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Abstract—This paper compares the efficiency of state-of-the-
art machine learning algorithms used to detect an object in
an image. A comparison between a deep learning algorithm
such as the VGG-16 and a well-tuned random forest algorithm
using classical image analysis parameters is presented. To
estimate the efficiency, the classification performances like
AUC, precision, recall and computation time of the algorithm
retraining process are used. The experimental set-up shows
that a well-tuned random forest algorithm is equal to, or better
than, the deep learning approach and increases the speed of
the retraining process by a factor of around 400.
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I. INTRODUCTION

Today, precision agriculture is about increasing and max-
imizing the productivity of a culture. The entire culture
cycle must benefit from the application of the right amount
of product to be sprayed at the right time and in the
right place (such as water, fertilizers, or pesticides) [1].
Research projects on image analysis for smart agriculture
include the detection of plant diseases [2]. Sensors are placed
around fields and collect various information. They provide
historical information but also real-time information. Re-
cently, drones (UAVs) have improved precision agriculture.
These drones are equipped with high-definition cameras to
collect aerial images and then map the selected area with
photogrammetry software [3] [4]. High-precision agriculture
has only recently been applied to complex landscapes and
challenging topography.

Machine Learning (ML) algorithms are widely used for
image recognition. Deep learning (DL) algorithms, such
as the AlexNet Neural Network [5], Convolutional Neural
Networks (CNNs) [6], and the VGG-16 neural network [7],
are the most powerful for detecting objects in images. Deep
Neural Networks are trained on large datasets using the
backpropagation algorithm to discover patterns in the image

[8]. They represent an image with several levels of abstrac-
tion. With the increasing amount of information available,
deep learning algorithms are continually improving.

However, in many real-life situations, like high precision
agriculture, it is difficult to acquire a dataset important
enough to train a Deep Neural Network. This paper is based
on a previous research [9], which shows how to tackle this
problem using a small dataset. It is based on the use case
that aims to increase productivity and maximize crop yields.
It focuses on the detection of vines and potential diseases
on images taken by a drone (UAV).

This paper compares the performance of two types of
pretrained algorithms used to recognize objects in a real-
time image. As a baseline, a deep learning (DL) algorithm
model trained on our dataset is applied to a picture of a
vineyard. Then, a second algorithm called Random Forest
(RF) or Decision Tree Ensemble (DTE) model trained on
the same dataset is applied to the same new image. In a
second step, a retraining process is run on a subset of the
new images to evaluate the classification performance and
the computational time required for the retraining process.
Indeed, the retraining process of a deep learning algorithm
is computationally very intensive in terms of time, memory,
and GPU/CPU. Other algorithms such as the decision tree
have a promising accuracy since 2016 [10][11] and are
trained more than 400 times faster than a DL algorithm.

II. STATE-OF-THE-ART

Research by Geitgey [12] shows that Deep Learning and
CNN algorithms have the best state-of-the-art performance
for image recognition. The experiments conducted with
Tensorflow [13] have outstanding performance with many
output classes.

As also shown in [14], deep models increase the learning
performance of classical neural networks. However, deep
neural networks require a huge amount of data. For example,
the CNN VGG-16 architecture [7] needs to estimate 138
million parameters in total [15].
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Figure 1. Methodology to create the dataset. (1) The dataset is divided into two partitions. (2) Images are labelled. (3) The images are divided into tiles
for classification. (4) The images are augmented.

Others propose experiments using Random Forests for the
detection of objects in images, such as face recognition [16].
Besides, their effectiveness has been demonstrated in many
areas of the industry [2][17].

There are many other non-ML methodologies for object
detection in an image. Their advantages and disadvantages
are detailed in [2] and show that ML algorithms are more
efficient. Our latest experiments with Random Forests have
shown superior performance compared to other machine
learning algorithms for the detection of defects in rice grains
present in an image [18].

Furthermore, random forests have a better efficiency in
terms of computation time during the training process [9].
Indeed, it shows that the computation time to train the
Random Forest is much faster than a pretrained VGG-16
on imagenet [19].

Some projects implement a retraining process to increase
the quality of their model. It is based on new real-life data.
For example, Cisco updates its model in real-time to detect
DDoS attacks on the Internet Network [20]. Other projects,
such as [21] consist of retraining Neural Networks based on
new data acquired with a drone to improve the live detection
of objects in videos.

III. DATASET AND DATA PROCESSING

The dataset is created using a drone flying over vineyards
in Switzerland. The drone takes a picture in a high-resolution
format. The primary dataset used is detailed in Table I.

Table I
DESCRIPTION OF THE DATASET.

Settings
Location Sierre, Valais, Switzerland
Seasons Summer
Images 790 Aerial images
Geolocalisation TRUE
Resolution per image 4.000x3.000 pixels
Colour RGB
Altitude 50 meters

Figure 1 describes the methodology used to create the
dataset for the experiments. (1) One image is used for the
training partition. The three others are used for the test and

Figure 2. Manually labelled images. Bottom left: original image. Top:
original image with the mask containing labels. Bottom right: mask
containing labels.

Figure 3. Methodology for the original models creation. (1) From the
augmented dataset, (2) the training dataset with the tiles is randomized 5
times for cross-validation. (3) At each step of the cross-validation, multiple
training process are executed using an incremental number of tiles from
the list. The sampling used is ”Take from the top”.
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Figure 4. Methodology applied to our experiments. (1) The original models are applied to a new image (validation subset) and (2) the results are evaluated.
(3) Then a similar vineyard image is labelled (retrain subset) and used for the retraining process. (4) Finally, the new models are applied to the validation
image and the improved results are analyzed.

the validation. The same validation partition is used for all
iterations of the experiment. (2) Each image is manually
labeled through a mask with white lines representing vine
lines (see Figure 2). (3) Based on these labels, the image
is divided into tiles. Each tile, depending on its content,
is classified as Vine or Other. A tile that contains more
than 33 % of white pixels is labeled as Vine. This threshold
is defined in order to obtain the most precise labels and
thus not to miss any vine lines [2]. (4) Finally, due to the
small amount of data, the lines of the vines do not cover
all orientations and therefore do not match the reality of the
ground. We perform a dataset augmentation based on the
specifications defined by [22].

In the experiments presented in this paper, images of new
vineyards were acquired. These vineyards are located in the
same region but have different characteristics. For example,
the new vines have a distinct geographical orientation, trees
are present in the area, and there is more shade due to
the timing of the image acquisition. This new dataset is
divided into two subsets: validation and retrain. The vali-
dation set is used to assess the efficiency of the algorithms
and to simulate real-life situations. The second subset is
used for the algorithms retraining process to evaluate their
new performances and analyze their improvements. The
methodology used is detailed in the next section.

IV. EXPERIMENT AND SETTINGS

The original approach and methodology applied to our ex-
periences are described in this section. We apply pretrained
models to a simulated real-time use case. The experiments
and their parameters are described as well in this section.

A. Methodology

Figure 3 details the methodology applied to obtain the
original and stable models generated in our previous project.
The algorithms are cross-validated with five randomized
lists. Then, to analyze the evolution of the efficiency of the
algorithms, each iteration uses an incremental dataset. The
increments are based on ”from the top” sampling.

Figure 4 describes the methodology of our experiment. (1)
The original algorithms are applied to a new aerial image of
a new vineyard (validation subset). (2) The efficiency of the

algorithms are evaluated. (3) The second image of a similar
vineyard (retrain subset) is manually labeled and used for
the retraining process to improve vine line detection. (3)
The resulting new models are re-applied to the validation
subset and evaluated. The results obtained are presented in
the tables III and IV with the Precision, Recall, Computation
time, Area Under Curve, and Standard Error.

B. Baseline: Deep Learning - VGG-16

The original deep neural network algorithm is trained
with Keras [23], an open-source neural network library using
Tensorflow. The pretrained neural network used is the VGG-
16 [7], trained on imagenet [19]. This network is used as a
baseline.

The network is configured to predict two classes: Vine
and Other. The retraining process and fine-tuning of the
VGG-16 is described in [9].

The retraining process is performed as in the original
experiment. The last three layers of the VGG-16 are trained
using the activation functions relu and sigmoid with a
dropout.

C. Random Forest

The training of the RF is done on the following 86 features
extracted from the same tiles used for the VGG-16:
First order statistics: Min, max, mean, geometric mean,

sum, variance, skewness, kurtosis,
etc [24].

Tamura: Granularity, Contrast, Kurtosis of di-
rectionality, Standard Deviation Di-
rectionality, Max Directionality and
Skewness [25].

Haralick: Statistical features based on gray-
level co-occurrence matrix [26].

These characteristics are selected based on research car-
ried out by [9]. They represent the patterns and region of
interest present in the image. Thanks to the Gini index
[27], Random Forest selects the most informative elements
internally. The Random Forest configuration is defined in
the table II.

Retraining is done from scratch to improve the quality of
Random Forest classification. Indeed, a new Forest is created
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Figure 5. A comparison of the efficiency between Random Forests (DTE) and VGG-16 based on one image of 32x32px for the retrain partition. The
X-axis shows the percentage of data used to retrain the algorithms. The Y-axis represents the Area Under Curve. Blue line: Random Forest (DTE) Area
Under Curve. Blue surface: The Random Forest Standard Error. Black line: The VGG-16 Area Under Curve. Black surface: The VGG-16 Standard Error.
The red line represents the minimum retraining dataset size to obtain a stable classification model.

Table II
RANDOM FOREST CONFIGURATION SUMMARY.

Settings
Split criterion Gini Index
Tree depth No limitation
Minimum child node size No minimum value
Number of trees 300
Attributes data sampling method Square root

based on the latest vineyard image (retrain subset), including
old aerial images already used for the initial training process.
The Random Forest will re-evaluate the characteristics using
the Gini index. This process will produce a new Forest with
adjusted trees.

V. RESULTS

This section shows the differences in precision and in
computing time required to obtain a retrained classification
model. The results are presented at the Equal Error Rate to
give the same importance to both output classes.

Our results include the Standard Error (SE) calculated
based on [28] . The calculation is done with the Equation
1.

SE =

√
Θ(1−Θ)+(np−1)( Θ

2−Θ−Θ2)+(nn−1)( 2Θ2

1+Θ−Θ2)

npnn

(1)
Where:

Θ: is the Area Under Curve (AUC)
np: is the number of data representing the positive class
nn: is the number of data representing the negative class

Our results include precision, recall, and computation time
for retraining. Precision is described with the equation 2 and
recall is detailed with the equation 3.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Where:

TP : is the True Positive
FP : is the False Positive
FN : is the False Negative

First of all, Figure 5 shows that both algorithms require a
minimum number of tiles to be correctly retrained. It shows
that the Random Forest is significantly more efficient than
the VGG-16 with a retrain subset of a size between 40 %
(4650 tiles) and 60 % (6975 tiles). Table III presents the
AUC and the Standard Error with the application of the
original and retrained models on the new validation image.

Table III
AREA UNDER CURVE AND STANDARD ERROR OF THE RANDOM

FOREST AND VGG-16 ORIGINAL MODELS AND RETRAINED MODELS
APPLIED DIRECTLY ON THE VALIDATION IMAGE (SEE FIGURE 5).

Apply original models Retrain models
AUC SE AUC SE

RF 70.9% ±0.5% 79.4% ±0.8%
VGG-16 64.1% ±0.5% 76.8% ±0.9%

In a second step, the table IV details precision and
recall. Precision indicates the number of vine rows correctly
classified. Recall indicates the percentage of vine lines that
the algorithm correctly identified. Both algorithms have low
precision and recall with the application of the original
models. This low precision is also visible in the images of
the line ORIGINAL in Figure 6. The number of correctly
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Figure 6. Classification results as presented with our visualization tool. Top left: Classification results with the original model trained with a random
forest. It presents tiles wrongly classified as vine (dark red) or other (light red) and tiles correctly classified as vine (light grey) or other (dark grey).
Bottom left: the results of the classification with the retraining of the Random Forest. Top right: the results of the classification with the original model
trained with a VGG-16. Bottom right: the results of the classification with a retrained VGG-16.

classified vine lines is insufficient. But the recall for RF is
still more than twice that of VGG-16.

To visualize the classification results with the original and
retrained model, we developed a tool that highlights the tiles
wrongly classified in red (See Figure 6). The top line shows
the result of the classification when the original models are
applied to a new image of a new vineyard. Tiles correctly
classified as Vine are in light grey, and those classified as
Other are in dark grey. Tiles wrongly classified as Vine
are in dark red, and those classified as Other are in light
red. The bottom line of the figure shows the result of the
classification after a retraining process. The lines of vine
are generally detected. However, the VGG-16 classifies too
many tiles as a Vine (dark red). On the other hand, the RF
is missing some tiles containing vine (light red).

Table IV
THIS TABLE SHOWS THE PRECISION AND RECALL WHEN THE ORIGINAL
MODELS ARE APPLIED TO A NEW IMAGE AND AFTER THE RETRAINING

PROCESS. THE TABLE SHOWS THE RESULTS OF THE RETRAINING
PROCESS BASED ON THE FULL RETRAIN SUBSET. THE COMPUTING

TIME TO RETRAIN A VGG-16 AND A RF IS EVALUATED ON A SERVER
WITH 1 TB OF MEMORY (RAM) AND 56 CPUS (2.6 GHZ).

Apply original models Retrain models Retraining
Precision Recall Precision Recall Time

RF 53% 20% 85% 54% 2 sec
VGG-16 48% 7% 80% 77% 960 sec

With retrained models, precision and recall explode.

Random Forest’s precision is 5 % higher than VGG-16’s.
Random Forest’s recall is 23 % lower than VGG-16. It
shows that the number of vine lines detected is greater with
the Neural Net. However, overall detection with a Random
Forest is more accurate. In Figure 6, this difference in
classification precision is visible.

Finally, the computational time for retraining a random
forest is reduced by a significant factor compared to retrain-
ing a VGG-16. Both computation times are collected on the
same server running on 56 CPUs (2.6 GHz) and 1 TB of
memory (RAM).

VI. CONCLUSION

This paper demonstrates that the process of retraining a
machine learning model using classical parameters extracted
from an image and Random Forest algorithms is similar to a
state-of-the-art deep learning baseline (VGG-16-Imagenet).
It shows that the random forest retraining process is 400
times faster than the deep learning algorithms.

The Random Forest shows high potential for a real-
time retraining process, which can be used for precision
agriculture or smart agriculture project, for example. This
approach must now be validated with additional classes.

The next step will be to improve results by reducing
misclassification. This process will use the visualization tool
(see Figure 6) developed to implement an active learning
process. This tool highlights the classification errors made
by the algorithms. It is used to manually correct mistakes
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to enhance the training dataset and the resulting Machine
Learning models.
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