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Abstract. In the race for automation, distributed systems are required
to perform increasingly complex reasoning to deal with dynamic tasks,
often not controlled by humans. On the one hand, systems dealing with
strict-timing constraints in safety-critical applications mainly focused on
predictability, leaving little room for complex planning and decision-
making processes. Indeed, real-time techniques are very efficient in prede-
termined, constrained, and controlled scenarios. Nevertheless, they lack
the necessary flexibility to operate in evolving settings, where the soft-
ware needs to adapt to the changes of the environment. On the other
hand, Intelligent Systems (IS) increasingly adopted Machine Learning
(ML) techniques (e.g., subsymbolic predictors such as Neural Networks).
The seminal application of those IS started in zero-risk domains produc-
ing revolutionary results. However, the ever-increasing exploitation of
ML-based approaches generated opaque systems, which are nowadays
no longer socially acceptable — calling for eXplainable AI (XAI). Such
a problem is exacerbated when IS tend to approach safety-critical sce-
narios. This paper highlights the need for on-time explainability. In par-
ticular, it proposes to embrace the Real-Time Beliefs Desires Intentions
(RT-BDI) framework as an enabler of eXplainable Multi-Agent Systems
(XMAS) in time-critical XAI.

Keywords: eXplainable BDI model; Real-Time Systems; Multi-Agent
Systems; eXplainable Autonomous Agents

1 Introduction

The recent advancements in the field of artificial intelligence (AI) are fostering
the development of autonomous decision-making processes in systems operating
in the real-world. In particular, nowadays, the majority of AI-based systems rely
on Machine Learning (ML) approaches.
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However, ML-based systems must face the problem of the opacity of sub-
symbolic predictors (e.g., neural networks) [27, 6], which is no longer acceptable.
Hence, current regulations acknowledge the right for meaningful explanations
when automated decisions affect humans’ lives [23, 17]. This originated a fer-
vent effort in the so-called eXplainable AI (XAI) community, whose priority is
to tackle the opacity of behaviors and results stemming from ML-based sys-
tems [24, 4, 35, 1, 20].

Recent studies advocated that multi-agent systems (MAS) offer a coherent
yet expressive set of abstractions, promoting conceptual integrity in the engi-
neering of complex software systems and serving the purpose of social XAI —
constituiting the so-called XMAS [32, 17, 20].

Nevertheless, there is a worrying lack of consideration for the production
and delivery time of the explanation. For example, considering devices operat-
ing in the real world such as autonomous cars [5], Unmanned Aerial Vehicles
(UAVs) [17, 29], and traffic control networks, they are required to deal with a
multitude of inputs and variables in highly-dynamic and unpredictable environ-
ments — while obliged to comply with Real-Time (RT) constraints. Therefore
ensuring the on-time production and delivery of an explanation is crucial.

Real-Time Systems (RTS) are characterized by a plethora of algorithms en-
suring compliance with strict-timing constraints [11]. Nevertheless, they require
that both the environment and the possible system’s interactions with it are
predetermined (or predictable) [11]. If the environment is too complex to be
thoroughly analyzed, or if it changes considerably, an RTS is not able to au-
tonomously adapt to the new scenario — neither oracle nor one-size-fits-all ap-
proaches are possible.

For example, in self-driving cars, reacting in real-time to an unexpected event
by promptly braking is necessary but not sufficient. The car should be able
to analyze the surrounding environment and evaluate the consequences of its
actions. If a deer crosses the road, the possible choice of the car to swerve in
a ravine should be a decision taken on the base of a well-defined reasoning
process, rather than being merely the result of reactive behavior that aims to
avoid the animal. Therefore, there is a need for realizing systems able to base
their decisions on their (evolving) knowledge of the world within given temporal
bounds.

Calvaresi et al. [14] proposed a solution to enable the real-time compliance
of MAS revising their pillars. Nevertheless, to mimic the cognitive behavior of
humans using regular MAS is burdensome.

Being inspired by Bratman’s theory of human practical reasoning [8], the
Belief-Desire-Intention (BDI) model [34] represents one of the most recognized
approaches to integrate the desired cognitive abilities in autonomous agents [28].
Furthermore, since the BDI agents’ behavior is knowledge-driven – being deter-
mined by deliberation over well-structured concepts such as beliefs, goals, and
intentions –, the cause-effect relationship that brought to the intended means
can be depicted clearly. This paper presents and discusses the still unexplored
challenges of designing and developing Real-Time eXplainable BDI Multi-Agent
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Systems (RTX-BDI-MAS), eliciting goals, challenges, opportunities, possible ap-
plication scenarios, and a road map to achieve such a result. Figure 1 schemati-
cally represents the view calling for RTX-BDI-MAS.

Opaque sub-symbolic 
Predictors call for XAIneed for TRANSPARENCY XMAS

Social explainability
Multi-Party exlainability
Conflictual exlainability

RTS for SC-scenarios RT-MAS
need for INTELLIGENCE

Time?

RTX-BDI-MAS

Fig. 1. Needs for RTX-BDI-MAS schematization.

The remainder of the paper is organized as follows. Section 3 analyzes the
current challenges in designing Real-Time eXplainable BDI Multi-Agent Systems
(RTX-BDI-MAS). Section 4 discusses the main advantages of developing RTX-
BDI agents. Section 5 elaborates on possible application scenarios that would
benefit from the employment of such agents. Section 6 proposes a road map
to design a model for the development of RTX-BDI-MAS. Finally, Section 7
concludes the paper.

2 Background

XAI – Nowadays, most intelligent systems (IS) leverage on subsymbolic pre-
dictive models. Such a wide adoption is mainly due to the unprecedented data
availability, enabling to detect useful statistical information hidden into such
data semi-automatically. Nevertheless, most of the ML techniques carry well-
known drawbacks. For example, the algorithmic opacity – the difficulty for the
humans to understand how ML-based IS (also referred to as black boxes) operate
or compute their outputs — is a serious issue if decisions’ liability is needed [27].
Current regulations such as the GDPR [38] recognize the citizens’ right to expla-
nation [23]—implicitly requiring understandable IS. Moreover, having an under-
standable system can boost people’s trust and acceptability —otherwise harmed.
To cope with such issues and the normative requirements, the XAI research
field has recently emerged, particularly tackling interpretability and explainabil-
ity [25].

XMAS – Current XAI solutions are mostly use-case-specific and they help the
interpretation of single ML-based algorithms [1]. However, standalone explain-
able approaches do not satisfy the needs of distributed and inter-connected IS.
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For example, IoT systems are characterized by heterogeneous inputs, devices,
and data-types concurring in the composition of complex information struc-
tures [20]. Hence, in [17], the MAS paradigm has been identified as potential
means to (i) dynamically provide interpretations and explanations for opaque
systems, (ii) ease the integration among different solutions/components for sim-
ilar tasks or predictors, (iii) increase the degree of automation characterizing
the development of intelligent systems, (iv) support AI and ML-based systems
in distributed and decentralized contexts, where data cannot be moved due to
technical or legal reasons, and (v) introduce and contribute to the social dimen-
sion of explainability.

RTS – Computing systems whose behavior correctness depends not only on the
value of the computation but also on the time at which the results are produced
– providing soft and/or hard timing guarantees – are known as RTS [36]. In RTS,
the tasks models are periodic, aperiodic or sporadic, depending on the regularity
of the tasks’ activation (i.e., periodic - potentially infinite regular activations,
aperiodic - irregularly interleaved, and sporadic - consecutive jobs are separated
by minimum and maximum inter-arrival time) [11].

RT-MAS – A Real-Time Agent (RTA) extends and embodies a real-time process.
Similarly to the RTS, the RTA correctness depends on both soundness and deliv-
ery time of its outcomes [21]. Enriching the conventional MAS with concepts such
as deadlines, precedence, priority, and constrained resources, and mechanisms to
handle them result in the so-called RT-MAS [12]. RTAs are intended to operate
in highly dynamic environments. Thus, they adopt the Earliest Deadline First
(EDF) mechanism [11] as the local scheduler. Nevertheless, EDF can only han-
dle periodic tasks. Hence, to execute also aperiodic tasks (e.g., in charge of the
message exchange), an RTA should combine EDF with a bandwidth reservation
mechanism — i.e., the Constant Bandwidth Server (CBS) mechanism [12].

In the context of RT-MAS (similarly to RTS), missing “soft” deadlines may
cause performance degradation, and missing “hard” deadlines entails a failure
and possibly severe consequences.

Finally, MAS can be considered real-time compliant only if all the agents and
their mechanisms (interactions included) operate accordingly [16].

BDI Agents – BDI-based agents are characterized by beliefs, goals, and plans.
Beliefs represent the agent’s knowledge about itself and the surrounding environ-
ment. Goals represent states of the world the agent wants to bring about. Plans
are the means by which the agent can act to achieve its goals. BDI agents are
well suited in unpredictable scenarios requiring dynamic decision-making due to
their ability to choose the best plan to achieve a goal, given their current beliefs.
In most BDI-based approaches, the process of repeatedly choosing and executing
plans is called the agent’s reasoning cycle [7].
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3 Challenges

AI/ML-based systems are progressively pervading safety-critical application sce-
narios. Therefore, the needs for explainability and time-predictable behaviors
blend in demanding real-time production and delivery of the explanations.

RTS and RT-MAS are able to comply with strict timing constraints. Yet,
RTS show only predetermined behaviors — limitation overcome by RT-MAS.
Nevertheless, since both RTS and RT-MAS (as-is) are incapable of performing
“explicit reasoning” to explain their conduct, they cannot be considered XAI-
compliant. BDI agents and XMAS can both make autonomous decisions dy-
namically. In BDI, the agent’s reasoning cycle offers intrinsically a cause-effect
explanation regarding its decisions, while XAMS can explain ML-based system
(i.e., generate a symbolic representation of subsymbolic knowledge). Neverthe-
less, both BDI and XMAS lack the main property of RTS and RT-MAS: make
decisions, and therefore act, in time.

Therefore, none of the existing approaches taken individually allows to pro-
duce explanations complying with time constraints and dynamically adapting
to the environment in which they operate. Despite several studies attempted to
combine the RTS and MAS [37, 19] and other made their way through [12], to
the best of our knowledge no previous attempt of providing in time explanations
can be mentioned.

Moving towards the definition of a model that integrates RT-MAS and XMAS
properties and capabilities, requires to address several questions. In particular:

What is the impact of RT-compliance on XMAS?
Depending on the application domain, the consequences generated by a given
explanation can vary significantly. Thus, having a predictable delivery time of
the explanation will play a crucial role. Such a requirement entails the devel-
opment of mechanisms ruling all the behaviors (including the ones generating
the explanations) in a real-time manner. Considering the social dimension of
explainability (i.e., goal-driven XAI [17, 20]), the whole process might require
several interactions between explainer and explainee. Current approaches ne-
glect the converging time of conveying an explanation —condition unacceptable
under RT assumptions. To overcome such a limitation is crucial. Hence, the
agent should be aware of the costs of generating an explanation (both resources
and time-wise) and act accordingly — even if it will come on the expenses of
performance, explanation’s granularity, or quality.

In particular, a first step for metrics and mechanisms-revision in BDI agents
should involve inevitably a structural revision of the architecture. Thus, the
notion of time itself can also play a direct role within a given explanation (e.g.,
impossible to complete safely plan-A, so emergency switch to plan-B) — clearly
performed in time.

Which Architecture should be adopted?
The architecture of a software agent identifies the fundamental components
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that allow the agent to make decisions (henceforth producing explanations) tak-
ing into account the temporal constraints typical of RTS. In literature, there are
two approaches: layered and integrated architectures. In layered architectures,
the real-time and the cognitive functionalities are separated, acting on different
layers, and each one relies and depends on the behavior of the other. This ap-
proach involves two loosely coupled sub-systems, so it allows an easier design.
However, since the deliberative layer does not act in real-time, such a system
cannot guarantee compliance with hard real-time constraints. Concerning inte-
grated architectures, instead, Musliner et al. [31] claim that a hybrid system
can be obtained by embedding either AI into a real-time system or real-time
reactions into an AI system. In the former case, AI computations are forced to
meet deadlines like any other real-time task, while in the latter the delibera-
tion techniques will be short-circuited in favor of a real-time reflexive action.
An eXplainable system should always provide at least a basic motivation for its
decisions, so an RTX-BDI architecture should integrate AI processes (including
explanations) into an RTS. By doing so, the level of detail of the explanation
can depend on the time the agent has to provide it.

Which Algorithms have to regulate the behavior of the agent?
A crucial point consists in the definition of the algorithms and techniques that

enable the scheduling of the agent’s activities and comply with strict timing-
constraints. As discussed previously, due to the diversity of their original pur-
poses, MAS, XMAS, and RTS rely upon significantly different mechanisms that
need to be revised and modified to allow them to cooperate. For instance, while
the concept of a real-time task can easily be mapped with a BDI action, problems
arise when the BDI agent should manage the different types of tasks (periodic,
aperiodic, and sporadic) typical of RTS [11]. Indeed, such a characterization is
neither considered in the agent-oriented paradigm, nor in the current state of
the art of XAI [1], preventing the use of pure real-time theories and their appli-
cation in the context of XAI and MAS with a 1-to-1 mapping. Therefore, when
designing an RTX-BDI agent, a revision of actions and plans becomes necessary
to take these diversities into consideration. A similar analysis has been done
by Calvaresi et al. in [16], which suggests that a mapping between Jade’s be-
haviours and the real-time task models is possible. Nevertheless, the BDI model
has higher abstraction levels, thus requiring a more complex mapping.

Another challenge concerns the scheduler employed by the agent. Indeed,
most of the state-of-the-art agent platforms adopt best-effort approaches that
are not able to handle the system behavior in worst-case scenarios [16]. In such
approaches, computational times and deadlines do not have a role in deciding
about the execution of the next task. This prevents the agent from controlling the
generation and communication of explanations and the interleaving with poten-
tially non-time-critical tasks. To realize real-time explainable agents is essential
that they rely on a real-time compliant local scheduler [15].

However, there are no real-time schedulers suitable to be implemented, as
they are, in agents running in an open environment (hence flexible enough to
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deal with sudden changes in priorities). Indeed, some additional mechanisms
must be implemented to allow the agent to manage the dynamic activation of
tasks having arrival times unknown a-priori. An agent acting in real-time must
be able to establish which goals to prioritize when it cannot achieve all of them,
a common situation when considering time as a limited resource. While the
concept of priority is central in RTS, in agent-based systems it is often neglected,
assuming that all goals will be eventually reached by the agent.

Similarly, the problem of choosing among plans designed to achieve the same
goal must be addressed. Indeed, in a real-case scenario, to adapt to different
circumstances agents usually have different ways to achieve their goals. Then,
the agents should be able to elaborate trade-offs by selecting plans that allow
them to balance between the number of goals achieved and the efforts or re-
sources required to achieve them. A very delicate and critical challenge that
characterizes XMAS – worsened by the introduction of real-time – concerns how
the agent should/must behave when the execution of an intention fails (e.g.,
generating or communicating an explanation do not converge before a critical
deadline occurs). The strict schedule typical of RTS leaves little room for the
execution of unforeseen, unboundable, and alternative tasks, which are needed
to perform backtracking or to try a different way to achieve the goal. In a multi-
agent system, the agents have to exchange information among them, negotiate,
and cooperate. Therefore, it is necessary to define interaction techniques that
allow real-time communication and cooperation between agents.

How should the system be Validated?
Once such a system is designed and implemented, the problem regarding how it
should be validated arises. Indeed, in literature few studies tried to achieve the
same goal [1, 12], hence there are no significant results to compare with. How-
ever, interesting insights can be obtained by evaluating particular properties:
for instance, comparing performances time-wise respect to state-of-the-art MAS
(and XMAS if any) frameworks, or measuring flexibility by analyzing the behav-
iors of such a system and real-time ones in unpredictable scenarios. Moreover,
implementing explainable mechanism will already play a crucial role within the
validation stage itself. In particular, such a mechanism can enable meaningful
and more understandable debugging phases eliciting values, roles, and dynamics
of internal (possibly hidden/opaque) parameters.

Figure 2 summarizes the components entangled with each of the challenges
discussed above: architecture (AR), algorithms (AL), and validation (VA).
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Fig. 2. Graphical representation of the components and the respective challenges. The
dashed lines represent the information exchange between entities.

4 Opportunities

Realizing the RTX-BDI-MAS model allows to merge the properties and advan-
tages of classical RTS (i.e., systems characterized by bounded response times
and no deadline miss) and XMAS (i.e., systems able to generate symbolic repre-
sentations of subsymbolic information) and extend them with the BDI systems’
capability of making decisions and adopting dynamic behaviors in response to
the changes in the environment in which they operate.

RTX-BDI-MAS can be particularly useful in safety-critical and unpredictable
domains, such as autonomous driving, telerehabilitation, personal coaching, and
air traffic control. In these scenarios, the systems involved need to adopt algo-
rithms that allow them to behave correctly (and in time) in case an unforeseen
event occurs. Moreover, due to their safety-related requirements, the use of sym-
bolic AI in the reasoning process is mandatory, as the uncertainty given by
statistical AI and ML-based systems – which can still be used to solve spe-
cific sub-problems – may lead to catastrophic consequences. Furthermore, in the
last decade, safety-critical systems are increasingly composed of different (possi-
bly distributed) components interacting with one another — strengthening the
choice of MAS as underlying paradigm.

On Explainability – Transparency and understandability are broadly known to
be the main factors calling for XAI [1]. Nevertheless, enabling explicit reasoning
about and in time can be a key enabler for crucial desiderata such as express-
ing systems, agents, and robots’ reasons, capabilities, and limits to their end-
user [26]. Hence, time can play a prominent role in the decision-making process,
whether a plan is chosen or dropped. The claimed system accountability [2] can-
not be achieved regardless of transparency and time. Conversely, a system is not
able to perform in real -world application scenarios predictably (or properly at
all) — since the humans’ interactions are inherently entangled with the concept
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of time. Finally, RTX-BDI-MAS can facilitate the tuning of the explanation’s
granularity, enhancing the efficiency and the response time of the system.

On Time-awareness – To reason about and in time, RTX-BDI-agents have to
embody a real-time scheduler. Thus, it is possible to ensure that every decision-
making-process is executed respecting the time constraints, while the integration
of temporal concepts in the BDI model, such as computational time and deadline,
allows the agent to make these decisions considering also the time as a finite
resource. Since the agents are able to take their decisions on the base of the time
required to execute an intention, designers can also tune the agents to prioritize
optimal solutions time-wise or output-wise, or to identify a feasible balance of the
two. Such a tuning allows the designers to specify the desired Quality of Service
(QoS), configuring the agent to be more reactive or more reflective, depending
on the desired behavior. It is worth noticing that this only affects the choices
made by the agent (i.e., which goals they commit to and which intentions they
execute), without breaking any real-time boundary.

On Ease of design – Compared to distributed RTS and XMAS, RTX-BDI-
MAS provides a more natural design phase. Indeed, the developer has to design
the single components (beliefs, desires, plans, and tasks) without the burden
of establishing the rules and behaviors that operate the run-time execution of
the device. Since the BDI model is based on the human practical reasoning
theory, the design of such components is very intuitive. The reasoning cycle of a
BDI agent, indeed, is similar to our way of thinking: we perceive a change in the
environment (change in agent’s beliefs) which can make us desire to achieve some
goals (instantiation of agent’s desires), and we reason about the actions to take
to satisfy those desires (generation of intentions through means-end reasoning).

On Robustness – With respect to RTS, RTX-BDI-MAS grant more robustness
in open environments, allowing real-time software to promptly and adequately
deal with system failures. Indeed, since RTS are designed to work in controlled
and predefined environments, the possibility of having system failures is excluded
a-priori (unless hardware failures handled with devices redundancy). In general,
RTS only manage overloads, i.e., the system can lower the band to fit the tasks,
if this does not cause losing deadlines or important information [11]. Conversely,
when feasible, RTX-BDI-MAS allows the re-planning and rearrangements on-
the-fly by reconsidering their goals and intentions.

5 Application scenarios

In general, an RTX-BDI architecture allows us to build systems able to perform
autonomous actions in time, reasoning not only in a self-interested way but
coordinating with all the other agents, possibly leveraging on symbolic reason-
ing. This is particularly valuable for systems in which decision-making processes
are needed, but reducing at the minimum the human error and increasing the
acceptance and understanding of the system’s behaviors are the cornerstones.
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Summarizing, the possible scenarios in which a system operates can be classi-
fied in general-purpose or non-safety-critical (NSC), XAI-critical and non-safety-
critical (XNSC), safety-critical (SC), dynamic safety-critical (DSC), and dy-
namic XAI and safety-critical (XDSC). Figure 3 organize the types of system
per the most appropriate scenario, highlighting the evolution of the efficiency
(according to the resources allocated), predictability, and the capability of pro-
ducing explanations of opaque subsymbolic predictors.
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Fig. 3. Systems classification per efficiency, predictability, explainability, resources al-
located, scenarios and criticality.

Besides the expected lack of efficiency (given the resources allocated and
the need for ensuring timing guarantees) RTX-BDI agents are envisioned to be
equipped with both XAI and RTS capabilities, while keeping unaltered the social
abilities typical of MAS.

To highlight the relevance of RTX-BDI-MAS in XDSC, we briefly elaborate
on two envisioned scenarios.

Telerehabilitation – Most of the telerehabilitation systems are expected to be
used without the direct supervision of any medical staff. The majority of the
proposed systems leverage on wearable distributed sensing [9, 14]. Such systems
provide real-time monitoring and feedback, storing the data generated during
the therapy sessions for the (long-term) trend-analysis. For simple exercises,
such approaches are effective. Nevertheless, depending on the joint(s) to reha-
bilitate, the therapy might be more complex (from both physical and cognitive
viewpoints). A first step to enable telerehabilitation for more demanding thera-
pies is presented in [13], where the authors developed a semantic model for RT-
MAS enabling more elaborated – yet real-time compliant– interactions among
the wearable sensors. Along this path, we envision that RTX-BDI-MAS can em-
power the telerehabilitation systems by providing not only real-time monitoring
and feedback but also providing in-time explanations. In particular, it would
enrich the coaching capability of the system and provide better (possibly more
understandable) support to the patients dealing with complex exercises, which
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have higher chances of causing late or wrong movements — thus hurting the
patient and jeopardizing the beneficial effects of the therapy.

Autonomous vehicle and robots – in the case of fully autonomous multi-vehicles
or robots, the compliance with strict-timing constraints is imperative (e.g., to
avoid collisions). However, complex interactions (e.g., negotiations) are increas-
ingly pervading the robotic and autonomous vehicles worlds. In our vision, es-
tablishing an agreement might soon leverage on the explanation of ML-based
predictors or of complex behaviors intertwined with subsymbolic information.
In the case of semi-autonomous vehicles [5], the system might be required to
present timely explanations to the driver to undertake a given (possibly time-
critical) decision, which requires the human’s approval. Finally, in UAVs search
and rescue scenarios [30], UAV teams need to cooperate to achieve common goals.
In such a case, identifying the responsibility of each UAV is crucial. Hence, it can
enable to ensure efficient collaboration or, in a case of failure, to trace the under-
lying reasons and assign responsibilities — both to improve the future system’s
performance and to held involved parties accountable. Once again, employing
RTX-BDI-MAS would bridge the advantages of the two worlds (i.e., XMAS and
RT-MAS).

6 Road map

This section presents the four phases need to formalize an RTX-BDI-MAS model.

PH1: First formalization of the RTX-BDI model.
To guarantee the properties of RTS, the BDI structure needs to be revised to con-
sider the necessary real-time notions, such as priority, deadline, and worst-case
execution time. Redesigning desires, plans, intentions, and actions by involving
such elements would allow the integration of a real-time scheduler in the reason-
ing cycle of the agent, providing real-time guarantees in both the deliberative and
executive processes. Moreover, it is necessary to identify the tasks model and the
dynamics necessary to perform predictably the intra-agent explainability [20].

PH2: Definition of policies to handle plan failures.
Plan failure management, as discussed in section 3, is probably one of the most
challenging problems to be solved in real-time compliant MAS. Indeed, due to
the high dynamism of the scenarios in which XMAS are expected to operate, the
robustness typically obtained by RTS is very difficult to be achieved. Moreover,
if the system is composed by a growing number of elements, also the possible
failures of other agents must be taken into consideration and managed. The
robustness of the system can be further improved by developing a real-time
compliant selection function able to avoid conflicts between intentions, similarly
to what is done in [39]. Such a work, by performing pseudo-random simulations
of different interleavings of the plans, looks for an optimal interleaving of the
actions that will allow the agent to achieve the largest number of goals. This
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approach helps in minimizing the possibility of plan failures, but to be applicable
in RTX-BDI-MAS it has to be redesigned to consider real-time compliance.
Finally, besides the effects that it might imply, the failure of an explanations
might entail several factors (e.g., lack of a common ontology, unknown state
of mind of the explainee, and possible lack of time to complete the interaction
necessary for the entire knowledge-transfer). To avoid, or understand, the reasons
standing behind a failure, specific mechanisms need to be developed to setup
effective “possibly personalized” explanations.

PH3: The definition of the interaction techniques.
PH1 and PH2 allow the development of single RTX-BDI agents. When the system
scales from single to multi-agent settings, interaction techniques and protocols
are required to allow the agents of the RTX-BDI-MAS to communicate (hence-
forth explain), negotiate, and cooperate. Although a standard for MAS com-
munication already exists (i.e., FIPA Agent Communication Language (ACL)
[22]), it lacks of several fundamental mechanisms crucial to handle multi-step
explanations and RT-compliance. Indeed, FIPA ACL does not provide a way to
manage either the network load and messages status (e.g., bounding congestion
and delivering times is not possible), nor the in/out message queues. Further-
more, broadcasting (particularly useful when the information of a sensor should
be exploited by many components) is difficult to be achieved. To overcome such
limitations, a communication middleware able to guarantee bounded-time delays
must be employed. In [18], the authors identify the Real-Time Publish-Subscribe
(RTPS) as viable technology (already adopted by the Data Distribution Service
(DDS) systems in aerospace domains [33]).

PH4: The implementation of a prototype for verification and validation
The last phase regards the development of an RTX-BDI-MAS prototype, which
must be used to verify and validate the model. The evaluation can be done
in a simulated or real environment. The implementation of a simulator allows
a better, safer, and cheaper analysis of the systems’ behavior — since it acts
in a controlled environment. However, deploying the system in real-world de-
vices represents a more significant validation. Indeed, in real-world scenarios,
the adaptability of the system is stressed.

To enable deployment and testing of the RT-BDI MAS, a framework equipped
with an intuitive graphical user interface and comprehensive analysis tools is
needed. Extending any of the most recognized and supported agents frameworks
in the literature, such as JACK [10], JADE [3], and Jason [7] is not feasible
nor effective. Indeed, among the main limitations hampering such a way it is
possible to mention (i) they are based on Java, thus incapable of guaranteeing
any real-time compliance and (ii) they rely on general-purpose algorithms (e.g.,
round-robin and first-come-first-served) neglecting elements such as time, utiliza-
tion, and deadlines core of any real-time compliant algorithm [15, 12], and (iii)
lack of means to extract symbolic knowledge from subsymbolic data. Coupling
explainability and visualization would boost the user’s understanding of the un-
derlying system. Furthermore, in case explainability provides a deep view of the



In-time Explainability in Multi-Agent Systems 13

inner-mechanism, it allows the user/developer to predict the outcomes demon-
strated by the system when the input parameters change. Thus, the system can
be validated under different settings, always allowing clear system assessment
and understanding.

7 Conclusion

This paper discussed challenges and opportunities of modeling and developing
explainable and RT compliant MAS based on the BDI cognitive architecture.
This preliminary analysis shows that such a system can enhance the reasoning
and decision-making processes of applications that have to comply with strict
real-time constraints, while providing transparency, and promoting trust. More
precisely, it allows us to exploit the structure of BDI to easily design explain-
able RTS able to dynamically adapt to the uncertainties that characterize open
environments. Moreover, using BDI fosters adaptive and user-friendly explain-
ability, which enables end-users (or other agents in the system) to understand
the system behavior and modify it in case a need arises. Nevertheless, several
complex challenges must be faced. The main ones concern the system’s type of
architecture, its mechanisms, and behavior policies.
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