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Abstract. Medical image processing is known as a computationally expensive and
data intensive domain. It is thus well–suited for Grid computing. However, Grid
computing usually requires the applications to be designed for parallel processing,
which is a challenge for medical imaging researchers in hospitals that are most of-
ten not used to this. Making parallel programming methods easier to apply can pro-
mote Grid technologies in clinical environments. Readily available, functional tools
with an intuitive interface are required to really promote health grids. Moreover,
the tools need to be well integrated with the Grid infrastructure.

To facilitate the adoption of Grids in the Geneva University Hospitals we have
set up a develop environment based on the Taverna workflow engine. Its usage with
a medical imaging application on the hospital’s Grid cluster is presented in this
paper.
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1. Introduction

Images are produced in ever–increasing quantities in hospitals. Their automatic analy-
sis and processing is not possible with current computing infrastructures, particularly as
few hospitals possess a research computing infrastructure. Parallelization of image pro-
cessing can help the processing tasks utilise massively parallel infrastructures such as
Grid networks [1]. A Grid cluster can consist of a large number of desktop computers
that often exist in abundance in hospitals. However, parallel programming environments
are not trivial for the medical imaging community that generally focuses on the appli-
cation itself. A parallel execution infrastructure has to be set up and maintained and the
programmers need to have experience in developing parallel applications, which is only
rarely the case.

The infrastructure set up questions have been addresses by Grid and batch process-
ing environments (also known as cluster computing systems or Local Resource Manage-
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ment Systems, LRMS), such as BOINC [2] (Berkeley Open Infrastructure for Network
Computing), Condor [3], and others. Remote resources can be allocated through Grid
middlewares, for example ARC2 (Advanced Resource Connector [4]) and gLite [5]. Pre-
vious work of the University Hospitals of Geneva includes a simple–to–install local hos-
pital Grid based on the Condor LRMS and the ARC middleware inside the Geneva Uni-
versity Hospitals. The idea was to use the computing resources of desktop PCs inside the
hospitals using virtualization technologies [6] to clearly separate the computation part of
desktops and the part potentially treating patient data. Another approach under develop-
ment is described in [7]. It contains a pull–based distributed Grid system that does not
require the working nodes to have own IP (Internet Protocol) addresses.

This paper focuses on intuitive ways for creating parallel medical imaging appli-
cations to reduce the difficulties often due to the lack of parallel programming exper-
tise. Medical imaging research could profit from a layer which masking the difficul-
ties of parallelization. A more classical approach is to use well known libraries, such as
MPI (Message Passing Interface)3, PVM (Parallel Virtual Machine)4 or openMP (Open
Multi–Processing)5. Early work in the imaging community has adapted these libraries to
perform a low–level parallelization for image processing, for example described in [8].
Despite some efforts these solutions were not widely spread in the imaging community
for two reasons: (1) using these approaches was still time–consuming and error prone for
image processing developers. A parallelization tool for the image processing community
would be acceptable only if it hides all parallelism from the application programmer and
suggesting a fully sequential programming model [9]; (2) many proposed solutions were
bound to either specific applications or very specific infrastructures.

Using workflow engines such as Taverna for scientific parallel programming has be-
come a new trend in several domains [10]. For medical imaging development, important
properties for develop environments are listed in [11]. Several workflow management
engines (also called component–based application builders) are compared in this text.
Currently, the most widespread workflow engine in the bio–informatics community is
probably Taverna6 [12].

Several benefits of using Taverna can be stated directly:

• It provides a graphical user interface presenting an intuitive overview of parallel
task execution.

• The workflow elements are designed independently of applications and are adapt-
able for different high performance computing (HPC) infrastructures, increasing
the potential reusablility of workflows.

• By decomposing the task into workflow elements, both data–decomposition and
task–decomposition are possible. This decomposition gives a clear separation of a
"sequential" mode and a "parallel" mode. Every workflow element is developed as
a sequential program and tested in a sequential environment. The parallelization
parameters are only configured in a workflow map.

2http://www.knowarc.eu/
3http://www-unix.mcs.anl.gov/mpi/
4http://www.csm.ornl.gov/pvm/
5http://openmp.org/
6http://taverna.sourceforge.net/



• A well built workflow can be imported as a workflow element for another work-
flow, which allows multi–level workflow composition to generate hierarchical
programs. This simplifies both program design and development.

• Ready–to–use workflow maps are shared by a large number of Taverna users on
the web side MyExperiment.org 7.

Using Taverna for biomedical image processing was already proposed in [13]. In that
article, the author proposed to combine Taverna with the EGEE8 (Enabling Grids in E-
Science in Europe) remote grid resources. However, medical images are often subject to
legal question preventing them from being sent outside of the hospital for computation.
Our application development uses a recent extension (plug–in) [14] of Taverna that al-
lows Taverna workflow to be executed on ARC clusters. This enables us to execute the
workflow in the hospital’s local ARC Grid as described in [6]. Moreover, since Taverna
runs on Windows, the workflow software development can be performed completely on
Windows even if all the Grid software is Unix–based. This has undeniable advantages
as the entire hospital infrastructure is Windows–based and thus most researchers equally
use Windows–based development tools.

The rest of the paper is organized as follows: In Section 2 we describe the methods,
thus the basic elements and data we use in this paper. Section 3 presents the results, and
thus the main novel parts of our approach. We finalize the article with a discussion and
conclusions in Section 5.

2. Methods

In this section the setup for the development is explained. Computing resources and
develop environments are presented in details.

2.1. Computing resources available in the Geneva University Hospitals

The Geneva University Hospital like many medical institutions does not have a dedicated
research computing infrastructure. On the other hand, a very large number of desktop
computers is available that is renewed completely every four to five years. Currently,
around 6000 computers are available from a variety of generations, with the slowest one
currently containing 1 GB of main memory and a Pentium IV with 2.8 GHz. By mid–
2009 a majority of 5’000 PCs will have 2 GB of main memory and dual core CPUs,
where virtualisation is foreseen.

For testing purposes 20 old PCs were made available for us to create an inner–
hospital Grid (768M RAM and 2.8GHz CPU) A very compact Linux operating system
is installed on these PCs in a VMWare Virtual Machine to use them as computing nodes.
50% of CPU time, and 350MB of memory are allocated for the for the virtual machine.
The mini-cluster runs Condor on the nodes and ARC as LRMS. 5 other PCs of different
generations were also installed in a similar setup to test the influence that such a virtual
machine can have on a desktop user when frequently being used for computing image
processing jobs.

7http://www.myexperiment.org/
8http://www.eu-egee.org



2.2. Existing development environment of imaging researchers

Imaging researchers generally use workstations with at least 1GB memory. The most
frequently used programming language is Java, for its platform independence and large
number of already available tools. Parallel programming has been only rarely used, as
most developers do not have much knowledge of parallel environments and using Grid
systems is not always an easy task.

2.3. Parallel development environment

The setup for parallel application development proposed in this paper is composed of the
following parts:

• the Taverna workflow engine;
• a plug–in provided by the KnowARC project that can be installed using the Tav-

erna plug–in manager and that connects taverna and an ARC resource;
• an environment adapted to the ARC–based Grid of virtual machines mentioned

in Section 2.1 to test each component before putting it into the Taverna workflow
(using thus the virtual machines with 350 MB of RAM each);

• a web server to upload and share built components and workflow maps.

3. Results

This section presents the main results of this article, consisting of different parts.

3.1. Design approach for our Taverna–based parallelization of medical imaging

The fundamental concepts of Taverna–based application development is decomposition
of software systems into components. Two types of decomposition need to be separated:
component decomposition (also called task decomposition, concerning the code parts)
and data decomposition.

Component decomposition decomposes the application into elementary units, which
can be seen as a black box between defined input data and output data. The way to
decompose the application often follows these steps:

• decomposition of the application into conceptually independent components for
easier reusability of these building blocks;

• decomposition of large but independent components into smaller components,
wherever possible, creating check pointing data that can be used if the task needs
to be restarted;

• decomposition of each component by separating the input and output parts to
facilitate the data structure modification;

• finally, a decomposition of each obtained component into objects with a log strat-
egy to enable debugging and error tracking procedures.

Data decomposition is easy to understand and is related to the decomposed components.
A component executed with a part of the data forms a task. Data decomposition has the
following goals :
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Figure 1. Conceptual decomposition of a medical imaging workflow for feature extraction into basic compo-
nents.

• tailoring of the intermediary data storage and transition for each task;
• tailoring of the memory usage for each task;
• tailoring of the execution time for each task.

In order to avoid bad parameter selection, the runtime environment (in our case the virtual
machine with 350M RAM) is simulated in develop environment (in our case Eclipse).
Thus "tailoring" step is performed under develop environment.

3.2. An example parallelization using Taverna and ARC

To try our approach with a concrete application, a content–based image retrieval (CBIR)
framework [15], named Parallelized Medical Image Retrieval (ParaMedIR) is developed
based on this setup. The data and computationally most intensive part of CBIR is to in-
dex databases of images using visual features. From each image, key visual information
called features are extracted. This information can be simple color or texture features.
In the approach, newly developed for this paper, features are divided into groups called
visual key words [16]. First of all, image regions are determined (through a fixed grid,
randomly or through interest point detectors), and in neighborhoods of these regions vi-
sual features are extracted. The extracted visual features are then clustered into a limited
number of similar visual key words. Statistical information on the appearance of those
visual key words in images (normally in the form of histograms) is subsequently ana-
lyzed for each image to measure the similarity pairs of images. The entire process can
be called indexing in this context. It can conceptually be decomposed into three main
components: extraction of features from the images, clustering of the features into visual
key words, and generation of the histograms that are then stored in a database or other
indexing structure.

The initial workflow decomposition for this process is shown in Figure 1. Each
conceptually separated component can still be computationally expensive and might re-
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Figure 2. A second decomposition step further details the components of the processing chain.

quire further decomposition. The second decomposition step specifies the check points
for large components in the process. In our application, the feature clustering is a good
example for such a large component. KMeans clustering is a classical clustering algo-
rithm that we use in this context, which is known to scale badly for very large data sets.
A staged parallel execution model [17] was selected to perform the clustering in two
steps. Intermediary results such as the collection of features, the cluster centers, and the
feature–cluster maps need to be stored. This further decomposition can be seen in Fig-
ure 2. Unifying the Input/Output (IO) modules and standardizing the data structures are
important requirements for the development as well. A typical design is to generate an
IO package of classes for all components. The IO package has to take into account the
data parallelization requirements. Data separation should be parameterizable meaning
that various file formats should be checked and adapted. Another useful package is the
group of classes for log file creation. Some general information, such as time measure-
ment, completeness of calculation percent, error messages are often useful to include. In
order to generate IO and log file packages, IO operation and log creation need to be iso-
lated from the original components in the workflow maps. Following this approach, fur-
ther components are added. Figure 3 is still based on the feature clustering components
but adds further components.

3.3. Execution of the developed workflow with Taverna

The execution of the application is started via Taverna and can use a variety of available
resources know to Taverna. After workflow design, the researchers need to develop se-
quential executables for each workflow element and link them to the finished workflow
map. Most often such components already exist anyways, as many research tools are
simple scripts or components that are combined. Then, the parallel execution needs to be
configured for each workflow element. The Taverna user interface is shown in Figure 4.
The upper left hand side (Part 1) contains the list of available components of the work-
flow. The lower left hand side (Part 2) is dedicated to the parallel execution configuration.
The right hand side (Part 3), finally, is the workflow window itself. Inside this window
the final workflow map is shown.
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Figure 3. The final decomposition of the workflow including log files and debugging information.

Table 1. Computation times on sever and on local ARC grid.

workflow element Sequential execution ts Parallel execution tp Speed–up factor f

feature extraction 291 mins 45 mins 6.5
KMeans clustering 480 mins 30 mins 16 (different algorithm)
histogram generation 61 mins 27 mins 2.2

Table 1 presents the parallel execution time tp analysis. To compare with sequential
execution time ts, a metric called speed–up factor f is used. The metric, f = ts/tp shows
how much the execution was accelerated.

It should be mentioned that the KMeans clustering algorithm used is not the same for
the sequential and for the parallel execution. Sequential execution takes all the features
into account whereas the staged parallel mode divides the features into small groups,
and performs the clustering hierarchically. The execution time of clustering is highly
related to the quantity of data, which explains the high value of f obtained. The histogram
generation requires frequent reading and writing operations and therefore it benefits less
from the parallel execution.

4. Conclusions and future work

Hospitals are producers of extremely large amounts of digital information, including im-
ages. Computational solutions such as Grids are necessary if these data are attempted to
be treated or analyzed to improve the care processes and provide diagnosis aid. Currently
the clear tendency for high performance computing is towards parallel processing using
standard components. The availability of multi–core CPUs is also accelerating this pro-



Figure 4. The user interface of Taverna contains three distinctive parts and allows for an easy configuration of
resources and workflow for new applications

cess. Most researchers in hospitals have only little experience with parallel development
environments and thus only rarely profit from the potentially large computing power that
Grid networks can offer.

In the University Hospitals of Geneva, a small test Grid using ARC and Condor
was implemented and using this test bed several applications were griddified. It became
quickly apparent that griddification is non–trivial for researchers who usually only have
little time and avoid the overhead to learn new technologies. Taverna–based griddifica-
tion was significantly easier and besides the application described in this paper, several
other applications were adapted for Grid use, usually taking have a day for all steps. This
encouraged other people to use the small test Grid in the hospitals and could be a general
model for the adoption of Grid technologies in environments such as a hospital.

Several further developments are still foreseen in this context, particularly when
connection such applications with other components of the web–services–based patient



record.
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