
Using the Grid for Enhancing the Performance of a
Medical Image Search Engine

Mikko Juhani Pitkanen∗ Xin Zhou†Antti E. J. Hyvärinen‡ Henning Müller†§
∗ Helsinki Institute of Physics, Technology Programme <pitkanen@mail.cern.ch>
† University and Hospitals of Geneva <[xin.zhou;henning.muller]@sim.hcuge.ch>

‡ Helsinki University of Technology <antti.hyvarinen@tkk.fi>
§ University of Applied Sciences, Sierre, Switzerland

Abstract— In this paper we show how Grid computing can be
used to improve the operation of a medical image search system.
The paper introduces the basic principles of a content-based
image retrieval (CBIR) system and identifies the computation-
ally challenging tasks in the system. For the computationally
challenging tasks an efficient design is proposed that uses a
distributed Grid computing to carry out the image processing
in distributed and efficient way. The algorithms of the search
system are executed by using a real medical image collection
as input and a Grid computing infrastructure to provide the
needed computing power. Finally, the results show how the image
processing task that required tens of hours to complete can be
processed by using only a fraction of the originally required
computing time.

I. INTRODUCTION

The amount of data produced in medical care is increasing
on a rapid pace. Managing the large quantity of information is
a challenging task even for an information science specialists.
Thus, the complexity of managing the information may prevent
the professionals of medical care from making full use of the
collected information. This motivates to create simple (web-
based) applications to manage and make use of data that
is collected in several clinical databases. In this paper, we
consider how the MedGIFT 1 (Medical GNU Image Finding
Tool) application can be used to perform query by example
(QBE) searches from large medical image databases. By using
MedGIFT, the medical doctors can use the visual material
related to a patient such as newly taken X-ray, to search earlier
patient cases that had similar image material referenced in
the clinical record. These earlier cases may help the medical
doctor to find a suitable treatment.

The MedGIFT project hosted at the University and Hospitals
of Geneva has investigated the use of content-based image
retrieval tools for searching medical data from large databases.
The Radiology department alone produced more than 70’000
images per day in 2007. Large numbers of images make the
content–based retrieval task challenging, as for instance index-
ing a database of 70,000 images for efficient search consumes
in the order of 20 hours of processing time on a modern server.
In this study we use the MedGIFT search engine as an example
of a content-based image retrieval (CBIR) system. MedGIFT is
used to build an index with the ImageCLEF2 image database.

1http://www.sim.hcuge.ch/medgift/
2http://www.imageclef.org/

We show how distributed computing tools can provide a
possible solution to high demand for computational power
in CBIR systems. As an example of a distributed computing
environment we use an advanced resource connector (ARC)
[5] middleware–based Grid system. By integrating these two
systems we provide a proof of concept design for distributed
feature extraction in CBIR systems based on Grid computing.

The MedGIFT project also aims at enabling novel methods
and technologies of informatics within the medical domain.
To bring these systems into real use in medical care, a
research infrastructure has been set up within the medical
informatics research group. The initial infrastructure has been
built as a part of EU-funded KnowARC3 project. The research
continues by developing more fine-grained (and thus often
computationally more expensive) visual descriptors for new
use cases. Moreover, the number of images to be processed is
constantly increasing, and the project investigates on how to
meet the increasing computing and storage requirements.

Fig. 1. Web interface of the MedGIFT system.

Figure 1 illustrates the web-based user interface of the
MedGIFT application. The user, a medical doctor or medical
informatics specialist, starts the search process by providing
an example image to be used as a criterion for the query.
Based on the given image (or multiple images), the database

3http://www.knowarc.eu/

is searched for patient cases with similar visual information.
The cases containing related images are then shown to the
user who evaluates the relevance by assigning a score to each
image for further queries.

In this paper, we propose a distributed computing solu-
tion which can be used to extract visual features from an
image collection. The visual features represent the image in
the databases and are used to calculate distances between
images. To optimize the algorithms and the parameters used
in the extraction task, the medical informatics specialist may
need to run the extraction task several times to optimize the
feature set for a certain situation. Our solution makes this
task significantly more efficient and enables to carry out the
processing of the entire image collection several times during
a single working day. The proposed solution is general enough
to provide an easy-to-use interface to Grid resources, and can
be used for other clinical applications too.

Related Work
Earlier work by Montagnat et al. [11] presented a method to

partition a database of medical images over a set of distributed
resources. The database is partitioned over a set of resources,
the query image sent to the resources and the similarity
evaluation is carried out for query image and the images stored
in the resource. The evaluation is based on using a set of
resources within a single site, whereas our study focuses on
using heterogeneous resources from multiple administrative
domains to analyze images for building a centralized index.

The Globus MEDICUS [13] project has presented an image
sharing system that proposes to use the Grid tools for enabling
efficient medical image transfer. The system guarantees suffi-
cient security measures to share medical data across different
administrative domains.

The computational Grids have been also used to harness
large amounts of computational power to identify drug can-
didates for the influenza A virus [12]. Similarly to our study,
they employed Grid infrastructure which extended over diverse
sites and the amount of transferred data was large.

Oliveira et al. [17] have shown how the Grid computing
can be employed to reduce the computation time in CBIR
systems. The authors installed MyGrid architecture in a hos-
pital network and the image analysis libraries were installed
to computers in the network. Our solution differs in that
we submit jobs over heterogeneous resources and across the
organizational boundaries. We also send the minimal analysis
libraries with the job and compile the binary in the executing
resource.

Breton et al. [15] have proposed the use of Grid technology
to transfer patient data over organizational boundaries. Their
work discusses many of the challenges in distributing the med-
ical data over multiple sites. Sloot et al. [18] have presented
the Grid–based ViroLab decision support system to be used
for various challenges in the medical domain.

II. PROBLEM STATEMENT

The of medical information stored in databases within the
health care domain is increasing at a rapid pace. The increase

in amount of data already renders the task of extracting
information intractable for a modern workstation. In this paper,
we investigate how Grid computing can be used to help
the medical informatics professionals to enhance an image
analysis systems.

COLLECTION OF IMAGES

COLLECTION OF FEATURES

computationally expensive feature

=> parallel execution extraction

W
E

B
 I

N
T

E
R

F
A

C
E

expose to UI

user

!"#$%&#'%()%*$'+)$,&,-%#

INVERTED INDEX

mapping: <feature,set of images>

W
E

B
 I

N
T

E
R

F
A

C
E

SCOREBOARD

Fig. 2. Functional overview of the MedGIFT system.

Figure 2 illustrates the functionality of the MedGIFT sys-
tem. The image collection is exposed to the user via a web–
interface and the user may browse the collection or start
the query with an external example image. Features of every
image in the collection are extracted during a computationally
intensive task, for which an efficient distributed method is
proposed in this study. Afterwards, an index is built to enable
the user to perform consecutive queries from a database in an
efficient way. The process of building the index requires a large
amount of computational power. Moreover, the output of the
process (image features) in the index defines how effectively
the system can perform a search. Thus, our research problem
is defined as minimizing the wall clock time required to extract
the features from all of the images in the collection.

III. METHODOLOGY

In our implementation, we used the ARC middleware to
gain access to computing resources available through the
NorduGrid collaboration4 within the KnowARC project. Our
work relied on using the standard way to define the ARC
jobs by using job descriptions. Moreover, we used a grid job
manager to coordinate the distributed execution of jobs.

A. Grid Job for Extracting Image Features

A Grid job is comprised of program code together with its
input and a task definition. The job is executed sequentially on
a remote resource by using a Grid middleware. A typical job
has input file(s) and an executable which is used to produce
output file(s). A job in the ARC based Grid is defined by
writing a job description in the extended resource specification
language (XRSL). Each job has its own job specification
and can be executed independently from other jobs without
requiring interaction between jobs. This type of computational
tasks are often referred to as embarrassingly parallel or bag
of tasks jobs.

4http://www.nordugrid.org/

1: (* executable for the feature extraction *)
2: (executable=’’python-local.py’’)
3: (* 1st argument, images for feature extraction*)
4: (arguments="imgs-0.tar")
5: (* inputs, images, extractor source, local coordinator *)
6: (inputFiles=(imgs-0.tar "") (src.tar "") (local.py ""))
7: (* stdout file for storing the results *)
8: (stdout=’’stdout-gift-0.tar’’)
9: (outputFiles=("fts-0.tar" "gsiftp://dn.ch/fts-0.tar"))
10: (stderr=’’geneva-gift0.err’’)
11: (* jobname for easy monitoring *)
12: (jobname="geneva-gift0")

Fig. 3. A job description for distributed execution when using the ARC
middleware.

Figure 3 illustrates an example of a Grid job description.
Every job sent for execution through the ARC middleware
is defined by a corresponding job description. Scheduling is
carried out in the ARC client. After the client machine has
chosen the remote resource where the job will be executed, the
input files defined in row 6 are uploaded to the resource. Row
2 defines the executable to be executed on the remote resource.
The file referred to by executable-attribute is also transferred.
After successful execution of a job, the Grid middleware writes
the results to an output file defined in row 9.

The job description defines the Grid operations and pa-
rameters and it is used to choose the remote resource. Once
the executable and the input files are uploaded to the remote
resource, the executable is started as a process on the remote
resource. We have defined an executable that takes care of
coordinating the job execution in a sequential manner when
started. The executable is a Python script performing a set
of operations on input data and as a result produces an
output. Then, depending on the job description, the results
are either written locally for the retrieval by the client or the
Grid middleware is used to upload the results into a remote
directory. In the former case the client has to retrieve the job
results after the completion, whereas in the latter case the
results are immediately uploaded to a resource provided by
the user.

B. Grid Job Manager (GridJM) for Distributed Execution

The Grid Job Manager 5 (GridJM), is a system for man-
aging parallel computations in a Grid. The system aims at
dynamically adjusting to the available resources from the
point of view of a single user. The user is provided with
a simple interface to submit jobs and to receive the results
of the jobs, whereas details of the distributed infrastructure
are hidden. These details include mechanisms to handle Grid-
specific operations such as scheduling, reliable processing,
submitting, monitoring and downloading the results of a Grid
job.

The implementation of GridJM is built on the ARC mid-
dleware. We believe that the solution is also applicable to
other Grid middlewares, which allow client–side scheduling.
Several studies on scheduling in Grid environments exist. For
examples, see [14], [16].

5http://www.tcs.hut.fi/˜aehyvari/gridjm/

While GridJM also offers a simple Grid abstraction for the
user, the core of the system is the dynamic per-user view of the
remote resources. Whereas in a stable distributed environment,
only functions for submitting, monitoring and result retrieval
are required for efficient operation, our results indicate that
job failures and high variance in execution time constitute a
major challenge for obtaining high parallelism in Grids. The
unpredictability results from non-trivial inherent properties of
Grids, including

• incomplete scheduling information, such as policies in
the queues of the remote resources,

• occasional badly configured resources,
• remote hardware failures, and
• communication problems in the network.

Job failures resulting from such reasons are handled by
GridJM with a resubmission scheme also known as job mi-
gration.

To further decrease the likelihood of failures, GridJM also
provides a layer of fault avoidance based on short-term histori-
cal observations of previous jobs. The system assumes that if a
job has recently executed in a non-optimal manner on a certain
resource, it is likely to execute badly in the near future on the
same resource. By maintaining the information related to the
failed jobs, GridJM avoids submitting jobs to these resources.
Resources having been re-configured may again be included
as potential scheduling targets after a predetermined amount
of time. Maintaining the job failure information in the client
application gives the benefit of having the failure information
per application. This approach seems to work better with a
wide diversity of applications than a centralized approach.

GridJM runs as a daemon process on the client machine.
The job manger listens on a network socket and accepts
XRSL job descriptions. For each accepted description, GridJM
manages the execution of the job on the Grid infrastructure.
GridJM immediately reacts to a finished execution of a job
by receiving the output and reporting the results back to the
socket. The interface simplifies the execution of complex jobs
such as processing an entire collection of medical images. In
practice, an application developer has only to send n XRSL
descriptions to the socket and to wait for n announcements
of the completed executions. The task is completed when
all the announcements have arrived. This functionality has
proven us that GridJM can provide an appealing solution to the
management of MedGIFT feature extraction in ARC–based
Grids.

IV. RESULTS

This section explains our design for the distributed feature
extraction in the Grid. First, we show how the client applica-
tion creates several sub–collections of the database of images.
The images can then be sent in packages with appropriate size
to minimize the overhead of scheduling, security operations,
and the queuing for the entire database. Several sizes of sub–
collections were evaluated. For brevity, we only show the
results for the jobs with 1000 images, which was seen as
a good batch size. Before sending the images for analysis,

the database is pre–processed locally, and the images are
converted to bitmap format (PPM – Portable PixMap), which
is required as input for the feature extraction executable. The
bitmap format allows compressing the set images to reduce
the amount of data that needs to be transferred.

A. Design for a Distributed Analysis of Medical Images

Figure 4 illustrates how a large image collection is prepared
for execution with the ARC middleware. The machine hosting
the image collection and now working as the Grid client
machine starts by searching the image collection’s directory
tree for the medical images.

1: imageCollection = collectionDirectoryTree.walk()
2:
3: batchSize = N
4:
5: for anImage in imageCollection:
6: currentBatch = []
7: while(currentBatch.size() < batchSize):
8: add(anImage, currentBatch)
9: createJobDescription(currentBatch)
10: packageAndCompressInput(currentBatch)

Fig. 4. Creating image archives for distributed feature extraction.

The images are packaged into sub–collections with config-
urable size. The size of the sub–collections can be defined to
suit the computational and data transfer capabilities of the used
computing environment. For a global Grid with high latencies,
both during data transfer and queuing, it is reasonable to
use rather large sub–collections6. Large job sizes lead to
less parallelism but introduce less overhead to be caused by
the Grid security and scheduling operations. Finally, a job
description is created for each sub–collection. The description
along with any input can then be submitted to the remote
resource.

1: extractArchive(images-nnn.tar.gs)
2: extractArchive(extractor-sources.tar.gz)
3: buildExtractorBinary()
4:
5: for aFile in workingDir.walk():
6: if (recognizedAsImageFile(aFile)):
7: aFeature = extractFeatures(aFile)
8: addToFeatureArchive(aFeature)
9:
10: packageAndCompressOutput()

Fig. 5. Remote run of a Grid job for feature extraction.

Figure 5 illustrates how the feature extraction is carried out
for images of a single Grid job. First, the input files containing
the feature extraction source code and the input images are
extracted. Then, the source code for the feature extraction is
compiled. After this, the files in the local job directory are
walked through. When a file is identified as an image file, it
is provided as input to the executable that extracts the features
from this image. The output of the extraction (feature vector
of the image) is added to the output of the job. In the end, the

6A Job with an execution time of half an hour was suggested in a discussion
with experienced ARC professionals.

middleware transfers the output away from the resource and
cleans the job directory.

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50

siz
e

(M
B)

batches

input non-compressed
input compressed

output non-compressed
output compressed

Fig. 6. Image sub–collections of 1000 images and the effect of compression.

Figure 6 illustrates the effect of compression on the size
of the input and the output files. Each file contains multiple
images or features and is compressed by using the well–
known gzip application on a Linux machine. The sizes of the
compressed and non–compressed files are sorted by increasing
order. The compression produces a significant decrease in the
file size. As a benefit, smaller size of inputs (and outputs)
decreases a time for data transmission and is especially helpful
when the communication resources are the bottleneck of the
distributed execution rather than the computational resources.
Since the time overhead associated with compression and
decompression is insignificant compared to the gain in transfer
time, we always compress the images before sending the jobs
to Grid and decompress the inputs in the remote host before
starting the analysis.

Moreover, earlier work [13] has shown how image record
(image and metadata) transfer time can be reduced signifi-
cantly by using compressed records together with Grid data
transfer. Similar to our approach, the method is more efficient
than direct transfer using the Digital Imaging and Communi-
cations in Medicine (DICOM) standard.

B. Measurement — Simple Job Submission

A straightforward approach to using Grids for processing
the entire image collection was to create a script that used
the ARC client to submit all the jobs to the Grid one after
another. After successful completion of the job, the output
files were directly uploaded to a GridFTP server on which the
client (and MedGIFT search engine) was hosted. However,
this approach has two major drawbacks. First, the GridFTP
server needed to be installed on the resource hosting the
client. The sever requires firewall policies to allow incoming
data transfers from multiple resources on which the jobs are
executed. Even though the need to open the firewall ports could
be circumvented by the client actively fetching the results, this
leads to a more complex design in which the client needs to
know about the status of the job. Second, the jobs that have
failed need to be submitted again. To re–submit a job the client
has to take care about monitoring the job states, the progress
of jobs and has to record the causes of job failures.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

tim
e

to
 e

xe
cu

te
 (m

in
)

number of submitted batches

grid time
local time

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

tim
e

to
 e

xe
cu

te
 (m

in
)

number of submitted batches

grid time
local time

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

tim
e

fro
m

 fi
rs

t s
ub

m
it

(m
in

)

number of submitted jobs

time completed
time submitted

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50

tim
e

fro
m

 fi
rs

t s
ub

m
it

(m
in

)

number of submitted jobs

time completed
time submitted

Fig. 7. Client run in Finland (left) and in Switzerland (right), job size 1000 and the job-by job (top-row) and overall (bottom-row) execution.

Number of images in batch 500 1000
Number of jobs (batches) 101 51
Number of successfully completed jobs 94 37
Average time to return results after sub-
mitting the job

12 min 38 s 20 min 11 s

TABLE I
THE RESULTS FROM FIRST TESTS WITH SIMPLE EXECUTION ON THE GRID.

Table I illustrates the success rate of jobs and the time
consumed per job when we used the simple sequential job
submission. The high failure rate of jobs creates a need to
either take care of resubmitting the failed jobs or to create
more sophisticated coordination of the job (re–)submission.
The lack of results from the failed jobs leads to a situation
where part of the image features cannot be included into the
search index without first extracting features from them. The
extraction could be done either locally or by submitting the job
to the Grid. In both cases the overall execution time increases
significantly.

C. Measurement — GridJM to Manage Distributed Execution

To overcome the unreliability issues explained in section IV-
B we used the GridJM job manager [2]. The grid job inputs
created by the method illustrated in Figure 4 were given to the
job manager. The manager application then executes the jobs

until the corresponding results for each input are downloaded
to the client machine.

The top row of Figure 7 illustrates the time used for
each individual Grid job that executes the feature extraction.
For each job, ’Grid time’ shows the time from starting to
upload the input until the results have been downloaded to
the client machine. Thus, the Grid time includes the overhead
components of the distributed execution such as scheduling,
stage–in (upload), queuing, keeping the job status up–to–
date, stage–out (download), and possible resubmissions in the
case of failed jobs. The component ’local time’ is measured
by using the Linux command /usr/bin/time to capture the
wall clock time used to extract the features in the remote
resources. For the client in Finland, we can observe more
diverse execution times for individual jobs than for the client
in Switzerland. This depends on the choice of executing nodes
made by the scheduling in the client. However, from the
application point of view it is more important how fast the
entire collection can be executed.

The bottom row of Figure 7 illustrates the overall progress
of the extraction task for the entire image collection. The ’time
submitted’ shows the elapsed time after starting the upload for
the first job, which is chosen as the origin of the time axis.
The ’time completed’ measure shows the amount of time that
has elapsed from the start before the results are retrieved for
a particular task. The time values are plotted in the order of

submission and each individual Grid job is presented as a point
on the x–axis.

Running the client application in two different locations
resulted in notably different performance results. When the
client is run in Finland, the individual jobs have less uniform
execution times, but the entire collection is analyzed in shorter
time. The explanation is that it takes a much longer time for
the client in Switzerland to upload the results (to computing
resource that are in large part in Scandinavia). Even if there
would be resources to execute the jobs, the parallelism is
decreased because of the bottleneck caused by the network
resources.

V. INTERPRETATION OF RESULTS AND CONCLUSIONS

In this paper we presented how Grid computing can be used
to address the high computing demands of a medical image
search engine. A design for distributed image analysis was pro-
posed, and the results showed how we can execute the analysis
task that required tens of hours to execute to run within only a
fraction of the original time requirement. This solution greatly
helps the task of a medical informatics specialist as (s)he can
receive feedback from the analysis task multiple times during
a single workday. Furthermore, the growth of the computing
capacity enables to design novel types of applications, where
analyzing a single image would take up to minutes instead of
just a second. These applications then enable better quality of
search for the increasingly detailed medical images in different
special domains.

One of the most important benefits of the design is that
the jobs can be executed on heterogeneous resources. This
enabled us to use the resources of the collaborating part-
ners that have been made available through the EC-funded
KnowARC project. The large amount of the available Grid
resources that were accessible enabled experimenting with
efficient computing resources even without having the budget
to acquire the resources for the CBIR research. This helps
especially when prototyping the distributed execution of the
novel medical applications.

REFERENCES

[1] Henning Müller, Mikko Pitkanen, Xin Zhou, Adrien Depeursinge, Jimi-
son Iavindrasana, Antoine Geissbuhler, ”KnowARC: Facilitating Grid
networks for the biomedical research community”, Proceedings of the
5th HealthGrid Conference 2007, pages 261-268, Geneva, Switzerland,
2007.

[2] GridJM homepage,
http://www.tcs.hut.fi/˜aehyvari/gridjm/

[3] A. E. J. Hyvärinen, T. Junttila and I. Niemelä, ”A Distribution Method
for Solving SAT in Grids”. Proceedings of the 9th International Con-
ference on Theory and Applications of Satisfiability Testing, Seattle,
August 12 - 15, 2006

[4] Henning Müller, “User Interaction and Performance Evaluation in
Content-Based Visual Information Retrieval”, Doctoral Thesis, Univer-
sity of Geneva 2002.

[5] Mattias Ellert et al., ”Advanced Resource Connector middleware for
lightweight computational Grids”, Future Generation Computer Sys-
tems, 23 (2007).

[6] V.Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J.Gawor,
C. Kesselman, S. Meder, L. Pearlman and S. Tuecke, ”Security for Grid
Services”, Proceedings of IEEE HPDC-12, 2003.

[7] NorduGrid Grid Monitor,
http://www.norduGrid.org/monitor/

[8] Tobias Gass, Antoine Geissbuhler, and Henning Müller, Learning a
frequency-based weighting for medical image classification, MIMI 2007,
Beijing, China, pages 151-161, 2007.

[9] Henning Müller, David McG. Squire and Thierry Pun, ”Learning From
User Behaviour in Image Retrieval: Application of the Market Basket
Analysis, International Journal on Computer Vision, volume 56(1-2),
pages 65-77, 2004.

[10] Henning Müller, Antoine Rosset, Arnaud Garcia, Jean-Paul Vallee, and
Antoine Geissbuhler, ”Benefits of content-based visual data access in
Radiology”, Radiographics, volume 25 (3), pages 849-858, 2005

[11] Johan Montagnat, Vincent Breton, and Isabelle Magnin. ”Partitionning
medical image databases for content-based queries on a grid” in Methods
of Information in Medicine (MIM), 44 (2), pages 154-160, 2005

[12] Hurng-Chun Lee , Jean Salzemann , Nicolas Jacq , Hsin-Yen Chen , Li-
Yung Ho , Ivan Merelli , Luciano Milanesi , Vincent Breton , Simon C
Lin, and Ying-Ta Wu, ”Grid-enabled high-throughput in silico screening
against influenza A neuraminidase”, IEEE Trans Nanobioscience. 2006
Dec ;5 (4).

[13] Erberich SG, Silverstein JC, Chervenak A, Schuler R, Nelson MD, and
Kesselman C., ”Globus MEDICUS - Federation of DICOM Medical
Imaging Devices into Healthcare Grids”, Studies in Health Technology
and Informatics, IOS Press, Volume 126, p:269-278, 2007

[14] Lingyun Yang, Jennifer M. Schopf, and Ian T. Foster ”Conservative
Scheduling, Using Predicted Variance to Improve Scheduling Decisions
in Dynamic Environments”, Proceedings of the ACM/IEEE SC2003
Conference on High Performance Networking and Computing, 2003.

[15] Breton V. Blanquer I., Hernandez V., Legre Y., Solomonidés, T.,
”Proposing a roadmap for Healthgrids”, Stud Health Technol Inform,
vol. 120, 2006.

[16] Nicola Tonellotto, Philipp Wieder and, Ramin Yahyapour, ”A Proposal
for a Generic Grid Scheduling Architecture”, Proceedings of the Inte-
grated Research in Grid Computing Workshop, 2005

[17] Costa Oliveira M., Cirne, W., and de Azevedo Marques P., ”Towards
applying content–based image retrieval in clinical routine”, Future
Generation Computer Systems, vol. 23, 2007.

[18] Sloot P., Tirado–Ramos A., Altintas, I., Bibak M, and Boucher C., ”From
Molecules to man: Decision support in individualized e-health”, IEEE
Computer, vol 39, number 11, 2006.

