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Abstract

Floating Content (FC) is a communication paradigm to locally share ephemeral content

without direct support from infrastructure. It is based on constraining the opportunis-

tic replication of content in a way that strikes a balance between minimizing resource

usage and maximizing content availability among the intended recipients. However,

existing approaches to management of FC schemes are unfit for realistic scenarios with

non-uniform user distributions, resulting in heavy overdimensioning of resources allo-

cated to FC. In this work, we propose a new version of FC, called Cellular Floating

Content (CFC), which optimizes the use of bandwidth and memory by adapting the

content replication and storage strategies to the spatial distribution of users, and to

their mobility patterns. The main idea underlying our approach is to partition users

into small “local communities”, and to optimally weight their contributions to the FC

paradigm according to their specific mobility features, and to the resources required

to achieve a target performance level. We characterize numerically the properties of

the optimal strategies in a variety of mobility patterns and traffic conditions, showing
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the accuracy of our approach, and the significant savings it enables in the amount of

resources necessary to run FC, which in a realistic setup can be as high as 27% with

respect to traditional FC dimensioning strategies.

1. Introduction

The growing relevance of context in communications, the increasing importance of

information with local validity, and the need to serve an ever-rising traffic demand make

opportunistic communications a key enabler of future wireless access networks. This

is particularly true for cellular networks in dense urban areas [1], where opportunistic

communications enable the offloading of those information transfers with mainly local

relevance. In such scenarios, the static infrastructure manages and coordinates op-

portunistic information exchange, and it injects content into the opportunistic network

whenever needed. Moreover, in order to implement reactive or proactive strategies

for optimizing its operations, future wireless networks will need context data (such as

floating car data and floating phone data) from users [2]. Such data are already be-

ing regularly collected by Mobile Network Operators (MNO) and service providers in

order to implement services such as traffic management, and for urban sensing appli-

cations such as occupancy statistics of shops or points of interest [3].

Among the available opportunistic communication schemes for the local dissemina-

tion of information to end users through direct terminal-to-terminal connectivity, a

special role is played by Floating Content (FC) [4]. FC was conceived to support

infrastructure-less distributed content sharing over a certain geographic area called

Anchor Zone (AZ). The objective of FC (and of similar schemes, such as Hovering

Information [5], Locus [6], Linger [7], among others) is to spread content to the mini-

mum amount of users within the AZ sufficient for the content to persist over time in the

AZ, while achieving a target performance, typically in terms of success ratio, i.e. of the

average fraction of nodes with content entering a given location (the Zone of Interest

or ZOI). The purpose of constraining the opportunistic replication of a given content

within the AZ is to minimize resource usage (bandwidth, memory), while keeping

content available only where it is mostly relevant to users. However, in existing formu-
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lations (e.g., see [4, 5, 6, 8, 9] ) such optimization of resources usage is performed in a

very crude, coarse manner. Specifically, they are based on estimating the contribution

of each node only as a function of its distance from the ZOI. The resulting dimen-

sioning strategies are vastly inefficient in realistic, heterogeneous settings, frequently

involving in the FC scheme a large number of nodes with little or no contribution to the

floating content scheme, thus often leading to the impossibility to satisfy the quality

of service (QoS) requirements [8]. Moreover, such approaches, designed for settings

where infrastructure is not available, are suboptimal in urban scenarios, in which in-

frastructure is ubiquitous. Given the growing complexity of these settings, strategies

for network planning and optimization which rely heavily on the collection of a large

amount of data at the user level (e.g. on user mobility and user perceived performance

[10, 11]) are progressively taking over.

In this paper, we consider the issue of resource-optimal FC dimensioning. We

propose Cellular Floating Content (CFC), an entirely new scheme for localized oppor-

tunistic information exchange, based on partitioning space into cells and on modulating

content replication and storage strategies according to local requirements and resource

availability. We propose a dimensioning approach for the derivation of optimal replica-

tion and storage strategies, which minimize the use of bandwidth and user memory ac-

cording to a flexible cost function, while achieving a target performance. Our approach

thus involves in the CFC scheme only those sets of users that, for a same resource cost,

maximize their contribution to the performance of the FC scheme.

Specifically, the main contributions of this paper are the following:

• We propose a new scheme for localized opportunistic information exchange, de-

noted Cellular Floating Content (CFC), which allows modulating content repli-

cation and storage within each cell according to the contribution of the users

within the cell to the overall performance of the scheme;

• We elaborate a mean field model of CFC, and we derive analytical expressions

which relate the evolution over time of the main performance parameters of CFC

to system parameters, both over finite time intervals, and in the stationary regime;

• We formulate the problem of determining the replication and storage strategies
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which minimize the overall resource consumption of CFC, in a way which guar-

antees a specified target success ratio. We show that the problem can be solved

efficiently.

• We characterize numerically the properties of the optimal strategies in a vari-

ety of settings. We validate our approach through numerical simulations on

measurement-based traces, showing its accuracy under several realistic mobility

patterns and traffic conditions. We show that our approach leads to a much more

efficient resource utilization with respect to existing FC dimensioning strategies,

based only on distance from the ZOI (savings up to 27% were observed in real-

istic settings).

The paper is structured as follows. In Section 1.1 we summarize the state of the art

of FC dimensioning, and in Section 2 we introduce the system model. In Section 3

we present an analytical model of CFC performance, based on mean field theory. In

Section 4, we formulate the CFC resource optimization problem, and in Section 5

we assess numerically the optimal strategies resulting from our approach. Finally,

Section 6 concludes the paper.

1.1. Related Work

The Floating Content concepts has long been present in the literature, under dif-

ferent denominations. In [12] the authors present the hovering information paradigm,

whose aim is to share content with spatio-temporal locality constraints using pure ad

hoc communications, in a similar way as FC. The FC paradigm was first introduced by

[13], which derived a criticality condition, i.e. a sufficient condition for a content to

float indefinitely over time. In [14] authors validate the analytical results of [13], and

they demonstrate the feasibility of FC (in terms of capacity of sustaining content within

the anchor zone for a given period of time) under the presence of a modest number of

nodes. [15] considers the performance of context-aware applications that use FC as a

communication service. A simple analytical model is presented for computing success

probability for two different kinds of context-aware applications, under a simple Ran-

dom Direction mobility model. In [16] we presented the performance of context-aware
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applications using FC under different synthetic mobility models. In [17], Hagihara et

al. propose a delivery control method for FC called PFCS (Proportional control for

Floating Content Sharing). The authors assume that there are multiple different con-

tent items present in the network and that replicating all of the content items using

FC may lead to overloading the wireless network and/or the storage capacity of nodes.

In order to avoid such situations, PFCS controls the number of copies of a particular

content item (called possession ratio) within an anchor zone. Through a stability anal-

ysis, the authors derive a stability condition under which the possession ratio can be

controlled to a target value. Different from the present paper, all these works assume

synthetic mobility models, and a user distribution which is either uniform, or which

can be approximated as being uniform.

Another set of works address those issues deriving from applying the FC paradigm

to realistic setups. They propose approaches which take advantage, in various forms,

of local variations of several system parameters. The paper [18] proposes a scheme in

which, in scenarios with several different floating contents and overlapping AZ, users

prioritize the contents to exchange based on such measures as anchor zone size, or total

amount of users with content in each AZ. The authors of [19] propose a heuristic for

controlling content replication within the anchor zone in a distributed manner, based

on a circular shape for the anchor zone. For scenarios with nonuniform user distribu-

tions, the paper [20] derives a scheme in which the AZ radius is adjusted dynamically

according to the user density in the area, while [21] proposes a method for choosing

the optimal location for a circular AZ according to specific properties of user spatial

distribution. The work in [22] applies the FC paradigm to the issue of building and de-

livering knowledge about traffic conditions, in order to enable drivers to optimally plan

their route. In [23] authors propose another synthetic mobility model, the city square

mobility model, in which nodes move within a rectangular area, and in which the num-

ber of nodes in the AZ is not constant over time. The paper derives simple conditions

for content availability and persistence. However, all these works are based on rigidly

circular or rectangular anchor zones, which in practical scenarios inevitably brings to

include users which, despite being close to the ZOI, do not contribute to the scheme.

Moreover, and all decisions on whether to replicate or drop a content are still based on
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some notion of distance from the center or the border of the anchor zone. which often

results into coarse, highly conservative FC dimensioning strategies.

Another set of works does away with regular anchor zone shapes. The work [24]

considers a variant of FC, and it proposes an heuristic to control content availability in a

predefined region in a distributed fashion, based on local estimations of availability by

each user. Similarly to other schemes in which the anchor zone coincides with the ZOI,

the main drawback of the proposed scheme is that in realistic user distribution it often

brings to the impossibility of achieving the target performance. The authors in [25]

and [26] evaluate experimentally the feasibility of the FC paradigm in an office and in

a campus scenario, respectively. These works show that existing analytical approaches,

based on non-spatial models are still inadequate to accurately predict the system per-

formance in realistic scenarios, and that important issues need to be addressed in order

to effectively apply FC schemes in practical scenarios.

The works in [27], [28] and [29] try addressing these issues, by elaborating mo-

bility models and dimensioning strategies which take into account the specific features

of mobility patterns in pedestrian and vehicular scenarios, as they emerge from mea-

surements. However, these works still rely on a distance-based strategy for modulating

the user behavior within a FC scheme, which delivers good results only when mobility

patterns produce a uniform user distribution within the considered area. As a con-

sequence, in the vast majority of practical scenarios these approaches are still overly

conservative, requiring a substantial amount of overprovisioning to deliver a target per-

formance level. Moreover, the work in [28] suggests that such distance-based strategies

may often bring to the impossibility to satisfy the QoS constraints (e.g. in the form of

minimum success probability).

The vast majority of available analytical approaches to FC performance adopt a

fluid approximation similar to a mean field (MF) approximation (see [30, 31, 32] and

references therein), which has been applied to several problems in opportunistic com-

munications. However, these applications of the MF approach neglect several impor-

tant issues. Most importantly, and unlike the present paper, existing works do not

clarify the convergence properties of the model they propose, and hence the relation-

ship between the proposed model and the actual behavior of the modeled system. To
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the best of our knowledge, the only other approach to FC modeling which explicitly

applies MF theory is in [33, 34]. These works adopt a stochastic susceptible-infected-

recovered (SIR) epidemic model to model the content diffusion process. However they

focus on content lifetime and on sufficient conditions for content persistence, while the

present paper considers FC performance from the point of view of content availability

within a predefined area (the ZOI), hence in a way which is related to the performance

of those applications which rely on FC as a communication service.

Recently, [35] and [36] proposed new approaches which do away with a mean-

field based analysis and (similarly to the present work) with regular geometries for

the AZ, in order to further optimize the amount of user resources involved in the FC

scheme. More specifically, they propose a Deep Learning strategy, which employs

a Convolutional Neural Network (CNN) to capture the relations between patterns of

users mobility, of content diffusion and replication, and FC performance in terms of

resource utilization and of content availability within a given area. The performance of

such learning based approaches is however tightly linked to the characteristics of the

training dataset, in terms of amount of data and of different input combinations present

in it. In the specific case, such approaches inevitably perform poorly (leading to heavy

suboptimal configurations, if not possibly altogether to the unfeasibility of the dimen-

sioning problem) in those setups and configurations − in terms of node mobility, or of

service constraints, such as minimum target Quality of Service (QoS), or ZOI shape,

size and position − which are least represented in the training dataset. For instance,

this might represent an issue in scenarios with changing service requirements or ser-

vice demand spatio/temporal patterns, and/or with unusual patterns of user mobility

(e.g. due to emergency conditions or to such events as road accidents or blockages).

This last feature is a significant drawback, as communications in contexts of emergency

or during spontaneous gatherings have always been among the key applications of the

FC paradigm, and the issue of how to mitigate such a problem is currently still open.

In this paper, we take the first steps at tackling this issue: We focus on FC in VANETs

(vehicular area networks) and we analyze how FC performance and resource efficiency

may benefit from the availability of a centralized entity, which interacts with moving

vehicles, collects relevant mobility data, and build estimates of those mobility parame-
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Table 1: Main notation used in this paper (i is the index of the i-th cell)

Notation Description Units
r Transmission range m

τ0 Connection setup time s

Ci Mean contact rate s−1

fi PDF of contact time in cell i
Fi CDF of contact time in cell i
λi Mean user density m−2

S Cell area m2

σi,j Mean arrival rate from cell i to j s−1

di Content infectivity
γi Recovery rate s−1

L Content size bytes

D Replication strategy vector
Γ Caching strategy vector
ni Number of nodes with content
Ni Number of nodes
ai Availability at stationary state
Bi Infection rate at the stationary state s−1

Ri Death rate at the stationary state s−1

C Zone of Interest
P0 Target success ratio
k Cost function coefficient

ters for optimal FC dimensioning. Most importantly, and differently than [35] and [36],

our approach derives optimal solutions, whose performance is thus insensitive to how

common are the spatio-temporal patterns of mobility or the FC service requirements of

a given scenario.

2. System Model

We consider a set of wireless nodes with transmission range r, moving on the plane

according to an arbitrary mobility model. We assume two nodes come in contact when

they are in range of each other, i.e. when their distance is not larger than r. We define

a contact event an event consisting of two nodes getting in range of each other. Let τ0

denote the connection setup time, i.e., the time interval between the event of two nodes

coming in contact, and the beginning of the exchange of application-level information;

τ0 models the delay with which a link is established. We assume each node knows its

position in space, e.g. via GPS or triangulation-based methods.
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Figure 1: Schematic representation of the considered setup. Each cell is characterized by a
content infectivity and a recovery rate, denoted for cell i, as di, and γi, respectively.

2.1. Cellular Floating Content operation

In what follows, we describe the operation of the Cellular Floating Content com-

munication paradigm.

We consider the case in which a piece of content (e.g. a picture, a video, or a traffic

warning message) is to be delivered and made available to nodes within a specific re-

gion (which we call the Zone of Interest or ZOI), for a predefined time interval, which

we call the floating interval. Typical floating interval durations range from 30 minutes

up to a few hours, during which we assume the traffic patterns do not vary signifi-

cantly1.

Given the ZOI, we consider a region of the plane, denoted as floating region (FR),

which includes the ZOI. We assume the floating region to be partitioned into a set of I

cells, which can be of arbitrary shape and size. For instance, each cell may correspond

to the coverage range of a cellular base station (BS), or several contiguous BSs, or

1If longer time intervals must be considered, over which traffic variations cannot be neglected, it is possi-
ble to divide the longer time interval into several subintervals over which traffic variations can be considered
negligible.
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it could be defined geographically, as composed by a set of contiguous city blocks.

In what follows, without loss of generality, we assume the FR to be rectangular, and

the cells to be rectangular and equally sized, with area S. In such conditions, in each

cell i the mean capacity between a user and its neighbor can be expressed asE(r)/
√
λi

where λi is the mean user density in the i−th cell, andE(r) is function of transmission

radius [37, 38].

For every pair of contiguous cells i, j, let σi,j denote the mean amount of nodes per

unit length which move from i to j, averaged over the floating interval, so that the total

rate at which nodes move from i to j is given by σi,j
√
S. We assume σj,i = 0 when i

and j are not adjacent. For every cell i, for the considered floating interval, with fi we

denote the PDF of contact time, and with Ci the mean rate of contact events per unit

area within the cell. Ci is a function of the specific mobility pattern of nodes within

the cell during the floating time interval. Hence, typically Ci is a function of the node

speed distribution and node density within the cell. Note that in the computation of

Ci, every contact between a node in cell i and a node in another cell is counted in both

cells with weight 0.5.

It is worth observing that with the present features of smartphones, and with the

coming of age of the Smart City paradigm, the quantities necessary for the parametriza-

tion of our model are already available in a number of cases, and those that are not yet

available are likely to be so in the near future. Indeed, many applications are currently

using smartphones as traffic probes, since they move with pedestrians and vehicles, and

tracing their movements enables the crowdsourced collection of accurate traffic data.

Even more data will come with the hordes of sensors deployed in smart cities for the

optimization of movements of people and vehicles [39].

A CFC scheme is identified, for every cell i, by the content infectivity di, and the

recovery rate γi, as follows. We assume that at the beginning of the floating interval, a

piece of content of size L is generated by one or more nodes in the FR (the seeders).

Then, for the whole duration of the floating interval, every time a node with content in

cell i comes in contact with a node without it, the node with content transmits it with

probability di.

When a node with content enters cell i, or when it acquires content in that cell, it starts
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a timer. After x seconds, with x exponentially distributed with mean 1/γi, if the node

has not moved out of that cell, it removes the content from its memory. The recovery

rate γi ≥ 0 is, therefore, the mean rate at which a node with content in cell i drops

the content. Finally, we assume that content is never replicated outside the FR, and

that all nodes with content drop it once they are out of the FR. If the content disap-

pears from the FR before the end of the floating interval, we assume it is seeded again.

Such content reseeding may be performed by nodes in the FR or by the communica-

tion infrastructure (e.g. by roadside units, or by the cellular network). In what follows,

without loss of generality, we assume that reseeding is made by seeding the content to

a node in the same cell in which the last content was lost.

As a result, for a given CFC scheme, the vectors D={di} and Γ={γi} describe the

replication and caching strategies, respectively, which enable the content to persists

probabilistically in the FR during the floating interval, despite the mobility of nodes.

In this paper, we consider the ideal case in which nodes do not replicate content when

it is not needed (i.e., when both nodes in contact already possess the content – this is

doable by proper advertising of available content). Moreover, we assume that content

exchanges are always unicast (one-to-one), though results can be easily extended to the

case in which broadcast mechanisms are in place.

As we have already mentioned, the goal of CFC is to make the floating content avail-

able in a subregion of the FR, the Zone of Interest (or ZOI), which is, therefore, the

region of space which is taken as reference for CFC performance. The main perfor-

mance parameter of CFC is the success ratio, i.e. the fraction of users which enter

the ZOI with content, averaged over the whole content lifetime. The target value of

the success ratio, as well as the choice of size, shape, and location of the ZOI, depend

entirely on application-level performance requirements. For instance, for an advertise-

ment application, the application level performance target could be to deliver a given

advertisement (e.g., info on a sale) to at least a given percentage of the people who en-

ter a shopping center. In such case, the borders of the ZOI should include all entrances

to the shopping center, and that percentage would constitute the target success ratio for
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such application 2.

3. A Mean Field Model of CFC

The CFC scheme we have described can be seen as a system of interacting objects,

in which each object, at any time instant, can take only two states (i.e., it can possess the

content or not), and in which interactions bring to changes in the state of the objects

via content replication. Classical analytical approaches to performance modeling of

such systems (e.g. via Markov Chain analysis) are unpractical already for a relatively

small number of objects, due to an exponential explosion in the size of the state space.

In what follows, we adopt an approximation technique which allows deriving some

meaningful insights in the performance of a CFC system. It is based on an approximate

model of the interactions between nodes, which goes under the name of mean field

interaction model or fluid limit ( see e.g., [40] and references therein), and originated

in statistical physics.

If I is the total number of cells, for a given cell area S at any time instant t we

associate to the system the state vector (n1(t, S), ..., ni(t, S), ...nI(t, S)), such that

ni(t, S) is the number of nodes in cell i with content at time t. Such a system can be

modelled as a multidimensional birth-death process, that we assume evolves according

to Markovian dynamics, and it is therefore a Continuous Time Markov Chain (CTMC).

For each cell, births correspond to nodes without content getting it from nodes with

content, and to nodes with content entering the given cell, while deaths are due to

nodes with content moving out of the cell or dropping the content. In addition, as

part of such approximate modeling approach, we assume that the system satisfies the

following homogeneous conditions:

Definition 1 (Homogeneous conditions). We say that the considered system satisfies

the homogeneous conditions when at any time instant, users with content are uniformly

2Note however that, depending on the specific application, the success ratio can be defined differently
(e.g. as the ratio of people getting out of the ZOI with content) [9]. Our approach can be adapted to such
variants of the definition of success ratio.
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distributed within each cell, and the probability of a user to have the content is inde-

pendent from the probability of any other user to have the same content.

The homogeneous conditions assumption allows writing simple expressions for the

birth and death rates of the process. Moreover, we assume that cell dimensions and

the transmission range of each node are such that intra-cell contacts largely dominate

over inter-cell contacts, in such a way that the effects of the latter can be neglected. In

Section 5 we assess the accuracy of our approach in application scenarios where these

assumptions do not always hold.

Let Ni(t, S) denote the number of nodes in cell i at time t for a cell area S, and

let N̄i(S) denote its mean. As we have assumed the system to be stationary for what

concerns node dynamics, and all cells to be of equal size, N̄i(S) does not depend on

time. Moreover, given the homogeneous assumption, we can write N̄i(S) = λiS.

In order to apply the mean field approximation, instead of the number of nodes with

content for each cell i at time t, we consider the ratio between this quantity and N̄i(S),

which we denote asAi(t, S). N̄i(S) is therefore the parameter used for normalizing the

state occupancy in every cell3. The set of all the Ai(t, S), ∀i ∈ I , defines a normalized

state space for our system, also known as occupancy measure [41].

A key parameter of a CTMC model is the mean dynamics (also called drift), which

describes the average local variation of the CTMC model with respect to time [41, 42].

The following lemma derives its expression.

Lemma 1. When the system satisfies the homogeneous conditions, for every cell i ∈

1, ..., I the drift of the CTMC is given by the sum of two components. The first, which

3Note that choosing N̄i(S) as a normalization factor instead of Ni(t, S) is necessary in order to apply
the results available for mean field convergence of CTMC models. However, it produces a state occupancy
which at some time instants might take values above 1, as the actual number of nodes fluctuates around its
mean. However, for growing S the variance of the mean number of nodes in cell i tends to zero, hence the
state occupancy at the limit for S →∞ tends to a quantity which is not larger than 1.
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we denote as birth rate (or infection rate), is

2
Ci
λi
diAi(t, S)

N̄i(S)

Ni(t, S)

(
1−Ai(t, S)

N̄i(S)

Ni(t, S)

)
Fi

(
τ0 +

L
√
λi

E(r)

)
+

+
∑
j

σj,i

λi
√
S
Aj(t, S)

N̄i(S)

Nj(t, S)
(1)

where Fi is the complementary CDF of contact duration τ in cell i. The second com-

ponent of the drift, denoted as death rate, is given by

Ai(t, S)
N̄i(S)

Ni(t, S)

∑
j

σi,j

λi
√
S

+ γi

 (2)

For the proof, please refer to Appendix A.

In order to study the mean field convergence properties of our system, to each

value of S we associate a CTMC model. Indeed to each value of S it corresponds a

mean number of nodes in each cell, λiS, which is therefore the size of our model. We

consider then a sequence of increasing values of cell area S, to which it corresponds

a sequence of CTMC models, each with the features described so far. The following

result shows that for increasing model size, in the limit the variance of the system

becomes zero, so that the approximation made by considering the average behavior

of the system is good. Therefore, the average behavior can be modeled considering

the unique solution of a system of Ordinary Differential Equations (ODEs) defined by

using the limit mean dynamics (i.e. the drift given by Lemma 1 at the limit S → ∞)

of the family of CTMC models.

The expression of the drift allows deriving the differential equations governing the

evolution in time, over a finite horizon, of the mean field limit ai(t) of the occupancy

measure for each cell i at time t. Let A(0, S) = A0(0, S), ..., Ai(0, S), ..., AI(0, S)

denote the array of the initial values for the occupancy measures of the considered

system.

Theorem 1. In the given system, for any initial condition A(0, S), for S → ∞, over
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any finite horizon, for any cell i the occupancy measure Ai(t, S) converges almost

surely to the solution ai(t) (the mean field limit) of the following ODE:

dai(t)

dt
= 2

Ci
λi
diai(t)(1− ai(t))Fi

(
τ0 +

L
√
λi

E(r)

)
+
∑
j

σj,i

λi
√
S
aj(t)+

− ai(t)

∑
j

σi,j

λi
√
S

+ γi

 (3)

For the proof, please refer to Appendix B. Theorem 1 states that the probability of

observing a difference between any point of the trajectory of the given system and the

solution of the ODE goes to zero as S (and hence the mean total number of nodes in

each cell) grows. That is, in the limit, the error made by considering for each cell i a

deterministic system characterized by ai(t) instead of the actual system goes to zero.

Moreover, at any time t and for every i, S, ai(t) is the expected value of Ai(t, S).

Theorem 1 characterizes the evolution of the system over finite time intervals, dur-

ing which the effects of the initial conditions (in terms of initial distribution of nodes

with content among cells) on the occupancy measure for each cell are non-negligible.

However, in a large amount of practical settings and applications, the content is set

to float for time intervals which are long enough for the initial transient not to affect

significantly the system behavior. The following result characterizes the asymptotic

behavior of the system, i.e. the configuration of the system after ”enough time” has

passed since the initial seeding of the content. To this end, it establishes a relation

between the stationary state of the system and the steady-state solutions of the ODEs

from Theorem 1.

Theorem 2. For the considered system, the steady-state solutions of Eq. (3) are an

approximation of the state distribution for t → ∞. Moreover, if (a1, ..., ai, ..., aI)

is a steady-state solution of Eq. (3), then ∀i the corresponding infection rate at the

stationary state is

Bi = 2
Ci
λi
diai(1− ai)Fτ,i

(
τ0 +

L
√
λi

E(r)

)
(4)

and the death rate at the stationary state is
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Ri =
∑
j

σj,i

λi
√
S
aj − ai

∑
j

σi,j

λi
√
S
− γi

 (5)

Proof. The considered system is a CTMC, which can also be seen as a multidimen-

sional birth-death process. As birth-death processes belong to the class of reversible

stochastic processes [43], from Theorem 1.2 in [44] it follows that their stationary be-

havior is completely determined by the steady-state solutions of Eq. (3).

The steady-state solutions of Eq. (3) are the solutions of a system of I equations of

second degree. Hence, in general, there are 2I of them. Let us rewrite the system of

equations using the quadratic formula. ∀i, we have

ai =
−βi ±

√
β2
i + 4ηiθi

2ηi
(6)

with

ηi = 2SCidiFi

(
τ0 +

L
√
λi

E(r)

)
(7)

βi = ηi −
∑
j

σi,j
√
S − γiλiS (8)

θi =
∑
j

σj,i
√
S. (9)

Since ai cannot take negative values, from Eq. (6) we have that there exists a single

feasible value for each ai. Hence, the system admits only a single feasible solution in

which at least some of the variables are nonzero. In addition, the case in which ∀ i, ai =

0, is another feasible solution of the system (the empty system solution). By studying

the gradient of the system of equations, one can see that the empty system solution is

not stable, while the other steady-state solution is an attractor for all trajectories which

do not start from an empty system. Hence, for all initial conditions in which the system

is not empty, the system evolves to the same steady-state solution, given by Eq. (6).

In the rest of the paper, we focus on the stationary state of the system. This amounts
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to assuming the floating interval to last much longer than the time during which the

dynamics of initial content diffusion are prevalent in the system. In the stationary

state, a parameter which plays a key role in determining the performance of CFC is

the content availability, which is the expectation of the fraction of nodes in cell i with

content, given as the steady-state solution of (3). Typically, a high value of availability

is correlated with low likelihood of content disappearance, and with high probability

of transferring content to nodes traversing the cell.

4. Derivation of the optimal CFC configuration

As we observed, CFC aims at limiting content replication and storage to the min-

imum amount sufficient to achieve a given target success ratio. In this section, we

formulate the problem of finding, for a given content, the replication and caching strate-

gies (that is, the elements of matrices D and Γ) which achieve a target mean success

ratio while minimizing a given cost function, related to the amount of memory and

bandwidth resources consumed by the floating content scheme.

The following result derives an upper bound on the total amount of bits transferred

at the same time within a cell, derived from the finite capacity of the wireless channel

in the considered system.

Lemma 2. In the given scenario, in the stationary state in every cell i the mean total

amount of bits transferred at the same time is given by B∞i di
E(r)√
λi

, where

B∞i = 2SCiai(1− ai)τt (10)

where τt is the mean duration of a content exchange (successful or not), given by

τt =

∫ τ0+
L
√
λi

E(r)

τ0

(τ − τ0)fi(τ)dτ +
L
√
λi

E(r)

[
1− Fi

(
τ0 +

L
√
λi

E(r)

)]
(11)

Moreover, it holds B∞i di ≤ Sλi.

For the proof, please refer to Appendix B.1. Without loss of generality, let us

assume that the ZOI coincides with a set of cells (not necessarily adjacent), which we
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denote with C, and let C its complement. According to its definition, the success ratio

is computed as the average availability over all nodes entering the ZOI. The success

ratio P can be expressed as

P =

∑
i∈C,j ∈ C ajσj,i∑
i∈C,j ∈ C σj,i

(12)

Using Eq. (10), from Theorem 2 for any cell i the balance equations which give the

mean availability in the stationary state ai take the form

Fτ,i

(
τ0 +

L
√
λi

E(r)

)
B∞i di
τt

+
∑
j

σj,i
√
Saj − ai

∑
j

σi,j
√
S − γiλiS

 = 0 (13)

In what follows, we model resource consumption in CFC through a cost function which

is the sum of two contributions:

k
∑
i

aiλiSL+
∑
i

B∞i di (14)

The first is the cost of storing the content on a set of nodes, or storage cost. It is

proportional to the mean number of nodes involved, and to the size of the content

being floated. The second component is the replication cost, and it is proportional

to the total number of content transmissions taking place in the FR, assuming one-to-

one content exchanges. Note that such cost function is a linear combination of the

two cost components (memory and communications), with coefficient k ≥ 0 as the

relative weight between the two cost components. The value of k can be chosen as a

function of the resource constraints in the considered setting. For instance, when the

nodes participating in the CFC scheme are memory constrained (as it can be the case

in an IoT setup), k can be chosen to make the overall contribution to the cost of the

two components of the same order of magnitude. Conversely, in vehicular/smartphone

applications, storage is typically not an issue. Hence, one can choose k in a way that

the minimization of bandwidth is privileged over memory optimization.

Therefore, an optimization problem can be formulated, where the objective function

to be minimized is Eq. (14), and where the optimization variables are, for each cell i,

di and γi. In order to study the convexity of the problem, we consider the equivalent
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problem formulation obtained by introducing the variables ψi ≥ 0 and µi ≥ 0, as

follows:

B∞i di = B∞i − µi (15)

aiγiλiS = ψi

Substituting into the balance equations (13), we get

Fτ,i

(
τ0 + L

√
λi

E(r)

)
τt

(B∞i − µi) +
∑
j

σj,i
√
Saj − ai

∑
j

σi,j
√
S − ψi = 0 (16)

With these new variables, and letting A = {ai}, M = {µi}, and Ψ = {ψi}, the

formulation of the CFC resource optimization problem takes the following form:

Problem 1 (CFC resource optimization problem).

minimize
M, Ψ

k
∑
i

aiλiSL+
∑
i

(B∞i − µi) (17)

Subject to: ∑
j ∈ C,i∈C ajσj,i∑
j ∈ C,i∈C σj,i

≥ P0; (18)

∀i

Eq. (16)

B∞i − µi ≥ 0; (19)

B∞i − µi ≤ Sλi; (20)

B∞i = 2SCiai(1− ai)τt;

0 ≤ ai ≤ 1;

A 6= 0v (21)

µi ≥ 0, ψi ≥ 0 (22)

Constraint (18) imposes that the success probability be larger than or equal to the

target value P0 deriving from the QoS requirements of the specific application sup-

ported by CFC. Condition (19) imposes that the component of infection rate due to
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opportunistic replication within the cell be nonnegative. Condition (20) is derived from

Lemma 2, and it imposes an upper bound to the maximum amount of concurrent con-

tent transfers, due to the finite capacity of the wireless channel. Finally (21) excludes

the empty state 0v from the feasible solutions of the system of equations (13).

Such optimization problem formulation is convex, and hence it can be solved effi-

ciently. Indeed, Eq. (13) can be cast as

B∞i − µi =
τt

Fτ,i

(
τ0 + L

√
λi

E(r)

)
−∑

j

σj,i
√
Saj + ai

∑
j

σi,j
√
S + ψi

 (23)

By substituting this expression for B∞i − µi in (17), (19) and (20) we get a convex

problem.

Let (M∗,Ψ∗) be the solution of the problem, and let a∗i be the values of availability

in cell i at the optimum. The corresponding values of parameters γi and di at the

optimum (henceforth denoted as γ∗i and d∗i ), which identify the optimal strategy of

content replication and storage, can be derived as follows:

γ∗i =
ψ∗i

a∗i λiS
(24)

d∗i = 1− µ∗i

2a∗i (1− a∗i )Fτ,i
(
τ0 + L

√
λi

E(r)

)
CiS

(25)

As the fraction in Eq. (25) is always positive, d∗i ≤ 1 is always verified, while

inequality (19) guarantees that d∗i ≥ 0. Therefore, parameters (D∗,Γ∗) describe the

optimal storage and replication strategies deriving from solving Problem 1.

4.1. Comments on the proposed approach

The approach presented so far optimizes the replication and storage parameters over

a single floating interval. As we have seen, all the parameters of our model are derived

from forecasts and/or from historical trends and patterns of mobility, which in urban

scenarios have indeed a very regular and predictable behavior over time. Such param-

eters are then averaged over the floating interval, and taken as inputs to our model.
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The resulting optimal storage and replication strategies are then applied over the whole

interval.

However, in applications in which the content is expected to float for several hours,

it is very likely that mobility patterns experience strong variations in the mean density

of vehicles and users over space, or in the rate at which nodes move between contiguous

cells. In those cases, our approach can be applied by dividing the overall floating

interval into smaller subintervals, each of a duration which should be short enough

to have only minor variations in mobility patterns, but not too short in order to avoid

parametrizing the system with noisy estimates. In each subinterval, the optimal storage

and replication strategies would be computed as shown in this section. Moreover, at

the beginning of all subintervals except the first, the content which has been floating

in a subinterval can be used to initiate content diffusion in the following subinterval,

possibly with additional seeding from infrastructure if, where, and when required.

It is worth observing here that among the factors which affect the result, a key role

is played by the choice of the floating region. Indeed, the FR defines the region of the

plane involved in a CFC scheme, and therefore it identifies the set of resources which

are available for implementing it. A first basic requirement on the FR is that it should be

large enough to guarantee the feasibility of Problem 1. In general, larger regions may

bring to more efficient CFC schemes, as increasing FR size (while keeping constant cell

size shape and location) corresponds to increasing the optimization parameter space

of Problem 1. In practical settings, the choice of a FR might be influenced also by

considerations of computation complexity and of communication overhead due to the

collection of data on user mobility.

Moreover, note that our approach can be easily expanded to account for different

resource costs in different cells, and possibly taking into account the specific compo-

sition of the population of nodes (i.e. vehicles, smartphones, UAVs) participating in

the content diffusion and replication process. In scenarios where the floating interval

is split in several subintervals, our model can also take into account changes in these

costs, which could reflect variations in the availability of resources over time, due to,

e.g., other competing services based on opportunistic replications, or higher interfer-

ence levels, etc.
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Table 2: Default values for system parameters in the baseline scenario.

Parameter Value
Target success ratio P0 0.7
Node speed [m/s] 16.6
Simulation time [s] 7200
Mean node density [nodes/m2] 2.77 · 10−6

Finally, as it is common when dimensioning a system under uncertainty, when the

mobility of at least part of the agents in a scenario is highly uncertain (such as in

scenarios with a large number of UAVs, with highly irregular patterns of mobility) a

conservative approach can be taken. For instance, unpredictability may be accounted

for by assuming in our approach a lower density of unpredictable users with respect

to the actual one. The use of other, possibly less conservative techniques, depends

however on the availability of some form of characterization of the uncertainty on node

trajectory.

5. Numerical assessment

We evaluate our approach for the derivation of optimal strategies for replication

and storage, obtaining numerical results in a variety of settings and mobility patterns.

Unless otherwise specified, we assume k=1 (i.e. we give equal weight to storage and

replication costs), and ∀i, Fτ,i
(
τ0 + L

√
λi

E(r)

)
=1. That is, we assume that the mean

contact time to be much larger than the mean time required to complete a content

transfer.

5.1. Baseline

We first evaluate the accuracy of our model by means of simulations, on a scenario

with a synthetic mobility model. We consider a square FR of side 3000 m. In order to

obtain an uniform random distribution of nodes in the scenario, we assumed that nodes

move according to the Random Direction mobility model [45]. Cells are square, with

a side of 600 m, and thus form a 5 × 5 grid. The ZOI is cell (3, 3), i.e., the cell at the

center of the grid. We chose a target success ratio of 0.7, suitable for non-critical, best

effort message delivery services such as traffic warnings or advertisements. Note how-

ever that every scenario (and in particular, node density, node speed, and transmission
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Figure 2: Success ratio vs transmission range, for P0 = 0.7 and cell side of 600 m. All simula-
tion points are within a 95% confidence interval of 5.1%.
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Figure 3: Reduction in cost of the CFC scheme with respect to unconstrained replication and
storage, for P0 = 0.7 and a cell side of 600 m.

range) poses an upper limit to the maximum success ratio it can sustain. We assume

25 nodes are present in the scenario, moving at a speed of 60km/h. By modulating

transmission range, this choice of mean node density and node speed allows emulating

both settings where sparse node distributions and low contact rates make content diffu-

sion more difficult, and scenarios with high contact rates. Table 2 shows the values of

the system parameters for the considered setup. For each run, we chose a simulation
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Figure 4: Success ratio vs transmission range, for different target success ratios. Cell side: 600

m. Simulation points are within a 95% confidence interval of 5.1%.

time of two hours, which corresponds to a typical message validity for such vehicular

applications as road accident or traffic warnings. In each simulation run, at t=0, all

nodes possess the content, and are placed at random in the FR. After discarding the ini-

tial transient, we measured the success ratio averaged across that part of the remaining

simulation time during which the content keeps floating, and then we further averaged

across simulation runs.

In the first set of experiments, we solved the optimization problem for a transmis-

sion range varying between 60 m (comparable with the range of Bluetooth Low En-

ergy) and 600 m (i.e. up to the length of the cell side). For each value of transmission

range, we compared the success ratio deriving from the solution of Problem 1, with the

one resulting from simulating the optimal strategy (D∗,Γ∗). As shown in Fig. 2 and 4,

by tuning (D,Γ) within the FR, our approach allows controlling the success ratio with

a high level of accuracy over different values of transmission range and target values

of success ratio. As the two figures show, the discrepancy never exceeds 4%, and it

decreases with increasing target success ratio.

Significantly, these results shows that such effects as node clustering and inter-cell con-

24



0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Availability, k = 100

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(b) Infection rate, k = 100

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

109

(c) Content drop rate γ, k =
100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d) Availability, k = 10−6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(e) Infection rate, k = 10−6

1

2

3

4

5

6

7

8

9

10

10-14

(f) Content drop rate γ, k =
10−6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(g) Availability, k = 10−6,
70% content transfer success
rate

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(h) Infection rate, k = 10−6,
70% content transfer success
rate

2

4

6

8

10

12

14

16

#10-14

(i) Content drop rate γ, k =
10−6,70% content transfer suc-
cess rate

Figure 5: Optimal strategies in a homogeneous setup, for different values of the relative weight
k between storage cost and replication cost. Cells form a square grid of 11 × 11 cells. ZOI is
cell (6,6). ∀i, Ci = 0.3 contacts/s; cell area 10 m2; ∀i, j, σi,j = 1 node/s. Target success
ratio: 0.8.

tent exchanges, whose impact on content diffusion grows with increasing transmission

range, and which have not been included in our model, have a limited impact on the

accuracy of our model, as long as the cell side is larger than the transmission radius.

In general, the choice of the cell size is a compromise between accuracy in the way in

which the local mobility features are taken into account in the problem, and computa-

tional cost. The transmission range however puts a lower limit to the spatial resolution

of our approach. Indeed, cells with sides smaller than the transmission range imply a
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preponderant amount of inter-cell content exchanges which are not accounted for in our

model. Moreover, the smaller the cell, the lower the mean amount of users per cell, and

the larger the discrepancy between our model, based on a mean field approximation,

and the actual behavior of the system. In both Fig. 2 and 4, the blue curve shows the

success ratio from simulations achievable when content replication and memorization

are not constrained within the FR (i.e. when ∀ i, di = 1, γi = 0). This represents the

performance achievable when the floating content scheme employs all of the available

resources within the floating region in the considered setup, hence it constitutes, for a

given setup, an upper bound on the performance achievable by CFC.

Therefore, with reference to Fig. 2, for a given target P0 (0.7 in the figure), the values

of transmission range for which the blue curve takes values inferior to P0 correspond to

settings in which the target success ratio is not achievable in the system. When trans-

mission range is further decreased, contact rate decreases, lowering both the maximum

achievable success ratio, and the average content lifetime. In Fig. 2, the orange region

corresponds to those values of transmission range for which content lifetime lasts, on

average, less than two hours.

In order to estimate the potential resource savings achievable with our approach, albeit

in a homogeneous setting, for each value of transmission radius of Fig. 2, in Fig. 3

we plot the decrease in cost of the optimal solution with respect to the case of uncon-

strained content replication and memorization. As expected, with increasing transmis-

sion range, the contact rate increases, and so does the difference in resource utilization

between the constrained (i.e., CFC) and the unconstrained scheme, reaching values

over 20%.

In order to evaluate the spatial configuration of the optimal replication and storage

schemes, in Fig. 5 we depict the spatial distribution of availability, as well as of drop

rate γ and of infection rate, resulting from the optimal strategies. These distributions

are displayed for the case in which the resource cost of the CFC scheme is dominated

by storage cost (k=100), and for the case in which it is dominated by content replica-

tion cost (k=10−6).

As expected, in a homogeneous setup in which the ZOI coincides with the center cell,

the optimal schemes induce spatial distributions which tend to the classical circular
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shape. Indeed, in a homogeneous scenario where all directions of movements are

equally likely, the contribution of each resource to the CFC scheme at a given point

in time is only a function of its distance from the ZOI, producing a geometry which

tends towards a radial symmetry.

Such property of our optimal schemes allows our approach to satisfy the regression test

to the main result available in the state of the art. It has been proposed in [9], and it is

based on a random direction mobility model, on a circular, concentric ZOI, and on a

circular AZ, whose radius is tuned in order to achieve a given success ratio.

For the same target success ratio, we compared the performance of the two schemes,

in terms of total cost, adopting for the scheme of [9] the same cost function as our

approach. For our scheme, we have taken the central cell as the ZOI, and we have

varied the ZOI radius of the scheme from [9] in order to have a circular ZOI with a

same area as the one in our scheme. Our tests have shown that, for a variety of target

success ratios and of values of coefficient k, by decreasing the cell area (and hence by

refining the spatial quantization of our scheme) the cost of our optimal schemes tend to

the cost of the scheme from [9], which is radially symmetric and not affected by spatial

quantization effects. This shows that our approach can be regarded as a generalization

of [9] to more realistic, heterogeneous scenarios and hence to generic (and possibly not

synthetic) mobility patterns.

Results in Fig. 5 also show how our approach produces spatial strategies which adapt

to resource cost. When storage is expensive (k = 100), content is dropped just out of

the area where the infection rate is high. Conversely, when replication costs prevail, the

area where replication takes place is smaller and more concentrated around the ZOI,

while content (which can be stored and hence fluctuates almost ”for free”) is practically

never dropped within the FR.

Finally, we have considered the case in which connection setup time and content trans-

fer time are such that not all content transfers have enough time to complete success-

fully during the contact time. Fig. 5 (g) to (i) shows how the optimal spatial strategies

change when only 70% of content transfers are successful. As expected, this brings

to an average increase of the infection rate, and of the overall number of replications.

Moreover, keeping constant the target success ratio, the decrease in effectiveness of
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Figure 6: The floating region within the Luxembourg City (4 km by 2.5 km), and the 10 × 10
cell grid considered. The ZOI is cell (4,5) (in thick borders in the figure).

content transfers increases the amount of time in which, on average, a node must be

exposed to contacts with other nodes with content. As shown in Fig. 5, this translates

into an increase of the size of the areas where infection rate and availability are high.

5.2. Luxembourg Scenario

In order to perform a more realistic assessment of the performance of our approach,

we considered a second scenario, shown in Fig. 6. It consists in a rectangular floating

area of 4 km by 2.5 km, which includes the city center of Luxembourg, as well as part

of its surroundings. The street grid and the measurement-based mobility traces for this

scenario for a 24-hour period were derived from [46]. We considered a transmission

range of 360 m, which is typical of technologies such as IEEE 802.11p in realistic

urban environments [47]. We chose rectangular shaped cells, with sides 400 m by 250

m, and hence of the same order of magnitude as the transmission range, in order to

minimize the impact of inter-cell contacts on the accuracy of our approach.

We considered as ZOI cell (4, 5) placed around a crossroad between two large

avenues in the city center. The rationale of this choice has been to reproduce a scenario

in which, on the occurrence of an accident on that crossroad, cars get a warning before

reaching the location of the accident. Network simulations have been performed using

the VEINS framework [48], based on OMNET++ [49] for network simulation, and on
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Table 3: Success Ratio in the Luxembourg City scenario.

Target Time Value Simulation Simulation,
value interval at (D∗,Γ∗) at (D∗,Γ∗) no constr.
(P0) (model)

0.7
4 - 6 AM 0.704 0.716 0.954
8 - 10 AM 0.703 0.721 0.981

0.9
4 - 6 AM 0.912 0.896 0.954
8 - 10 AM 0.918 0.925 0.981

SUMO [50] for road traffic simulation.

We considered two different time intervals. One, from 8 AM to 10 AM, corre-

sponding to a period of peak traffic, due to people commuting to work, and a second

from 4 AM to 6 AM. These two time periods correspond to a best and worst case sce-

nario, respectively. Indeed, the performance of FC is highly sensitive to node density,

as the denser the nodes, the easier the content spreads and persists in the given area.

In particular, the early morning hours, being typically a period of very low car density

in the whole city, represents a worst case scenario for CFC performance, as it makes it

hard to get the critical mass of vehicles for guaranteeing a mean content floating life-

time of a few hours. For both time intervals, we have chosen a duration of two hours,

which is compatible with typical periods of validity of traffic or accident warnings. As

Fig. 7 (a) and (d) shows, the two time intervals are characterized by a different spatial

distribution of contact rate. Moreover, as expected, the peak traffic scenario has also,

on average, a higher contact rate with respect to the low-traffic scenario.

For each interval, we have computed the optimal strategies (D∗,Γ∗) by solving Prob-

lem 1 with k = 1, parametrized with data from the measurement-driven mobility traces

and averaged, for each cell, for the whole duration of the time interval.

In Table 3 we have compared the success ratio P (D∗,Γ∗) computed by solving

Problem 1, with the one derived from simulating the optimal CFC schemes (D∗,Γ∗).

In each simulation, we have assumed all nodes within the FR possess the content at the

beginning of the given time interval. This can be achieved with an initial seeding of the

content through a broadcast transmission over the existing infrastructure. In each con-

figuration, the number of simulation runs has been such as to achieve a 95% confidence

interval of ±5%. These results show that even in a highly heterogeneous scenario our

approach is able to control CFC performance with a very high degree of accuracy.
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Figure 7: Optimal replication and storage strategies, in the Luxembourg scenario, for two con-
sidered time intervals, and for different target values of success ratio. The ZOI is cell (4, 5).

The last column in Table 3 shows the performance of the CFC scheme when content

replication and storage are unconstrained everywhere inside the considered FR. As it

can be seen, even in settings with low traffic density, the success ratio with uncon-

strained CFC is very high. This suggests that in the considered settings, and for the

given choice of FR shape and size, there are margins for substantially reducing re-

source utilization, while still achieving the target performance for CFC.

This is illustrated by Fig. 7, which shows the structure of the replication and storage

strategies in the time interval (4 AM-6 AM) for P0=0.7, and in the period (8 AM-10

AM) for P0=0.9. The plots show how in both setups our optimal strategies substan-

tially reduce the communication traffic with respect to the unconstrained case, allow-

ing message exchange in few cells only, and dropping the content around the ZOI.

For P0=0.9, the optimal scheme enables content replication over those cells with high

contact rate around the ZOI (Fig. 7 (e)), corresponding to the main roads which send

traffic towards the ZOI, while avoiding those geographical areas where vehicles are

not present, such as parks, or rivers. As for the recovery rate, the optimal strategies in

Fig. 7 seem to concentrate content dropping on those locations around the ZOI where
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Figure 8: Replication and storage strategies, for the distance-based approach, in the Luxembourg
scenario. P0 = 0.7; Time period: 8 AM - 10 AM.

there is a prevalence of traffic flows exiting the ZOI. Indeed, once out of the ZOI, ve-

hicles are less likely to play a relevant role in achieving the target performance for a

CFC scheme.

Overall, these results show the capacity of our approach to selectively modulate in

space the use of resources of the CFC scheme, adapting to the specific features of mo-

bility of a given scenario, and to the resulting spatial distribution of nodes. Nonethe-

less, these results indicate that an important property of the optimal strategies is their

being radically different from those resulting from intuitive approaches based simply

on distance from ZOI, such as those proposed so far [9]. Indeed, the optimal spatial

distributions of content replication and dropping in Fig. 7 exhibit several counterintu-

itive features, such as zones of high content replication (or with high rate of content

dropping) which are scattered in the FR.

In order to better assess this feature of the optimal strategies, we have compared their

performance with those of a simple, intuitive strategy. It consists in allowing uncon-

strained content replication and storage in all cells within a given distance (counted in

number of cells) from the ZOI, and on dropping the content in those cells which lay

immediately out of such replication region. We have run a set of simulations in the time

interval 8 AM-10 AM, for the same ZOI as in Fig. 6, for P0 = 0.7, and for different

choices of the size of the region of unconstrained replication (Fig. 8). For a replica-

tion area of size 3 × 3 (Fig. 8 (a) and (b)), the mean content lifetime resulting from

simulations is of the order of a few minutes only (less than 10), during which success

ratio remains low, and very far from the target value. Making the replication area larger

(5× 5, Fig. 8 (c) and (d)), allows the content to float for the whole observation window
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of two hours, while achieving a success ratio of 0.87, and therefore larger than the tar-

get value. However, this second strategy implies a cost which is 37% higher than the

one incurred with our approach (which therefore saves 27% of resource costs) for the

same target success rate, same ZOI, same time interval, and same cell size. This shows

the effectiveness of our approach in minimizing resource costs of a CFC scheme, while

guaranteeing the target performance.

5.2.1. Content seeding

On a new set of simulations, we have investigated the impact of various strategies

for content seeding on the time required by the system to reach the configuration re-

sulting from the solution of Problem 1. The strategies we considered differ in the nodes

which possess the content at the beginning of a CFC scheme. As expected, from Fig. 9

we see that the strategies which bring to a very short transient are those in which at least

one node has the content in each cell. Indeed, these strategies do not require the content

to diffuse across long distances in order to reach those regions in which it should per-

sist. Despite this observation, seeding the content only to all nodes in the ZOI brings

to a performance which is slightly worse than the previous strategies. Finally, we have

considered the case in which initial seeding is restricted to those cells which, according

to the optimal configuration resulting from the solution of Problem 1, are likely to host

several nodes with content once the transient is extinguished. Specifically, it assumes

all nodes in cells with (optimal) availability larger than 0.5 have the content at the be-

ginning of the given interval. From Fig. 9 we see that this strategy brings to a slightly

longer transient (around 30 min), during which success ratio is lower than the target

value.

In conclusion, the choice of the seeding strategy ultimately depends on how critical

(for the specific application relying on CFC) is the performance of the CFC scheme

in the first 30 minutes from content seeding. Overall, these results show that our ap-

proach, despite bringing to spatial strategies which in heterogeneous settings are often

quite fragmented in space requires a limited (in time, and in space) support from in-

frastructure to content replication.
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Figure 9: Success ratio vs time from initial content seeding, as a function of the seeding strategy,
in the Luxembourg scenario. Time interval: 8 AM-10 AM. P0 = 0.9.

6. Conclusions

In this paper, we have presented a new approach to floating content, based on a

mean field model of the main performance measures of the floating content scheme,

and on a flexible definition of the cost of resources employed by the FC scheme. This

new approach allowed us to optimize the amount of resources required by the scheme,

adapting it to the complexity and heterogeneity of real (vehicular, and not only) sce-

narios, and to a variety of setting with diverse resource constraints. The proposed

formulation enables FC to support a wide range of applications, with diverse perfor-

mance requirements, in a QoS-aware and resource-effective way. On a realistic setup,

we showed that our approach achieves resource savings of 27% with respect to existing

FC dimensioning strategies, based only on distance from the ZOI.

This works leaves open several avenues for further investigation. Among the possible

extensions of this work, it would be important to account for scenarios with several

different contents floating in (at least partially) overlapping floating regions. A chal-

lenge there would be represented by ensuring scalability of the approach for optimal

management of the FC scheme over the number of different contents. Another interest-

ing extension of the present work concerns heterogeneous scenarios where nodes are

a combinations of vehicles, pedestrians, and UAVs. In those cases, the goal should be

to account not only for the different resource costs to support the various node classes,

but also for their specific mobility patterns. In particular, the approach presented in

33



this paper can be easily extended to scenarios with drones, in which the floating region

(and the elements of the partition) are three-dimensional. For those scenarios in which

drone trajectories can be configured, it can be interesting to address the issue of the

joint optimization of resources over the drone trajectories and of the FC scheme, pos-

sibly accounting also for the energy budget of drones. Another important direction of

investigation is the extension of the approach presented in this paper to settings with

very short content lifetime, in which the initial dynamics of content diffusion play an

important role in defining application-level performance.
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[18] J. Ott, E. Hyytiä, P. Lassila, T. Vaegs, J. Kangasharju, Floating content: Informa-

tion sharing in urban areas, in: IEEE PerCom, 2011, pp. 136–146.

[19] R. Hagihara, Y. Yamasaki, H. Ohsaki, On delivery control for floating contents

sharing with epidemic broadcasting, in: IEEE CCNC, 2017, pp. 353–356.

[20] R. Yamamoto, A. Kashima, T. Yamazaki, Y. Tanaka, Adaptive contents dissem-

ination method for floating contents, in: 2019 IEEE 90th Vehicular Technology

Conference (VTC2019-Fall), 2019, pp. 1–5.

[21] F. Massalino, A. L. L. Aquino, Identification of anchor zones for floating con-

tent in vanets based on centrality measures, in: Proceedings of the 33rd Annual

ACM Symposium on Applied Computing, SAC 18, Association for Computing

Machinery, New York, NY, USA, 2018, p. 21172124.

[22] A. M. de Souza, N. L. da Fonseca, L. Villas, A fully-distributed advanced traf-

fic management system based on opportunistic content sharing, in: 2017 IEEE

International Conference on Communications (ICC), IEEE, 2017, pp. 1–6.
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Appendix A. Proof of Lemma 1

To compute the drift, we first derive the rate at which nodes with content in cell

i increase (the birth rate) and decrease (the death rate). In order to compute the birth

rate, we observe that the rate at which contact events take place within the i-th cell

is CiS. As we assume homogeneous conditions, at any time t the probability for a

random node within the cell to have the content is Ai(t, S) N̄i(S)
Ni(t,S) . At any time t,

after a contact between two nodes the probability that a transfer of content can take

place is the product of the probability that only one of the two nodes has the content

(2Ai(t, S) N̄i(S)
Ni(t,S) (1−Ai(t, S) N̄i(S)

Ni(t,S) )), and the probability di that the exchange takes
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place, and it exploits the fact that these events are independent. The probability that

there is enough time for content exchange while the two nodes are in contact can be

approximated by the probability that contact duration is larger than the connection

establishment time τ0, plus the average transfer time L
√
λi

E(r) . Hence, if we assume that

the dynamic of the population of nodes with content is much slower than the mean

time to complete a content transfer, the rate at which the mean number of nodes with

content in cell i increases due to content replication is

2CiSdiAi(t, S)
N̄i(S)

Ni(t, S)

(
1−Ai(t, S)

N̄i(S)

Ni(t, S)

)
Fi

(
τ0 +

L
√
λi

E(r)

)

The second contribution to the infection rate is given by the sum, over all adjacent cells,

of the rate at which nodes with content arrive in cell i. Hence, for every couple of cells

i, j, by the definition of σj,i, this second contribution is
∑
j σj,i

√
SAj(t, S) N̄i(S)

Nj(t,S) .

These expressions describe the rate with which the number of nodes with content

increase over time. Normalizing by the model size λiS, we obtain the expression in

Eq. (1).

The death rate is the sum of two components. The first one is the rate at which

nodes with content within cell i leave the cell, given by

Ai(t, S)
N̄i(S)

Ni(t, S)

∑
j

σi,j
√
S

The second is the rate at which content is dropped within the considered cell, and it

is equal to γi < λiSAi(t, S) N̄i(S)
Ni(t,S) . Again, normalizing by the model size λiS, we

obtain the expressions in Eq. (13).

Appendix B. Proof of Theorem 1

First, we show that, with the given assumptions, the convergence of initial condi-

tions condition [41]) is verified. This amounts to showing that it always exists an array

a(0) such that

lim
S→∞

A(0, S)
N̄i(S)

Ni(t, S)
= a(0)
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Indeed, for any a(0), choosing the number of nodes with content at t = 0 in such a

way that ∀i, ni(0, S) = bai(0)Ni(0, S)c allows satisfying this condition.

We now consider the expression of the drift from Eq. (1), and note that the terms

which account for the exchange of nodes among cells vanish for S →∞. Let T0(t, S)

denote the drift without such terms, given by

T0(t, S) = 2
Ci
λi
diAi(t, S)

N̄i(S)

Ni(t, S)

(
1−Ai(t, S)

N̄i(S)

Ni(t, S)

)
Fi

(
τ0 +

L
√
λi

E(r)

)
+

−Ai(t, S)
N̄i(S)

Ni(t, S)
γi (B.1)

If we associate the drift T0(t, S) to the CTMC model, the sequence of CTMC

models parametrized by S is a density dependent sequence of models [51, 42]. Indeed,

from the homogeneous conditions assumption follows that the size of the model (i.e.

the mean number of nodes in a cell) grows linearly with the parameter S (the cell area).

Moreover, the drift T0(t, S) depends on S only in terms of normalization. Indeed, the

term N̄i(S)
Ni(t,S) has a mean value equal to 1, and it tends towards 1 for S → ∞. Hence,

the sequence of CTMC models with drift T0(t, S) is density dependent according to

Definition 4 in [41].

∀i, the drift T0(t, S) is a Lipschitz continuous vector field, as each component has

bounded first derivatives. Then by the Mean Field Approximation theorem for density

dependent CTMC [41, 42] for any finite time horizon T ≤ ∞, it holds

P
{

lim
S→∞

(
sup

0≤t≤T
‖A(t, S)− a(t)‖

)
= 0

}
= 1 (B.2)

That is, the sequence of CTMC models associated to S and with drift T0(t, S) con-

verges almost surely to the dynamics of the solutions of the following ordinary differ-

ential equations:

dai(t)

dt
= 2

Ci
λi
diai(t)(1 − ai(t))Fi

(
τ0 +

L
√
λi

E(r)

)
− ai(t)γi (B.3)

The steady-state solutions of Eq. (B.3) are the solutions of a system of I equations of

second degree. Hence, in general, there are 2I of them. Using the quadratic formula,
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∀i, we have

ai =
γiλiS

ηi
− 1 (B.4)

with

ηi = 2SCidiFi

(
τ0 +

L
√
λi

E(r)

)

Hence, when ∀i, γiλiS
ηi

> 1 there exists a single feasible value for each ai, and the

system admits only a single feasible solution in which at least some of the variables

are nonzero. The case in which ∀ i, ai = 0, is another feasible solution of the system

(the empty system solution). From the gradient of the system of equations, one can see

that the empty system solution is not stable, while the other steady-state solution is an

attractor for all trajectories which do not start from an empty system. Therefore, the

ordinary differential equations of Eq. (B.3) with a nonempty initial value have a unique

global attractor. As a consequence, by Theorem 3.1 in [52], for a finite system the drift

converges to

T0(t, S) +
∑
j

σj,i

λi
√
S
aj(t)− ai(t)

∑
j

σi,j

λi
√
S

+O
(

1

S

)
(B.5)

Note that Theorem 3.1 would allow us to further refine this expression. However, here

we neglect the terms in O
(

1
S

)
, as the terms in Eq. (B.5) which are proportional to

1√
S

(and which derive from Lemma 1) are those which model the interactions among

neighboring cells. Hence, in a finite system the occupancy measure converges to the

solutions of the ODE in Eq. (3).

Appendix B.1. Proof of Lemma 2

Proof. The total amount of content exchanges taking place at the same time in a cell

is upper bounded by the finite capacity of the wireless channel. The duration of a

content transfer can be approximated by the minimum between the mean amount of

time necessary to transmit the whole content, L
√
λi

E(r) , and the amount of contact time

τ − τ0 which is available for content transfer. As f(τ) is the PDF of τ , the mean

amount of time spent transmitting the content (not counting the time for connection
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setup), denoted with τt, is given by Eq. (11).

In every cell i, the quantity 2SCidiai(1− ai) in Eq. (3) represents the rate of infecting

contacts, i.e. the rate at which new content exchanges are initiated. The mean number

of total ongoing content exchanges at any time instant in a cell can be derived from

such rate using Little’s result as 2SCidiai(1− ai)τt. That is, as the product of the rate

of infecting contacts in cell i, seen as the average arrival rate, and the mean amount of

time spent transmitting the content.

As E(r)/
√
λi is the mean capacity per user, the average aggregate throughput in

a cell is hence 2SCidiai(1− ai)τt E(r)√
λi

. Such aggregate throughput is upper bounded

by the mean aggregate capacity in an ad-hoc network where, as in our case, only one-

hop transfers take place (given by E(r)
√
λi [37]), times the cell area S, which gives

B∞i di ≤ Sλi.
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