. We de-
cided to compare only the solutions submitted using the automatic, server-side
evaluation tool. We chose to not use other classical/deep algorithms and tune
the parameters because the results would be unintentionally biased towards our
method.

4 Discussion and Conclusion

The proposed framework achieves results comparable to other well-performing
methods proposed for the nonrigid histological registration. The results in terms
of the median rTRE are comparable to the best-scoring methods. Only the re-
sults for mice kidneys are considerably worse. The reason for this is an extremely
low number of training samples available for the mice kidneys. In general, it can
be observed that the larger the number of training samples for a particular tis-
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Source/Target (Initial) Source/Target (Affine) Source/Target (Nonrigid)

Fig. 3: Exemplary checkerboards for visual quality assessment at different regis-
tration stages (high quality pictures, best viewed zoomed in electronic format).

sue type, the more accurate the results. Similar challenges are related to the
lung lesions. However, there is also a problem connected with the regularization
parameter that should be different for this type of tissue. An adaptive regular-
ization would be beneficial.

The proposed solution is significantly faster and thus potentially more use-
ful in practice since registration time above several minutes for a single pair is
usually unacceptable. The only method that can be directly compared to our so-
lution in terms of the computational time was proposed by the MEVIS team [8].
They proposed not only the most accurate but also a greatly optimized method.
Unfortunately, their solution is commercial and the source code is unavailable.
All other methods used rather home-designed software and we think that their
computational time could be significantly decreased. However, most probably
even the most efficient optimizations and use of GPU would not shorten the
processing below time required by just few passes through a deep network.

In future work, we plan to investigate other similarity metrics like MIND [14]
or NGF [9] since NCC is less resistant to missing structures and without a
proper regularization or diffeomorpishm enforcement may introduce folding in
such regions. Nonetheless, both similarity metrics are hard to use in patch-based
deep frameworks and require an adaptive regularization. What is more, the noise
parameter in NGF needs to be tuned, as well as the radius and the neighborhood
type of the MIND descriptor. Moreover, we will investigate the network itself,
since recent advances in encoder-decoder architectures may further improve the
results. Finally, the curvature regularization is not perfect for tissues like lung
lesions or mammary glands. We will look for alternative, adaptive regularization
possibilities.
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To conclude, we propose a fully automatic deep learning-based nonrigid regis-
tration method for high resolution histological images, working independently of
the image resolution and achieving results comparable to other well-performing
ANHIR methods while being significantly faster, thus potentially more useful in
clinical practice.
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