
Comparison of feature selection in radiomics for
the prediction of overall survival after radiotherapy

for hepatocellular carcinoma
Pierre Fontaine∗†, François-Georges Riet∗, Joel Castelli∗, Khemara Gnep∗,

Adrien Depeursinge†‡, Renaud De Crevoisier∗, Oscar Acosta∗
∗Univ Rennes, CLCC Eugne Marquis, INSERM, LTSI - UMR 1099,F-35000 Rennes, France

†University of Applied Sciences Western Switzerland (HES-SO), TechnoArk 3, CH-3960 Sierre, Switzerland
‡Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital (CHUV), Lausanne, Switzerland

Abstract—Hepatocellular carcinoma (HCC) is the sixth more
frequent cancer worldwide. This type of cancer has a poor
overall survival rate mainly due to underlying cirrhosis and risk
of recurrence outside the treated lesion. Quantitative imaging
within a radiomics workflow may help assessing the probability
of survival and potentially may allow tailoring personalized
treatments. In radiomics a large amount of features can be
extracted, which may be correlated across a population and very
often can be surrogates of the same physiopathology. This issues
are more pronounced and difficult to tackle with imbalanced
data. Feature selection strategies are therefore required to
extract the most informative with the increased predictive
capabilities. In this paper, we compared different unsupervised
and supervised strategies for feature selection in presence of
imbalanced data and optimize them within a machine learning
framework. Multi-parametric Magnetic Resonance Images from
81 individuals (19 deceased) treated with stereotactic body
radiation therapy (SBRT) for inoperable (HCC) were analyzed.
Pre-selection of a reduced set of features based on Affinity
Propagation clustering (non supervised) achieved a significant
improvement in AUC compared to other approaches with
and without feature pre-selection. By including the synthetic
minority over-sampling technique (SMOTE) for imbalanced
data and Random Forest classification this workflow emerges as
an appealing feature selection strategy for survival prediction
within radiomics studies.

Index Terms—Radiomics, Feature selection, Liver cancer,
survival prediction, SMOTE, Multi-parametric MRI

I. INTRODUCTION

Hepatocellular carcinoma (HCC) is a major health problem
worldwide. This is the sixth more frequent cancer with 749
000 new diagnosed individuals each year. With 695 000 dead
patients, HCC represents 7% of all cancers [1]. This cancer
has a very low overall survival rate. Although Stereotactic
body radiation therapy (SBRT) is not clearly defined in the
last recommendations [1], [2] its use in clinical practice is
increasing [2], [3]. Despite the high control rates, patients
with HCC have a poor overall survival (OS) rate mainly
due to underlying cirrhosis and risk of recurrence outside
the treated lesion. In order to stratify patients at risk it is of
upmost importance to find markers of recurrence and survival
after SBRT.

Radiomics allows qualitative and quantitative performance
analyses from images to obtain predictive or prognostic
information from patients treated for cancer [4]. These ap-
proaches require high computation power for processing a
large amount of data coming from different centers and imag-
ing protocols. Several issues arise in radiomics, shared by dif-
ferent machine learning methods. These include imbalanced
data, which refers to the low number of predicted events with
respect to the population but also the large amount of features
compared to the reduced sample size [5]. Very often, some
of the features are not thoroughly informative and can be
redundant across a population. Reduction of dimensionality
is therefore an important step before assessing the predictive
capabilities of a given model. Supervised methods such as
Minimum redundancy and maximum relevancy (mRMR),
largely used in radiomics works [6], allow the selection of the
most performant features. mRMR requires however a prior
classification of patients. However, reducing redundancy by
selecting the most contributive features without supervision
is still a challenge in radiomics. Different methods such as
Principal Componenent Analysis (PCA) is an example of
unsupervised method [7]. PCA may be not suited in many
cases as it produces a linear combination of features, but not
selecting the most informative. Other unsupervised methods
include clustering, such as k-means, Hierarchical clustering
[8] or Affinity propagation [9], [10].

In this paper we compared different feature selection
strategies within a radiomics workflow for the prediction of
free disease survival in case of hepatocellular carcinoma from
Multi-Parametric Magnetic Resonance Images (MRI). We
implemented three unsupervised clustering methods, namely
k-means, Hierarchical clustering [8] and affinity propagation
[9], [10] and compared with the supervised minimum re-
dundancy and maximum relevancy (mRMR) [11]. Random
Forest was used for assessing the prediction capabilities of
each one of the methods in a cross-validation scheme [6]. The
synthetic minority over-sampling technique (SMOTE) [12]
was used to generate synthetic samples in the minority class
during the training.
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Fig. 1. Workflow of the study. Data were split in training and test. From multi-modal MR Images 273 tumor features were extracted (1). A similarity matrix
across the features was computed (2). Different feature selection methods were assessed namely, unsupervised (3b,c,d) and supervised (3e) clustering. Thus
sDB1...sDB6 constitute the different sub datasets for comparison after feature selection. SMOTE was applied on the training data set and a random forest
classifier (4) was trained and tested 500 times.

II. METHODOLOGY

Fig. 1 depicts the devised workflow in our study. Tu-
mor features were extracted from multimodal MR Images
(yielding 273 features including geometrical, first order,
gradient-based and second order)(1). Data were split into
training (80%) and test (20%). The workflow was applied
to the training set. Thus, after the computation of similarity
across the features (2), different feature selection methods
were applied, namely, unsupervised (3) and supervised (4)
clustering versus randomly selected features. SMOTE was
applied and random forest classifiers were trained with each
one of the resulted feature set (sdb1 to sdb6). Finally, the
model was used to predict on the test ”never seen” dataset.
This procedure was repeated 500 times.

A. DATA
Eighty-one consecutive patients, treated in two clinical

centers, underwent SBRT for inoperable HCC and were
retrospectively analyzed. For each patient 7 MRI modalities
namely, T1 enhanced (Gadolinium), T1 late phase, T2-
weighted, 3 Diffusion-weighted with different b-value and
ADC maps.

B. Feature extraction
The radiomics features were automatically extracted from

the tumor, manually delineated by a clinical expert on multi-
parametric MRI. We developed the whole feature extraction

algorithms in agreement with the radiomics guidelines de-
scribed in [5]. Thus, 39 quantitative features per modality
were obtained belonging to 4 categories as follows:
• Shape of the tumor: Volume, Surface, Surface to area ratio,

Sphericity, Compactness, Major/Minor/Least axis length,
Elongation, Flatness.

• First order features: Number of voxels, Min, Max, Mean,
Std., Skewness, Kurtosis.

• Gradient-based features: Sobel, Canny, Laplacian of Gra-
dient, Gabor.

• Second order features: Haralick’s features [13] calcu-
lated from the Grey-Level Co-Occurrence Matrix (GLCM),
yielding the frequency of co-occuring adjacent voxel pairs
intensity.

C. Similarity metric

In order to compute the distance across the features on the
population we use Spearman correlation computed as:

ρ = 1− 6
∑
D2

n(n2 − 1)
(1)

Where n is the number of observations and D is the
difference between the two ranks of each observation.

D. Clustering strategies
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Fig. 2. Similarity Matrix computed from the whole 273 features using the
spearman correlation.

1) Unsupervised clustering: Three unsupervised cluster-
ing methods were implemented, namely k-means, hierarchi-
cal clustering and Affinity Propagation. k-means method is
a widely used clustering technique that seeks to minimize
the average squared distance between points in the same
cluster. In hierarchical clustering, the goal is to group features
according to a linkage criterion. In this study a complete-
linkage criterion was used:

max{d(a, b) : a ∈ A, b ∈ B} (2)

Where a and b are two sets of observations.
The unsupervised algorithm implemented was Affinity

Propagation. This algorithm is based on passing messages
between data points [10]. It proceeds by alterning two
messages passing:
• The responsibility matrix R has values r(i, k) that quantify

how well-suited the feature k is to become an exemplar for
the cluster i.

r(i, k)← s(i, k)−max{a(i, k′) + s(i, k′)∀k′ 6= k} (3)

• The availability matrix A has values a(i, k) that quantify
how well-suited the cluster i could chose the feature k.

a(i, k)← min{0, r(k, k) +
∑

i′s.t.i′ 6∈[i,k]

r(i′, k)} (4)

The algorithm performs several iterations until convergence:{
rt+1(i, k) = λ · rt(i, k) + (1− λ) · rt+1(i, k)

at+1(i, k) = λ · at(i, k) + (1− λ) · at+1(i, k)
(5)

The exemplars are extracted from the final matrices as
those whose responsibility + availability for themselves is
positive as (r(i, i) + a(i, i)) > 0.

The number of exemplars is driven by the input preferences
value (features with larger values of preferences are more
likely to be chosen as exemplars). By default the preferences
are set to the median of the feature similarities.

2) Supervised clustering: We used the minimum-
redundancy and maximum-relevancy algorithm (mRMR) [11]
for selecting features according to the endpoint. This algo-
rithm aims at maximizing the mutual information between a
feature x and the cluster c but knowing the output :

max{MI(S, c)} where MI =
1

|S|
∑
xi∈S

I(xi, c) (6)

adding a constrain to minimize the redundancy between intra-
cluster features:

min{R(S)} where R =
1

|S2|
∑

xi,xj∈S
I(xi, xj) (7)

E. Validation

We fixed the same number of clusters n for all the methods
by using the output given by the affinity propagation opti-
mized results (n = 7 clusters in our study). Thus, different
sub data-bases of patients with reduced number of features
were obtained from the training data set. SDB1 is equivalent
to original database, the reduced data-sets by clustering were
labeled in Fig. 1 as sDB2 to sDB6:
• sDB1 : The whole data set with all the features.
• sDB2 : individuals with n randomly selected features.
• sDB3 : individuals with n randomly selected features from

each one of the clusters obtained with k-means clustering.
• sDB4 : individuals with n randomly selected features

from each one of the clusters obtained with Hierarchical
clustering.

• sDB5 : individuals with n selected features with Affinity
Propagation (exemplars).

• sDB6 : individuals with the n best ranked selected features
from mRMR.
This procedure of learning and testing was replicated 500

times(Fig. 3). To over-sample the minority class we used
SMOTE [12] on the training database. The new synthetic
individuals are thus created in the feature space, allowing a
more reliable and robust training. For the test step only the
original ”non seen” individuals were used. The Area under
the curve (AUC) was computed to assess the performance of
the classifier after using each sub-database.

III. RESULTS & DISCUSSION

Fig.2 depicts the similarity measure matrix obtained across
the whole set of features. We optimized the affinity propaga-
tion algorithm to obtain the optimal number of exemplars,
yielding 7 different clusters. We then adapted the feature
selection algorithms to obtain an equivalent number of clus-
ters. We applied the mrMR algorithm obtaining the 7 most
relevant features. Figure 3 depicts the Area Under The ROC
Curve (AUC) for prediction on the test data sets after using
different sub-data (sDB1 to sDB6) for training. As it is
shown, the AP algorithm outperforms the other unsupervised
feature selection method (p-value < 0.001). This suggests the
use of the exemplars as representative feature of each cluster.
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Fig. 3. Results (Area under the curve) of overall survival prediction with SMOTE/Random Forest (RF) workflow after different features selection strategies.
All the features (sDB1). n = 7 Random Selected (RS) features from the whole data (sDB2), with k-means (sDB3), Hierarchical Clustering (sDB4), Exemplars
from Affinity Propagation (sDB5) and mRMR selection (sDB6). The training and validation steps of the RF model was performed 500 times. **p < 0.01

IV. CONCLUSION

We compared in this paper different supervised and un-
supervised feature pre-selection methods within a radiomics
workflow, together with compensation for imbalanced data,
which achieved improved prediction capabilities for hepa-
tocellular carcinoma overall survival from multi-parametric
MRI. Unsupervised clustering using affinity propagation
emerged as the best method allowing to select exemplars
representative of each class reducing redundancy while in-
creasing the predictive capabilities. The method outperforms
not only other clustering methods but also a supervised
method based on mRMR. These results showed the interest
of an unsupervised feature selection step for dimensionality
reduction within the radiomics workflow. This work provides
a way forward to larger studies with more patients in order
to build robust methods for radiomics applied to the research
of imaging biomarkers in different clinical problems. These
methods require however larger external validation before
being applied in order to build robust models.
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