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Abstract—Floating Content (FC) is a paradigmatic example of
opportunistic infrastructure-less content sharing system where
information is spread upon mobile node encounters within
an area which is called the replication zone. FC allows the
probabilistic spatial storage of information, even in the case
of unreliable communications, with no support from dedicated
servers. Given the large amount of communication and storage
resources typically required to guarantee content persistence
despite node mobility, a major open issue for the practical
viability of FC and of similar distributed storage systems is the
characterization of their storage capacity, i.e., of the maximum
amount of information which can be stored for a given set
of system parameters. In this paper, we propose a simple yet
powerful information theoretical model of the storage capacity
of probabilistic distributed storage systems such as FC, based on
a mean field model of opportunistic information exchange. We
evaluate numerically our results, and validate the model by means
of realistic simulations, showing the accuracy of our mean field
approach and characterizing the properties of the FC storage
capacity versus the main system parameters.

I. INTRODUCTION

In light of the rapid growth as well as the general under-

utilization of storage capacity in mobile devices, distributed

storage schemes have been proposed to reduce wireless ca-

pacity bottlenecks by caching popular content items in mo-

bile UEs (i.e., at the extreme edge of the network) [1]–[3].

By enabling direct content exchange between mobile users

without routing through base stations (BSs), distributed edge

storage systems can achieve higher energy efficiency while

decreasing the congestion of BS resources. Among these

techniques, an important role is played by those opportunistic

communication paradigms for probabilistic dissemination of

contextualized information, denoted as Floating Content [4],

or Hovering Information [5]. These approaches (which we

henceforth denote as FC), all aim at the local dissemination

of information to end users over a defined geographic area

(called replication zone or RZ), based solely on direct device-

to-device (D2D) connectivity [6]. Through opportunistic repli-

cations, they store information spatially, in a probabilistic

fashion, despite the mobility of UEs and the unreliability of

information exchanges, with no need for centralized servers.

Their goal is to deliver the stored content proactively to those

users which are expected to traverse a specific region (the

Zone of Interest, or ZOI), before they enter the region, while

minimizing support from the cellular infrastructure. Hence,

the main performance metric in such systems is the success

ratio, i.e., the average fraction of nodes that enter the ZOI

with content over a given time interval.

Clearly, guaranteeing (probabilistically) content persistence

and a given target performance in such a volatile setting

without the support of a centralized, static infrastructure comes

at the cost of a drastic increase both in content redundancy

across the user population, and in the communications required

in order to serve the target population of users with respect

to classic, infrastructure-based solutions. As a consequence, a

major open issue for the practical viability of such distributed

edge storage systems is the characterization of their capacity,

i.e., of the amount of information they are able to store for a

given set of system parameters. Such characterization is key

for D2D resource allocation, and for the design of incentive

schemes for cooperation, as it enables the estimation of the

marginal contribution of each resource to the overall service

capacity, and hence the appropriate tuning of resource costs

and the proper setting of rewards for cooperation.

Given the infrastructure-less nature of these paradigms, sev-

eral performance studies have focused on the conditions under

which content floats, i.e., persists in such a distributed storage

scenario. [4] introduces the criticality condition, a sufficient

condition for the content to float indefinitely with very high

probability, under various mobility models. [7] introduces an

analytical model to estimate content persistence in the case of

outdoor pedestrian mobility over large open spaces, such as a

city square. [8], [9] characterize the mean time to information

loss, on several scenarios, based on synthetic mobility and

on measurement-based vehicular mobility traces. [10] further

explores the capabilities of FC in urban mobility scenarios, for

which the authors illustrate an effective modeling framework.

Other works, e.g., [11], [12], focus on how to engineer the

replication and storage strategies in realistic settings in order

to efficiently guarantee a given success probability within a

predefined temporal interval. [13] discusses how to adapt the

FC geographical scope according to the context, so to optimize

performance. However, all these approaches only consider

scenarios with a single content item, ignoring those issues

arising when several different contents share the same set of

UEs for replication and storage.

We propose a simple analytical model of the storage capac-

ity of probabilistic distributed edge storage systems such as

FC, based on a mean field model of the opportunistic informa-

tion exchange, which allows for a first order characterization

of the scaling laws of the storage capacity of these systems.

Specifically, the contributions of this paper are as follows:



• We develop an analytical model of FC performance, based

on a mean field description of the dynamics of the pop-

ulation of users storing the information items, and of the

population of users which are in the process of exchanging

(sending or receiving) such items;

• We derive the expressions of the storage capacity, as a

function of node mobility and of the geometry of the

replication zone. We formulate an optimization problem

for the derivation of the maximum amount of information

which can be stored with FC, showing that it can be solved

efficiently. To the best of our knowledge, this is the first

work to characterize analytically the storage capacity of

probabilistic distributed storage schemes such as FC;

• We evaluate numerically our results, validating our as-

sumptions against simulation, showing the accuracy of our

mean field approach, and characterizing the properties of

FC storage capacity as a function of the main system

parameters.

The paper is organized as follows. In Section II, we present

the system model, and in Section III we present our mean

field approach to performance analysis of FC. In Section IV

we characterize the storage capacity of FC. In Section V we

numerically assess the accuracy of our results, and evaluate the

impact of the main system parameters on FC storage capacity.

Finally, Section VI concludes the paper.

II. SYSTEM MODEL

We consider a region of the plane where nodes move

according to a stationary mobility model such that, at any time

instant, nodes are uniformly distributed in space (however, the

impact of a non-uniform node distribution will be assessed by

simulation). Each node is equipped with a wireless transceiver.

We assume each node knows its position in space. We say

two nodes are in contact when they are able to directly

exchange information via wireless communications. With τ

we denote the contact time, i.e., the duration of the time

interval during which two nodes are in contact, and with f(τ)
we indicate its PDF. With C0 we denote the mean channel

capacity between two nodes that are in contact. Let D be

the mean node density in the given region, and g the mean

rate of contacts per unit area. We focus on those settings in

which mean node density and transmission power are such that

store-carry-and-forward is the main mode of content diffusion

and communication. Indeed, when this is not the case, other,

more efficient techniques than FC are applicable for content

diffusion.

Let x denote a position in space and θ an angle, and

let α(x, θ) be the angular node flow, i.e., the rate of nodes

moving in direction (θ, θ + dθ) across a small perpendicular

line segment of length ds centered at x, divided by ds · dθ.

Let α denote the linear flow, given by

α =

∫ π

0

α(x, θ)dθ. (1)

α is the rate at which nodes traverse a segment of unit length

centered at x in a same direction (e.g., from left to right of

TABLE I: Main notation used in the paper.
Notation Parameter

M Data storage capacity of each node (bits)

D Node density (m−2)
C0 Mean capacity of the link between two nodes in

contact (bits/s)
L Content size (bits)
R Replication Zone (RZ) radius (m)

g Mean contact rate per unit area (s−1m−2)

α Linear flow (s−1m−1)
τ0 Transfer setup time (s)
τ Contact time (s)
f(τ) PDF of contact time

the segment). In order to simplify notation, in what follows we

assume that the mobility model is isotropic, and hence, that α

does not depend on the position in space of the unit segment,

nor on the specific direction of the node flow. However, note

that our approach can be easily extended to more general,

non-isotropic mobility models.

A. Floating Content basic operation

We briefly recall the basic operation of the Floating Content

(FC) communication paradigm [4]. At time t0, a node (the

seeder) generates a piece of content (e.g., a text message,

or a picture). The replication zone (RZ) is the region of the

plane (containing the location of the seeder at t0) in which,

for t ≥ t0, when a node with content comes in contact with a

node without it (both located in the RZ), content is exchanged.

When a node leaves the RZ, we assume it discards the content.

We assume that before each content transfer, a setup time

τ0 is required, which models the time taken by each node to

detect the presence of the other node, to verify the availability

of content and to set up the transfer. With S we denote the

probability that a content transmission completes successfully.

This happens when the contact time and the channel capacity

between the two nodes during contact time are such that

content can be transferred in full. We assume that every node

can exchange content (i.e., send or receive) with one node at a

time, though other modes of communications, e.g., broadcast,

can be easily accounted for in our approach.

The goal of the FC paradigm is typically to ensure, through

opportunistic replication, that the content item is delivered to

a given mean percentage of those nodes entering a predefined

limited geographical region within the RZ (the zone of interest

or ZOI), by the time they enter in such region. One of the main

system parameters for FC is content availability at time t ≥ t0,

i.e., the mean fraction of nodes with content, at time t in the

RZ. High values of availability in the RZ typically correlate

with low likelihood of content disappearance, and with high

probability of transferring content to nodes entering the RZ.

Given a time interval during which the content is floating in

the RZ, the FC success ratio Psucc is the mean fraction of

users which enters the ZOI with content during such time

interval. The target value of the success ratio, as well as the

choice of size, shape and location of the ZOI are functions of

the performance requirements of the specific application and

service supported by FC. For instance, in an application whose

performance target is to deliver an advertisement (e.g., info on
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a sale) to at least a given percentage of the people who enter

a shopping center, the borders of the ZOI should include all

entrances to the shopping center.

From this description, it emerges clearly that in such an op-

portunistic communications scheme, when proper conditions

(in terms of user density and mobility, and of size of the RZ)

are met, the content floats (i.e., it persists probabilistically)

in the RZ, even after the seeder has left it. In practice, the

content never fluctuates forever, as the likelihood of content

disappearance cannot be brought to zero. We denote the system

corresponding to one content item floating in its RZ according

to the scheme described above as a Floating Element (FE).

In this work, we focus on systems generally composed by

several floating elements, in which for simplicity we assume

that all RZs are circular with radius R, and each ZOI is strictly

enclosed in its RZ. Moreover, all contents have the same size

L, and M is the size of memory that can be used for FC in

each node. Note however that our approach can be extended

to contents of different size and to scenarios where nodes have

different memory sizes, mainly at the cost of increasing the

notation complexity.

With respect to the relative position of the RZ of each float-

ing element, we consider two types of systems. In distributed

floating systems, the centers of the RZ of each floating element

are distributed according to a Poisson Point Process (PPP) with

intensity γ. This scenario accounts for the partial RZ overlap

which is typical of setups where each application or end user

defines its own ZOI location. In localized floating systems, we

assume all FEs share a same RZ and ZOI. In this case, the

intensity γ is the ratio of the total number of FEs, over the

RZ area. This second scenario allows ruling out the impact of

randomness in RZ overlapping on the storage capacity of the

system, and hence it allows investigating the maximum amount

of information which can be stored in a given location (the

RZ) via the FC paradigm.

We assume that at each contact, every time two nodes have

to decide which content to transfer, each content which could

be transferred (because it is stored in one node but missing in

the other, and because the node missing it has enough memory

space to store it) has the same probability to be chosen for

the transfer, regardless of which of the two hosts it resides

on. We also assume content exchanges between two nodes to

be unidirectional. These assumptions do not limit the validity

of our approach, which can easily be expanded to include,

e.g., bidirectional content exchanges, the effects of content

broadcasting, or any specific priority scheme for contents to

be exchanged.

III. A MEAN FIELD MODEL OF FC

In FC, the set of nodes exchanging content within a RZ can

be modeled as a system of interacting objects, in which inter-

actions bring to changes in the state of the objects via content

replication. When the number of objects becomes large, the

analytical performance study of such system becomes difficult,

due to the exponential growth of the state space size.

To define the system state, at any time t ≥ 0, we associate

with each node two binary vectors. In the first vector, the

j-th element is equal to one if the j-th content is stored in

the node, and zero otherwise. In the second vector, the j-th

element indicates whether the node is inside the RZ for the j-th

content. In addition, with each node we associate another state

variable, which is equal to one if the node is busy exchanging

(transferring or receiving) contents with another node, and zero

otherwise. Defining as system state the collection of all node

variables, we clearly see that the number of states explodes

as γ (and therefore the number of different contents) and the

number of nodes grow. Such a system can be assumed to

evolve according to Markovian dynamics, and it can therefore

be modelled as a Continuous Time Markov Chain (CTMC).

In order to derive meaningful insights into the performance

of such systems, in what follows we adopt a technique based

on the mean field interaction model or fluid limit [14], hence

on an approximate model of the interactions between nodes.

The first approximation step of such approach is based on

assuming that the following homogeneous conditions hold:

Definition 1 (Homogeneous conditions). We say that a

floating system satisfies the homogeneous conditions if:

• at t = 0 the mean number of nodes per unit surface

possessing a given content is the same for all contents;

• at any time instant, nodes possessing a given content are

uniformly distributed within the RZ for that content; and

• the probability of a node to have that content is independent

from the probability of any other node to have the same

content.

The homogeneous conditions assumption (equivalent to,

e.g. the “well stirred” assumption in chemistry [15], and to

the assumption of stochastic equivalence of nodes within a

same class in [16]) allows deriving simpler expressions for

the evolution of the main performance parameters of the

system, at the cost of neglecting spatial inhomogeneities. Note

however that our approach can be extended to account for

spatial variations as well as for possible nonuniform seeding

strategies (e.g., through the notion of node class, as in [16]),

though at the cost of an increase in complexity of the analytic

expressions.

In order to model the temporal evolution of content diffusion

and availability in our system, we focus on the temporal

evolution of two classes of node populations. The first class is

composed by those nodes possessing a given content at a given

time instant, while the second is the set of those nodes which

are busy, i.e., exchanging contents, at a given time. Note that

the busy state is not associated with a given content, but with

the fact that the node is involved in an exchange of contents

at a given time instant, and that each node can be part of both

classes of populations at the same time.

As a consequence of the homogeneous conditions, and of

the random scheduling of content transfers, at any time instant

the PDF of the fraction of nodes possessing the j-th content

within the RZ for that content (i.e., the PDF of the availability

for content j) is the same for all contents j, in both distributed
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and localized floating systems. Hence, in what follows, for a

given choice of RZ radius R, we indicate with a(t, R) the

mean availability at time t over all contents. The following

result derives the PDF of the number of contents possessed

by a node.

Lemma 1. With the given assumptions, in a floating system

(distributed or localized) the number of contents possessed

by a node at time t, denoted as m(t, R), is distributed as a

binomial Bin(n, p), with parameters n =
⌊

γπR2
⌋

and p =
a(t, R), and truncated in

⌊

M
L

⌋

.

Proof: In distributed floating systems, the number of

contents which a node can possess and replicate at a given

point in time is equal to the minimum between the number of

RZs in which the node is at that time, whose mean is γπR2,

and the number of contents which can be stored in its memory.

In localized floating systems, the average number of RZs in

which a node is located is γπR2. Since the probability of

possessing a given content is well approximated by a(t, R),
and since by the homogeneous assumption the probability for

a node to possess a content is independent from other nodes,

and is the same for all nodes, the number of contents possessed

by a node follows a binomial distribution, truncated at
⌊

M
L

⌋

.

On the occurrence of a contact event, a relevant parameter

is the mean amount of exchangeable contents, i.e., of contents

which are possessed only by one of the two nodes, and for

which there is enough free memory to store them at the

receiving node. This parameter is key in determining the

likelihood of a content to be exchanged on a contact event.

Lemma 2. With the given assumptions, in a floating system

(distributed or localized) the mean number of exchangeable

contents on a contact at time t is given by c(t, R) =
2E[x(t, R)], where x(t, R) is a discrete random variable

whose PDF is given by

P (x(t, R)) = Ema,mb

[

( ma
x(t,R))(1−a(t,R))x(t,R)a(t,R)ma−x(t,R)

Fca (u)

]

, (2)

with u = min(ma,
⌊

M
L

⌋

−mb) and Fca (u) is given by

Fca (u) =

u
∑

k=0

(

ma(t, R)

k

)

(1− a(t, R))ka(t, R)mb(t,R)−k.

ma and mb are the amount of contents possessed by the two

nodes in contact at time t, whose distribution is given by

Lemma 1. Ema,mb
denotes the expectation with respect to ma

and mb.

For the proof, please refer to Section A in the Appendix.

Let c(t, R)∞ denote the mean number of exchangeable

contents at a contact as per Lemma 2, when host memory

is infinite. The probability of successful transfer of a single

content during a contact of duration τ is a function of the

ratio between τ and the amount of time required to transfer

all exchangeable contents. Averaging over contact duration,

we get

S(t, R) = c(t,R)
c(t,R)∞

∫ +∞

τ0
min

(

1,

⌊

(τ−τ0)
L
C0

⌋

1
c(t,R)

)

f(τ)dτ. (3)

Similarly, the mean duration of an exchange of contents

between two nodes (i.e., mean duration of the time interval

during which a node is in the busy state) is given by

Ts(t, R) =

∫ +∞

0

min

(

τ,
c(t, R)L

C0
+ τ0

)

f(τ)dτ. (4)

Let us denote with b(t, R) the fraction of busy nodes at

time t for a RZ radius R. This parameter is key in order

to model the decrease of the rate at which contents get

replicated successfully when the mean time required to transfer

the exchangeable contents is comparable or larger than the

mean contact time. The following result models the asymptotic

dynamics of our system over finite time intervals, for large RZ

areas and hence for a large amount of nodes involved in the

process of diffusion of each content.

Theorem 1. In a floating system (distributed or localized),

for any initial condition (a(0, R), b(0, R)) with a(0, R) > 0,

b(0, R) = 0, for large R, the quantities (a(t, R), b(t, R))
converge almost surely over any finite horizon to the solution

(a(t), b(t)) (the mean field limit) of the following ordinary

differential equations (ODEs):


















da(t)

dt
=

b(t)

Ts(t)
a(t)(1− a(t))S(t)− 2α

DR
a(t),

db(t)

dt
=

g

D
2(1− b(t))2 − b(t)

Ts(t)
− 4α

DR
b(t),

(5)

with initial condition (a(0), b(0)) = (a(0, R), b(0, R)). S(t)
and Ts(t) denote the expressions in (3) and (4) respectively,

with a(t) instead of a(t, R).

For the proof, please refer to Section B in the Appendix.

This result states that the probability of observing a difference

between any point of the trajectory of the given system and

the solution of the ODEs goes to zero as R (and hence the

mean total number of nodes in each RZ) grows. That is, in

the limit, the error made by considering a deterministic system

characterized by a(t) and b(t) instead of the actual system

goes to zero. Moreover, at any time t, for any R, a(t) is the

expected value of a(t, R). Note that we consider b(0, R) = 0
as we assume that at t = 0 no node has initiated any content

transfer yet.

A. Quasi-stationary regime

In this work, we are mainly interested in the performance

of the system after enough time has passed from the initial

seeding of the content, i.e at times in which the dynamics of

initial content diffusion are exhausted. However, in a finite

system there is always a non-zero chance of having a content

item disappear from its RZ due to random fluctuations in

the population of nodes which possess it. The possibility of

such an event is present in any finite floating system, which

therefore for t → ∞ inevitably tends towards the empty state.

As the CTMC of the system has an absorbing state (the empty

state), its only equilibrium state is the empty system.

Therefore, in what follows we focus on the performance of

the system in its quasi-stationary regime, i.e., at a time from
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content seeding which is large enough for the initial dynamics

of seeding to be exhausted, and at the same time small enough

for content not to have been absorbed yet. Indeed, this is

the performance regime which is the most relevant, as in any

practical setting the amount of time during which a content

should be stored and made available is not infinite (e.g., due

to day/night patterns in vehicles and pedestrians mobility) but

it is often long enough for the initial transient to have only a

marginal impact on the overall performance.

The computation of an estimate of the time to content

extinction based on the original CTMC is unfeasible due to

the explosion in the number of the states which should be

considered. In this section, under some mild assumptions, we

derive a condition for the content to float for an indefinitely

long amount of time (i.e., for the quasi stationary regime

to exist), as well as expressions for the main performance

parameters at times from content seeding in which the initial

transient effects no longer influence the system behavior. In the

numerical section we will assess the accuracy of our model,

and we will investigate the conditions under which the decay

of the system towards the empty state has a significant impact

on system performance.

Given the existence of the absorbing state for the original

system (which we denote as S), in order to apply the mean

field approach and compute the performance parameters for

the time before absorption we consider a slightly different

system (denoted with S ′). This new system is obtained from

the original one by assuming that for each content, when the

system is empty, content is re-seeded. Specifically, we assume

that, when a content is absorbed in S ′, at rate ǫ (constant

and independent on any parameter of the system) the process

selects a node at random in the RZ, and injects the content

in that node. Note that, in the time period between content

seeding and content absorption, S and S ′ are indistinguishable.

This is confirmed by the following result, relative to the mean

field limit over finite time intervals:

Theorem 2. For any ǫ ≥ 0 the mean field limit of system S
and S ′ is the same.

Proof: This result is due to the fact that the rate ǫ, being

constant with RZ radius R, vanishes with increasing RZ radius

at a rate R−2, and is hence negligible in the mean field

approximation, in which all neglected terms are O(R−2).
Theorem 2 implies that the content seeding process has a

vanishing impact on system performance in the mean field

regime, as modeled in the previous section. As a result, the

mean field approximation results of Theorem 1 hold also for

S ′. This result allows exploiting Theorem 1 in order to derive a

mean field approximation for the stationary state, which is only

defined for S ′. Then, thanks to the fact that the two systems

are indistinguishable at times between content generation

and absorption, in a regime in which content absorption is

relatively infrequent (i.e., in a regime when quasi-stationary

state is defined) the mean field approximation for the stationary

state of S ′ is also an approximation of the quasi-stationary

regime of S . In Section V we assess the accuracy of our

approach.

The following result establishes a relation between the

stationary state of S ′ and the steady-state solutions of the

problem in (5).

Theorem 3. For any ǫ > 0, for large R the steady-state

solutions of Equation (5) are an approximation of the state

distribution of S ′ for t → ∞.

Proof: The CTMC associated to S ′ has no absorbing

states, and its state diagram presents no cycles. Hence it

belongs to the class of reversible stochastic processes [17].

Therefore, from Theorem 1.2 in [18] it follows that its

stationary behavior is completely determined by the solutions

of the ODEs (5).

Let (a, b) denote the steady-state solutions of (5). The

following result gives their expressions, as a function of the

main system parameters.

Theorem 4. For the considered system, the steady-state so-

lution of ODEs (5) is given by the solution of the following

fixed point problem in a:

a = 1− 2αTs(a)

DRS(a)b
(6)

with b = K −
√
K2 − 1, and K = 1 + D

4gTs(a)
+ α

gR
. If the

condition 2αTs(a)

DRS(a)b
≤ 1 (7)

is satisfied, and the system starts from a non-empty state (i.e., if

at t = 0 there is at least one node with content for each content

j), any trajectory of the system converges to the solution of

Equation (6). Otherwise, the system converges to the empty

state for any initial condition.

Proof: (sketch) Both the unicity of the fixed point solu-

tion, and the convergence derive from the study of the gradient

of Equation (6), by which one can see that when condition

(7) holds, the empty system solution is not stable, while the

other steady-state solution is an attractor for all trajectories

that do not start from an empty system. In this case, for

all initial conditions in which the system is not empty, the

system evolves to the same steady-state solution, given by

Equation (6).

The significance of the mean availability in steady state a

derives from the fact that, in the mean field limit, it coincides

with the mean availability of those nodes that enter the ZOI,

and hence, with the success probability.

IV. THE STORAGE CAPACITY OF FLOATING CONTENT

As already stated, the floating content paradigm can be seen

as a way to implement, through opportunistic replications, a

distributed information storage service, enabling probabilistic

content persistence and retrieval in a geographically limited

location, typically without direct support from infrastructure

(except possibly for support in initial seeding of the content).

In this section we characterize the storage capacity of a

floating storage system, i.e., the maximum expected amount

of information which can be stored probabilistically.
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In order to derive a model for such capacity in a way

which is analogous to classical information storage systems,

we start by considering a single floating element belonging

to a floating system (be it localized or distributed). For this

system, we define the read and write operations as follows. The

write operation consists in the initial seeding of the content

within its RZ, with the goal of enabling content to persist

probabilistically even after the transient of content diffusion

has passed. From Theorem 4 we know that a seeding strategy

which attributes each content to at least one node within the

RZ enables the system to converge to a nonempty steady state,

though in finite systems more conservative seeding strategies

are often necessary in order to decrease the likelihood of con-

tent disappearance from the system during the initial transient

of content diffusion.

In order to define the read operation, we recall that the main

purpose of FC is to ensure that a given (minimum) fraction

of moving nodes possesses the content item by the time they

enter the ZOI, at which point it is assumed that the content

is retrieved by the specific application. For instance, the ZOI

might correspond to the location of a movie theater, and the

content item to a movie trailer which we assume will start

being requested when users enter the theater. Therefore, to

each node entering the ZOI corresponds a content request,

and hence a read operation, which is considered as failed if

the node does not possess the given content. The goal of FC

is therefore to populate proactively the host local cache in a

distributed, collaborative manner, based on the opportunistic

content replications between the users which will enter the ZOI

and all the other users in the RZ for that content. In informa-

tion theory, a storage system is modeled as a communication

channel [19]. In this view, information is transmitted over the

channel through a write operation, and it is received through a

read operation. According to the operational definition given

by Shannon [20], the channel capacity is the largest amount of

bits per channel use at which information can be sent on the

considered channel with arbitrarily low error probability. For

the specific case in which FC is used as a storage technology,

a channel use is the operation of setting a content to float

in the floating area, i.e., a write operation for a content of

size L. Let us denote as stored information of a FE the mean

amount of information which can be recovered (i.e., read).

Then, similarly to communication channels, if we consider the

maximum of this quantity over all channel uses (and therefore

content sizes), we have the following definition of storage

capacity of a floating element:

Definition 2 (Storage capacity). The storage capacity of a

floating element with radius R is the maximum of the stored

information, over all content sizes L ≤ M .

In what follows, we consider the floating element and its

floating system to be in a stationary state. With a(R, γ, L) we

denote the mean field limit of the mean availability within its

RZ for the stored content, for a RZ radius R.

Theorem 5. In a floating system in the stationary regime, the

mean storage capacity of a floating element is

CFE(R, γ) = max
L≤M

La(R, γ, L), (8)

where a(R, γ, L) is given by Theorem 4.

Proof: At the mean field limit, every node in the RZ

has the same probability to possess the content, independently

from its position. Hence, at the mean field limit, the success

probability Psucc in the given FE coincides with a(R, γ, L).
In the communication channel model of storage systems, a FE

can be modeled as a packet erasure channel [21], with packet

size equal to the size of the content, L, and packet erasure

probability 1− Psucc, i.e., equal to the probability for a node

not to possess the content when it enters the ZOI. In such a

model, every channel use is a write operation, consisting in

setting a content of size L bits to float in the floating region,

and erasures in the channel derive from the fact that the read

operation is not deterministic. The amount of bits which can

be recovered, on average, on a single channel use is hence

La(R, γL). The maximum of this quantity over all channel

uses, and hence over all content sizes L ≤ M , is the storage

capacity of the system.

One of the consequences of Theorem 5 is that an upper

bound to the mean storage capacity of a FE is given by

the minimum between the host memory M , and the largest

content size which satisfies Equation (7). Indeed, by increasing

content size, the amount of information stored increases, but

so does the average amount of time taken by content transfers,

decreasing the share of successful content transfers and hence

the availability for that content. For small values of content

size, the first effect prevails. For larger values however, at some

point the second effect takes over, decreasing the amount of

stored information, until the condition in Equation (7) is not

satisfied, bringing the amount of stored information to zero.

In a floating system composed by more than one floating

element, the overall amount of information stored is also a

function of how the RZs overlap, hence of both FE intensity

γ and RZ radius R. The following result gives the capacity

per unit area of a floating system for a given FE intensity, and

a given RZ area.

Corollary 1. In a floating system (localized or distributed) in

the stationary regime, the mean storage capacity per unit area

is given by

CFS(R, γ) = γ max
L≤M

La(R, γ, L), (9)

where a(R, γ, L) is given by Theorem 4.

Proof: The system can be modeled as a set of γ parallel,

independent packet erasure channels per unit area, one per

distinct content. The independence between the channels holds

at the mean field limit and it derives from the “propagation

of chaos” result, by which at the mean field limit for each

user the probability to have a content is independent from the

probability of having another content. For each content, the

expression of the capacity of the associated packet erasure

channel is given by Theorem 5.
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In a floating system, the RZ radius modulates the average

amount of users, hence of system resources, dedicated to a

given FE, while the FE intensity tells how many floating

contents on average are sustained by the system per unit

area. In what follows, we are interested in how to modulate

these parameters in order to maximize the average amount of

information per unit area stored in a floating system. We have

therefore the following optimization problem:

Problem 1: maximize
R,γ,L

γLa(R, γ, L)

subject to: Equation (3), (4), (6), (7),

0 ≤ R, (10)

1 ≤ L ≤ M, (11)

0 ≤ γ ≤ DM

L
. (12)

Constraint (12) derives from the fact that an upper bound to

the intensity γ, and hence to the average number of different

contents floating in a given area is given by the average number

of nodes present in that area, multiplied by the number of

contents which each node can store. As a consequence, an

upper bound to the amount of stored information per unit area

is DM , and it corresponds to the case in which, for each

content, a single copy exists in the system, so that the system

has no redundancy. As for the content size L, we have:

Proposition 1. If (γ∗, R∗, L∗) is a solution of Problem 1, then

L∗ = 1.

This result derives from the fact that, holding constant all

else, the lower the content size, the lower the amount of contact

time wasted in content transfers which do not complete due

to the end of contact time. Moreover, the lower the content

size, the higher the amount of information which each node

can store in their finite memory, as the memory size is not

always an exact multiple of content size. As a consequence,

Problem 1 becomes a maximization problem over R and γ

only, with content size equal to its minimum value L = 1.

Finally, it can be easily shown that, for any choice of the other

system parameters, there exist always a RZ radius beyond

which availability decreases monotonically with increasing R.

Summing up, despite Problem 1 is nonconvex and nonlinear,

it is function of two variables over finite intervals, and it can

hence be solved efficiently by brute force approaches.

V. NUMERICAL ASSESSMENT

In this section, we evaluate numerically the accuracy of

our model by means of simulations, and we characterize the

storage capacity of a floating system as a function of the main

system parameters and of node mobility.

Unless otherwise specified, we assume nodes move accord-

ing to the Random Direction Mobility Model, with reflection

at the boundary of the simulation area. When two nodes are

in contact, we assume the channel rate is constant over time

and equal to 10 Mb/s. Nodes have a transmission radius of

30 m. For localized floating systems, the simulation area is a

10
7

10
8

10
9

Injected information [bits/m
2
]

10
6

10
7

10
8

10
9

S
to

re
d
 i
n
fo

rm
a
ti
o
n
 [

b
it
s
/m

2
]

Fig. 1: Information stored per unit area in a distributed floating
system (DFS) and localized floating system (LFS) versus injected
information per unit area. Simulation are with a 95% confidence
interval of at most 0.35%.

square of side 500 m, the RZ has a default radius of 100 m

and it is located at the center of the area.

At the beginning of each simulation run, nodes are dis-

tributed uniformly at random. In order to minimize the prob-

ability of content loss during the content diffusion transient,

all nodes within the RZ for a given content possess it at set

up time. When node memory is finite, the set of contents

possessed by each node at set up time is a random subset

(different for each node, and of total size equal to the node

memory) of all those contents in whose RZ the node is located.

Simulated time has been divided into equally sized slots, and

their duration has been chosen in such a way as to minimize

the effects of quantization in time on accuracy of simulations,

and in particular on the errors in detecting when two nodes

are in range or when a node is within a given RZ. Content

size has been set in such a way to have the start and end of

simulation time slots coincide with the start and end of content

transfers. Specifically, it has been set to 5 Mb in setups with

node speed of 0.2 m/s, and to 100 kb for those with a node

speed of 10 m/s. Simulations have been run for a duration of

10000 time slots, which has proven to be sufficient to observe

the system out of any transient, and data affected by transient

effects (due to initial distribution of nodes, plus possibly due

to initial spatial distribution of nodes) have been discarded.

In a first set of simulations, we measured the amount

of information stored per unit area in both distributed and

localized floating systems, in the ideal case of unlimited

host memory. In particular, we characterized how the stored

information varies as a function of the injected information

per unit area, i.e., of the product of the content size and of

the mean number of contents per unit area which persist in

the system for the whole duration of the simulation. This

quantity is modeled by the product γL when condition (7)

holds, because in that case all contents float and carry L bits.

As Fig. 1 and 2 suggest, two regimes can be observed. For

low amounts of injected information and with infinite host

memory, resource contention among different floating contents

is weak, as the mean contact time is larger than the mean

7



10
3

10
4

10
5

10
6

10
7

10
8

10
9

Injected information [bits/m
2
]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v
a
ila

b
ili

ty

Fig. 2: Mean availability in a distributed floating system (DFS) and
localized floating system (LFS) versus injected information per unit
area. Simulation are with a 95% confidence interval of at most 0.35%.

amount of time required to exchange contents. Therefore, each

FE performs almost as if in isolation. Indeed, mean availability

remains constant with increasing injected information, while

stored information grows proportionally to it. For larger values

of injected information, the effects of contention (mainly on

contact time) kick in, mean content availability decreases,

and stored information saturates. As expected, decreasing the

node speed (and therefore increasing mean contact time) and

increasing node density (hence also the rate of contacts among

nodes, and the opportunities for content replication) have

the effect of increasing the saturation value of the stored

information, which coincides with the capacity of the system.

The plots in Fig. 1 and 2 also show that the estimates of

mean availability and of the amount of stored information

derived with our mean field based approach are accurate across

different values of node density, of injected information, and

of mean node speed. When the amount of injected information

gets close to the maximum amount which can be sustained by

the system, our mean field model yields slightly optimistic

results, due to the difference between finite systems and their

mean field limit. Indeed, as the plots show, increasing the mean

number of nodes in the RZ improves the accuracy.

A first reason for such discrepancy is that while contact

events are uniformly distributed within the RZ, in finite

systems nodes with content are slightly more numerous around

the center of the RZ than at the border [4]. The overall net

effect is a decrease in opportunities for content replications

within a RZ. This is also the reason for the slightly more pes-

simistic simulation results of distributed floating systems with

respect to localized ones. Indeed, in systems with distributed

RZs, and particularly for low densities of FEs, much of the

overlapping involves mainly the border regions of each RZ.

As shown in the figures, such difference tends to decrease

as the FE intensity grows. In general, the difference between

considering a distributed or a localized floating system is

small, so that in the following we only report results for LFS.

Another reason for the discrepancy is the effect of random

fluctuations in a finite population of nodes. Indeed, when the

system gets close to those conditions in which (7) is not
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Fig. 3: Maximum storage capacity of a floating system over FE
intensity, as a function of RZ radius R, for different configurations
of host memory, and with content size L = 1.

satisfied (and hence in which contents cannot persist in their

RZs), the effects of even small random perturbations in a finite

population of nodes with content get amplified, because of

resource contention and the consequent loss of efficiency of the

content replication process. This brings to an average decrease

in content availability, and to the difficulty in achieving those

values of maximum injected information forecasted by the

model.

In order to evaluate our approach in non homogeneous

scenarios, in Fig. 1 we also report simulation results under

the random waypoint (RWP) mobility model, which is known

to generate a non uniform distribution of nodes. As expected,

mean content availability and hence the amount of stored

information are slightly higher than in RD mobility model.

Indeed, in RWP nodes from all of the simulation area tend

to spend a larger amount of time near the center of the area,

where the RZ is. Moreover, if we account in our model the

average density of nodes generated in the RZ by RWP, the

match between simulation and analytical predictions becomes

even better.

One of the key parameters affecting the mean capacity of

a floating system is the RZ radius, which is related to the

total amount of node memory and content exchanges dedicated

to storing probabilistically a single content. Fig. 3 shows

the maximum storage capacity of a floating system over FE

intensity (Problem 1) as a function of RZ radius. As the figure

shows, the solution of Problem 1 is achieved for values of RZ

radius only slightly larger than the minimum values below

which contents do not persist in the RZ. For lower values of

the RZ radius, the content availability, and hence the maximum

storage capacity, decrease rapidly, as smaller RZs imply less

opportunities for contents to replicate. For values of the RZ

radius larger than the optimum instead, the benefits of a larger

RZ are offset by the fact that a much larger amount of nodes

is involved in content replication, so that the marginal utility

of adding more users to each RZ is negative. By further

increasing the RZ radius, the maximum stored information

reaches a regime where host memory limits start to affect

system performance, further decreasing the marginal utility

8



Fig. 4: Mean number of floating contents over time in a localized
floating system, for different initial number of seeders. Node speed
is equal to 10 m/s, and node density is 800 users/km2.

of adding more users to each RZ.

As we have seen, for a given content size, node density

and RZ radius, when the density of contents seeded in a

floating system is larger than the maximum amount which

can be sustained by the system in steady state, according to

our model the system converges to the empty state. However,

in finite systems, as Fig. 4 shows, contents start disappearing

from the system until the remaining ones can be sustained in

the mean field regime according to condition (7). Note that

when host memory is finite, if the system is seeded with a

higher number of contents than those which can be stored in

host memory, the total number of floating contents decreases

rapidly during the initial transient of content diffusion, until it

coincides with the maximum number of contents which can

be stored in host memory.

VI. CONCLUSION

In this paper, we have developed a first analytical model of

the amount of information which can be stored in probabilistic

distributed edge storage systems such as Floating Content. Our

approach enables a first order characterization of the relation

between storage capacity and the main design parameters of

such systems, which is crucial for resource efficient and QoS

aware dimensioning of such systems.

As a future step, we plan to extend the proposed approach to

real settings with heterogeneous shapes and sizes of replication

zones, and to scenarios with non stationary mobility patterns

and non uniform nodes distribution.
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APPENDIX

A. Proof of Lemma 2

Let us denote with a and b the two nodes in contact. Let

ma (mb) denote the amount of contents possessed by node a

(resp. b) at time t for RZ radius R, and let ca be the amount

of exchangeable contents at node a. The probability that node

a possesses exactly ca exchangeable contents is equal to the

probability that ca out of the ma contents are not possessed by

the other node, and that the remaining contents are possessed

by the other node. Moreover, ca is upper bounded by the

available storage space at node b, equal to M
L

− mb. ca is

therefore distributed as a binomial with parameters n = ma,

p = 1−a(t, R) and truncated at ca,max = min(ma,
M
L
−mb).

Specifically, for 0 ≤ ca ≤ ca,max we have

P (ca|ma,mb) =

(

ma

ca

)

(1− a(t, R))caa(t, R)ma−ca

Fca(ca,max)
(13)
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Otherwise, P (ca|ma,mb) = 0. The normalization factor

Fca(ca,max) is the CDF of the binomial with parameters

n = ma, p = (1 − a(t, R)). As ma and mb are random

variables (whose distribution is given by Lemma 1), the final

expression of the PDF of ca is derived as the expectation of the

expression in Equation (13) with respect to ma and mb. The

PDF of cb is computed in the same way, and expressions can

hence be derived from those of ca, by substituting ma with

mb and vice versa. As ma and mb have the same distribution,

the PDF of cb is the same as ca. The expectation of the total

number of exchangeable contents on a contact at time t is

given by the sum of the expectations of ca and cb, i.e. by

twice the expectation of ca.

B. Proof of Theorem 1

First, we show that, for any initial conditions I(0, R) =
(a(0, R), b(0, R)), there exists an array I0 such that

limR→∞ I(0, R) = I0 (convergence of initial conditions

condition [14]). Let us choose I0 = I(0, R). Then for each

content j, if Nj(0, R) (NT
j (0, R)) is the number of nodes

with the j-th content in the RZ of content j (respectively,

the total number of nodes in the RZ of content j) at time

t = 0 in the RZ, choosing Nj(0, R) =
⌊

a(0, R)NT
j (0, R)

⌋

,

and setting to zero the number of busy nodes at t = 0 allows

satisfying the convergence condition. Given the assumption

of stationarity of the mobility patterns, and of uniform node

distribution, the mean total number of nodes in a RZ for a

content j is equal for each content (given that all RZ have

the same shape and size) and we denote it with N(R). In

order to apply the mean field approximation approach, we

start by assuming NT
j (t, R) = N(R), for any content j an any

time t ≥ 0. As a consequence of the homogeneous condition,

N(R) grows proportionally to R. With these properties, the

considered system can be modeled as a Population Continuous

Time Markov Chain (PCTMC) [14]. Specifically, to each value

of R we can associate a PCTMC model with a total number of

nodes N(R). As for the size of the model (i.e., as for the pa-

rameter used for normalizing the state occupancy), we choose

the parameter N(R) itself. Let us consider now a sequence of

increasing values of R, to which we can associate a sequence

of PCTMC models, each with the features described so far. By

the nature of the system, one can easily verify that for any state

transition, the state change vector (i.e., the difference between

the state occupancy before and after the state transition) is

independent of R and hence of the size of the model. Let

Nc(t, R) denote the number of nodes possessing a given

content j at time t, averaged across all j. Let us compute

the rate at which Nc(t, R) varies over time. The increase of

this quantity is due solely to nodes which exit from the busy

state due to completion of content transfers. The mean rate at

which nodes exit the busy state is given by the ratio between

the mean number of busy nodes at time t in the RZ, denoted

with Nb(t, R) = N(R)b(t, R), and the mean time taken by

an exchange, Ts(t, R). However only half of the N(R)b(t, R)
busy nodes which terminate an exchange might have received

the j-th content. Moreover, let us consider one of these ter-

minating exchanges. The probability that the j-th content was

transferred during such exchange is equal to the probability

that only one of the two exchanging nodes had the j-th content,

given by 2a(t, R)(1 − a(t, R)), multiplied by the probability

that the j-th content was transferred during the contact time,

given by S(t, R). Putting it together, we have that the rate of

increase of Nc(t, R) is
N(R)b(t,R)

Ts(t,R) a(t, R)(1−a(t, R))S(t, R).

The decrease of Nc(t, R) over time is due to nodes with

content exiting the RZ. The overall rate at which nodes exit the

RZ is α2πR. Of these nodes, only a fraction a(t, R) possesses

the i-th content. Summing up, we can write

dNc(t,R)
dt

= N(R)b(t,R)
Ts(t,R) a(t, R)(1− a(t, R))S(t, R)− 2απRa(t, R)

(14)
Let us consider now the rate at which Nb(t, R) varies over

time. The rate of increase of this quantity is given by the

rate of those contacts involving nodes which are not busy.

The probability that a contact happens between two non-busy

nodes is (1 − b(t, R))2. As every such contact generates two

new busy nodes, and as gπR2 is the overall contact rate, the

rate of increase of Nb(t, R) over time is given by 2gπR2(1−
b(t, R))2. The number of busy nodes in the RZ decreases due

to busy nodes exiting the RZ, and to the end of the exchange

of contents between two nodes. The rate of the first type of

events is 4απRb(t, R). Note the extra factor 2, due to the

fact that if a busy nodes exits the RZ, both it and the other

node in the exchange stop exchanging contents, hence both

are no more busy, even if the other node remains in the RZ.

Finally, the rate at which nodes cease being busy due to the

end of the exchange of contents is given by
Nb(t,R)
2Ts(t,R) , i.e., by

the rate at which couples of exchanging nodes “break” due

to the end of the exchanges, multiplied by a factor 2, as at

each of these events the number of busy nodes decreases by

2 units. Summing up, we have

dNb(t,R)
dt

= 2gπR2(1− b(t, R))2 − 4απRb(t, R)− Nb(t,R)
Ts(t,R)

(15)
From the rates in these equations it is easy to see that the

drift of the generic PCTMC is continuous. Let I(t, R) =
(a(t, R), b(t, R)) and I(t) = (a(t), b(t)) = limR→∞ I(t, R).
As our sequence of PCTMC models satisfies these properties,

by Theorem 1 in [14] we have that for any finite time horizon

T ≤ ∞, P
{

limR→∞

(

sup0≤t≤T ‖I(t, R)− I(t)‖
)

= 0
}

= 1.

That is, the sequence of population models associated to R

converges almost surely to the dynamics of the ODEs in

Theorem 1. Finally, in the case in which the number of nodes

in each RZ is not constant, one can follow the same approach

and derive an additional differential equation for the mean

number of nodes in each RZ. Indeed, as we assumed the

mobility is stationary, such differential equation would be a

balance equation, giving a mean number of nodes in each RZ

which does not vary over time, and which is not affected by the

evolution over time of the other two variables of the system.

Given such decoupling, the mean field approach can be applied

separately to the mean number of nodes in each RZ, and to

the two variables we have considered so far, obtaining again

the ODEs in (5).
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