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Abstract: Digital rehabilitation is a novel concept that integrates state-of-the-art technologies for1

motion sensing and monitoring, with personalized patient-centric methodologies emerging from2

the field of physiotherapy. Thanks to the advances in wearable and portable sensing technologies,3

it is possible to provide patients with accurate monitoring devices, which simplifies the tracking of4

performance and effectiveness of physical exercises and treatments. Employing these approaches5

in everyday practice has enormous potential. Besides facilitating and improving the quality of care6

provided by physiotherapists, the usage of these technologies also promotes the personalization of7

treatments, thanks to data analytics and patient profiling (e.g., performance and behavior). However,8

achieving such goals implies tackling both technical and methodological challenges. In particular, (i)9

the capability of undertaking autonomous behaviors must comply with strict real-time constraints10

(e.g., scheduling, communication, and negotiation), (ii) plug-and-play sensors must seamlessly11

manage data and functional heterogeneity, and finally (iii) multi-device coordination must enable12

flexible and scalable sensor interactions. Beyond traditional top-down and best-effort solutions,13

unsuitable for safety-critical scenarios, we propose a novel approach for decentralized real-time14

compliant semantic agents. In particular, these agents can autonomously coordinate with each15

other, schedule sensing and data delivery tasks (complying with strict real-time constraints), while16

relying on ontology-based models to cope with data heterogeneity. Moreover, we present a model17

that represents sensors as autonomous agents able to schedule tasks and ensure interactions and18

negotiations compliant with strict timing constraints. Furthermore, to show the feasibility of the19

proposal, we present a practical study on upper and lower-limb digital rehabilitation scenarios,20

simulated on the MAXIM-GPRT environment for real-time compliance. Finally, we conduct an21

extensive evaluation over an implementation of the stream processing multi-agent architecture,22

which relies on existing RDF stream processing engines.23

Keywords: Stream reasoning; real-time multi-agents; RDF stream processing; stream processing24

agents; digital rehabilitation; real-time sensors.)25

1. Introduction26

The demographic changes in our society, including the lengthening of life expectancy, entails27

several challenges regarding healthcare support and assistance for older adults. Chronic diseases28

and health issues affect an increasing amount of people among this population, often leading to a29

decrease in the quality of life. Some of the key factors related to this decline are the diminution of30

physical activity and the consequent reduction of mobility [1,2]. Many different clinical conditions31

can be co-factors originating impairment situations. Nevertheless, factors such as falls, progressive32

loss of mobility, and lack of exercise have also shown to have a high impact [3,4]. Numerous studies33
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have demonstrated the effectiveness of physical therapy for improving life conditions in different34

situations, including post-operatory interventions for hip replacement, cancer survival treatments,35

back pain, stroke rehabilitation, among many others [5–7]. However, to maximize the efficacy of36

these rehabilitation strategies, providing personalized treatment, feedback, and support is essential.37

Moreover, several treatments (especially due to chronic conditions) require continuous monitoring38

over extended periods, often including home-based exercises and periodic check-ups. Furthermore,39

given the wide variety of physical rehabilitation procedures with healthcare professionals, patients40

tend either to abandon the treatments quickly or to decrease the adherence to the proposed exercises41

progressively.42

Digital rehabilitation emerges as a promising approach that consists of leveraging information43

and communication technologies for boosting the efficacy of physical rehabilitation interventions [8].44

These technologies include, among others: (i) the usage of sensing devices with monitoring capabilities45

(e.g., able to capture motion and physiological data) (ii) applications based on machine learning and46

other data analytics methods; (iii) the deployment of distributed intelligent systems with streaming47

capabilities and in-time feedback.48

In the last decade, the progress of the Internet of Things (IoT) and wearable sensors has paved49

the way for the implementation of integrated systems, which produce data in the form of continuous50

streams that require dynamic processing techniques [9]. In addition to the velocity and volume51

dimensions related to data streams, the variety of the data produced is particularly relevant when52

dealing with distributed heterogeneous sensors. This variety has been mitigated through the usage of53

machine-readable semantic data models (i.e., ontologies and knowledge graphs) in the areas of stream54

reasoning [10] and RDF stream processing [11]. Nevertheless, in application domains such as physical55

rehabilitation, in-time feedback is needed, as otherwise, a delay might jeopardize a measurement or56

endanger the safety of the patient [12]. Therefore, in such cases, traditional streaming data processing57

algorithms are not sufficient. In these scenarios, to guarantee strict processing deadlines and time58

restrictions is essential. Although such constraints have been long studied in the discipline of real-time59

systems, currently available (semantic) IoT architectures do not provide support for real-time compliant60

policies and protocols [13].61

Recently, real-time techniques have been explored in the context of autonomous intelligent devices62

and multi-agent systems (MAS), with results that may have a potential impact in digital rehabilitation63

scenarios [12]. However, these works still have not explored the integration of real-time techniques64

within semantically-enabled stream processing systems. Thus, to support practical applications65

demanding for distributed intelligent entities interacting dynamically via the exchange of semantic data66

streams and negotiating/executing time-critical tasks, this paper addresses the following challenges:67

• The inclusion of strict real-time compliance in RDF stream processing systems,68

• The combination of autonomous real-time agents and semantic stream processing, and69

• The application of real-time stream processing agents in digital physiotherapy scenarios.70

With respect to the challenges mentioned above, the contribution of this paper can be summarized71

as follows:72

• The definition of a model for real-time compliant stream processing agents, constrained by strict73

deadlines for interactions and negotiation among participating agents.74

• The study and implementation of agent-based stream processing entities, based on the RDF75

stream processing paradigm.76

• The simulation and analysis of both real-time and general-purpose MAS, considering different77

scenarios for digital rehabilitation using motion sensors.78

These contributions constitute a concrete advancement with respect to the state of the art,79

especially regarding the inclusion of real-time strict constraints on stream processing agents. In this80

context, the main objectives of this work are: (i) to formally define real time constraints in RDF stream81

processing agents; (ii) to propose an architecture of real-time multi-agent RDF stream priocessing82
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system; (iii) to show the feasibility of the stream processing agents approach, through a concrete83

implementation based on existing RDF stream processing engines; and (iv) to demonstrate the effect84

and consequences of real-time constraints in simulated scenarios of a multi-agent digital rehabilitation85

application.86

87

The remainder of the paper can be summarized as follows. In Section 2 we describe the field of88

digital rehabilitation and how multi agent systems and semantic streming data have been applied89

in recent years. In Section 3 we present the main challenges of real-time autonomous systems for90

digital rehbailitaiton, followed by the description of our model and architecture in Sections 4 and 5.91

Section 6 describes the simulation scenarios and their results, while Section 7 provides details on the92

implementation and exeperimentation on our architecture for RDF stream agents. Finally, Section 893

concludes the paper.94

2. Digital rehabilitation95

Conventional rehabilitation practices are characterized by unilateral, interactive bilateral, and96

cooperative bilateral [12] interactions. In the framework of such interactions, for either physical97

or cognitive rehabilitation, the main activities that need to be addressed are training, counseling,98

monitoring, and assessment. The transition towards digital rehabilitation is mainly driven by the will99

of fastening the follow-up, enhancing the healing process, shortening the hospitalization, lowering the100

costs for both patients and health structures, enabling continuous monitoring, providing equitable101

access to rehabilitation services and finally supporting technological advancements in telemedicine [14].102

In recent years, the increasingly broad range of available technologies for physical activity monitoring103

enabled a face-paced advancement of these approaches. Application domains in the scope of digital104

rehabilitation include the usage of technologies ranging from: video analysis [15,16], wearable105

technologies [17], robotics [18,19], distributed sensing [20], and gamification [21,22]. This work focuses106

on physical rehabilitation. Therefore, the next section dives quickly into wearable-based rehabilitation107

systems.108

2.1. Wearable-based rehabilitation systems109

Wearable technologies constitute one of the key enablers for digital rehabilitation, and are expected110

to further provide improvements in both preventive and rehabilitation approaches. Although there are111

still concerns about the potentially invasive characteristics of wearable-based systems, a recent study112

(targeting patients in an older adult-care facility) revealed that 93% of the patients accepted body-worn113

sensor systems [23]. Concerned about the possible reluctance in using wearable-based systems (i.e.,114

stigmatized-like), Bergmann et al. [24] reported a surprisingly positive assessment of the aesthetics of115

those systems. Nevertheless, major concerns still arise with respect to restricted recording time (e.g.,116

due to limited storage capacity or limited battery-life), wearability, and reliable real-time feedback.117

Wearable sensors employed in digital rehabilitation systems can span from being “simple”118

micro-sensors (e.g., capturing inertial movements or biomedical information by using small, intelligent,119

and low-energy active devices) to be “complex smart” (e.g., capturing data via thin and flexible sensors,120

compatible with textiles or made of textile technologies with specific mechanical, electrical or optical121

properties). Examples of rehabilitation systems based on this type of sensors have been applied to122

different use cases including exercise assessment in knee osteoarthritis [25], upper-limb motor training123

for stroke patients [26], or classification of motor activities for COPD patients [27]. In all these systems124

the focus is on ensuring the accuracy and efficiency of the sensing process and the results they produce125

in order to address the specific use-case needs. However, in all these systems the autonomy of sensing126

devices and the compliance to strict time constraints is not considered.127
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2.2. Real-time feedback and agents in digital rehabilitation128

The Multi-agent system (MAS) approach is a comprehensive paradigm for modeling complex129

(distributed) systems and their dynamics. An agent is a (partially) autonomous entity, embodying130

a program, a sensor, a robot, or even a human being operating (sensing and actuating) in a given131

environment.132

In the area of digital rehabilitation, we can count a plethora of contributions coming from the MAS133

community. For example, Rodriguez et al. [28] proposed a system assisting upper limb rehabilitation.134

Agents in this system perform abstract tasks such as (i) recording the movements while the patient is135

executing the exercise, (ii) receiving specific inputs (e.g., BPM, skin conductance), and defining the136

level of stress/fatigue, and (iii) behaving like a “virtual therapist", adapting the therapy according137

to the current level of stress of the patient. Felisberto et al. [29] developed a MAS able to recognize138

patients’ movements and postures and to detect possibly harmful activities. Exploiting a wireless139

body area network (WBAN) as underlying system, an intelligent agent analyzes cyclically possible140

variations in the values received. The ultimate goal is to identify physical/posture deterioration. The141

consumption of medical drugs is a common eventuality in rehabilitation scenarios. Indeed, Mutingi et142

al. [30] proposed an agent-based system to cope with decision-making processes in drug delivery.143

Summarizing, concerning the “lower” layers of wearable-based systems, they are able to perceive144

and pre-elaborate in-loco kinematic and biomedical parameters, and no one is powered by MAS.145

However, if further analysis is required, proprietary (often closed) solutions have to be involved.146

Conversely, solutions employing MAS can provide sophisticated, extensible, and scalable analysis.147

However, it has to be highlighted that it is challenging to deploy MAS on wearable sensors. The148

reasons hampering MAS from pervading wearable and embedded sensors stem from both technical149

and technological limitations [12]. In particular, MAS lack of technological means (e.g., frameworks)150

to be seamlessly deployed in distributed/wearable sensors characterized by scarce computational151

resources. Moreover, from the technical perspective, traditional MAS algorithms are incapable of152

dealing with strict timing constraints – crucial characteristic to deliver in-time feedback (typical of153

physical rehabilitation). Indeed, a recent study identified and formalized the challenges for MAS154

to be compliant with strict-timing constraints [13]. In turn, Calvaresi et al. [12] elaborated on the155

challenges related to the compliance of MAS with strict deadlines and embedded architectures.156

Moreover, the authors proposed and detailed a viable solution to bridge the gap between MAS157

and real-world wearable-based rehabilitation systems. Finally, an ultimate element still needs to be158

taken into consideration in the overall picture: the capability of processing streaming data in MAS for159

rehabilitation purposes [9].160

2.3. Semantic data stream processing161

Considering the prominent role of sensors and wearable devices for digital rehabilitation, it162

becomes a necessity to: (i) provide the means for managing data streams from these sensors through163

rich semantic models; (ii) enable the processing of querying and reasoning of these semantic streams,164

and (iii) provide real-time mechanisms for decentralized and autonomous interactions among stream165

processors. A number of RDF Stream Processing (RSP) systems have been developed in the last decade,166

focusing on the processing aspects of semantic streams, including incremental reasoning, continuous167

querying, complex event processing, among others [31–35]. However, most of these RDF stream168

processors rely on centralized architectures for interaction and organization, even if at least in theory169

they rely on Web standards.170

In the literature, early attempts to provide REST-ful service interfaces for streaming data were171

explored in [36,37]. These exploratory proposals introduced the usage of Web infrastructure, which172
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evolved towards prototype developments such as the RSP Service Interface1, which further develops173

the ideas presented in [36], providing a generic implementable programming API for continuous query174

engines. The distributed execution of RDF stream workflows over a network has further been explored175

in the SLD Revolution framework [38], which optimizes interactions using lazy-transformation176

techniques so that non-optimized RDF formats are used only when necessary.177

Regarding the publication of streams from distributed producers, TripleWave [39] enables the178

transformation of non-RDF data streams, as well as time-annotated RDF, into RDF streams. TripleWave179

allows the publication of these RDF streams so that they can be directly consumed or connected with180

applications that process them. The concept of TripleWave is further expanded in WeSP2, a conceptual181

model for producing and consuming RDF streams on the Web.182

Even though the notion of decentralization is a fundamental aspect of the Web, in most of the183

streaming data and processing models the deployment of autonomous stream processors effectively184

remains challenging. The vision introduced by the Semantic Web [40], and its related initiatives,185

considered agents as primary actors for the generation and consumption of data on the Web. However,186

most implementations of the Semantic Web have focused on ontology modeling, reasoning engines,187

Linked Data, or RDF data querying, but have relegated agents to a marginal position. This also applies188

to semantic-aware streaming data processing (i.e., RSP and stream reasoning approaches). Although189

the introduction of agent and multi-agent approaches has been introduced recently [9,41], it is still190

required to provide concrete models, specifications, and implementations of viable agent-based stream191

processing and reasoning systems. Finally, regarding the inclusion of real-time constraints for RDF192

stream processing, so far most approaches have focused on best-effort stream processing, without the193

notion of compliance to strict deadline constraints.194

3. Autonomous real-time streaming agents for digital rehabilitation195

Digital rehabilitation can be applied to a wide variety of practices. Let us focus on the use case of196

post-operatory knee physiotherapy. After surgical intervention, and the subsequent hospitalization,197

patients are traditionally left alone at the time of discharge, with a prescription that includes the series198

of exercises (therapy) that they are supposed to do. Suche exercises may include simple strength and199

flexibility conditioning programs, e.g., heel cord stretch, standing quadriceps stretch, or supine hamstring200

stretch.201

Commercial solutions in the market for monitoring this type of exercise have a number of202

significant limitations, especially regarding precision and usability. For example, devices such as the203

Kinetec [42] are used for performing passive and continuous knee movements during rehabilitation.204

This device is typically used during the acute phase, allowing to control among other parameters205

the angle of the knee movement. However, the angle of the machine does not precisely correspond206

to the angle of the knee itself, mostly because of structural reasons, limb misplacement, or attempts207

to compensate the movement performed by the patient trying to reduce an undetectable pain [12].208

This limitation leads to an inadequate assessment of pain, muscular resistance, and evolution of the209

treatment, added to other potentially misleading information due to the unsupervised usage of the210

Kinetec device.211

As opposed to conventional physiotherapy with episodic encounters with health professionals to212

keep track of the patient’s progress, the digital rehabilitation approach can rely on sensing devices213

for accurately capturing the movements of the patient during the exercises. These include triaxial214

accelerometer measurements, which can be used to calculate the flexion angle of the knee, number215

of repetitions, coordination of movements, duration of the stretching episodes, etc. However, this216

scenario requires the sensors to autonomously coordinate and organize their interactions and data217

1 http://streamreasoning.org/resources/rsp-services
2 http://w3id.org/wesp/web-data-streams

http://streamreasoning.org/resources/rsp-services
http://w3id.org/wesp/web-data-streams
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Figure 1. Digital rehabilitation scenario: knee motion sensors for exercise monitoring and real-time
feedback. In this scenario the knee sensors interact in real-time with the patient’s application, which
in turn provides immediate feedback, and provides information to the health professional about the
exercise performance.

exchange within strict time constraints. For instance, two knee sensors computing flexion angles218

during physical exercises must synchronize their interactions in real-time (Figure 1). If these real-time219

deadline constraints are violated, the misalignment in the combined measurements jeopardizes the220

accuracy of the angle calculations, resulting in inaccurate monitoring of the exercise performance.221

Hence, once the angles have been calculated, the patient may need to get in-time feedback about the222

exercise (e.g., through visual/audio indicators in her tablet or mobile device). Again, this feedback223

requires to be bound in time. Otherwise, it would provide entirely useless information to the patient.224

In particular, in the case of coaching, late and jeopardized feedback can be potentially dangerous:225

e.g., a late stop feedback can generate an over-extension exceeding the safety range established for226

that given patient. Finally, the physiotherapist and other physicians (or healthcare providers) may227

need to monitor the exercise live, potentially on a tele-rehabilitation scenario. This last interaction228

could require real-time feedback (in case of immediate response from the physiotherapist) or standard229

communication requirements (in case of asynchronous feedback or off-line monitoring).230

Extending this one-patient scenario to a setting where multiple patients are followed throughout231

their treatment entails additional challenges (e.g., managing the heterogeneity of the different sensors,232

increasing the potential activities to be monitored, and scaling to real-time multi-patient digital233

rehabilitation monitoring). Indeed, each patient might follow a specific therapy, therefore having234

different treatment prescriptions and body-parts to rehabilitate (thus possibly requiring various sensors235

– in number and capabilities). Moreover, the evolution of the patient can also be different in terms of236

compliance, time, and efficacy. For all these reasons, it is essential that beyond the real-time interactions237

within the sensor environment, a digital rehabilitation system must also rely on semantic models for238

representing information across patients and healthcare providers, using technology standards such as239

RDF (Figure 2).240

As it has been described in [12], a number of functionalities are needed in this type of digital241

rehabilitation scenarios, including tools and methodologies for supporting: (i) adherence to the242

treatment; (ii) monitoring of performance and correctness of the movements; (iii) enabling adjustments,243

management of errors and compensations; (iv) coaching, encouraging and motivation of the patient; (v)244

providing motivation, commitment and fatigue measurements; and (vi) incorporating practice-specific245

parameters. Multi-agent systems have provided relevant contributions to all of them [43], although246

breaching distributed sensing in real-world applications is still an open challenge. The usage247

of affordable wearable sensors is essential to allow monitoring and in-time feedback in digital248

rehabilitation scenarios. Indeed, a previous work [12] elaborated on the employments of MAS for249

telerehabilitation, proposing a theoretical model and relevant future steps to undertake. Undoubtedly250

the success of digital rehabilitation will also require the integration of diverse sensing technologies251

and semantic compatibility. Although the question of sensor data heterogeneity has been addressed in252
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Figure 2. Digital rehabilitation scenario with multiple patients: decentralized and autonomous stream
data management for heterogeneous sensors. Expanding from the previous scenario, real-time stream
processing agents coordinate to provide per-user monitoring and feedback, while RDF streams are
used for semantically-aware data exchange within a group of patients. The health-care professional
can then monitor and provide personalized feedback according to individual performance.

past years, with promising results regarding the inclusion of ontology-based approaches for stream253

processing in IoT environments, the integration of these methods with real-time compliant technology254

remains mostly unexplored. Essential challenges in this respect include the addition of real-time255

constraints in existing models such as RDF stream processing, or the representation of behaviors and256

negotiation using semantic technologies.257

Having described the context of digital rehabilitation and the need for autonomous systems for258

managing in-time interactions among sensor devices, we elaborate the following set of challenges,259

which need to be addressed:260

• Autonomous sensor interactions. Beyond traditional IoT deployments configured following261

top-down paradigms; digital rehabilitation often requires autonomy on the configuration of the262

devices, as well as their synchronization and negotiation over data and services.263

• Real-time guarantees in sensor processing. Given the necessity of complying with deadlines264

and strict constraints on data execution, negotiation and delivery, autonomous sensors must265

incorporate scheduling mechanisms to ensure these real-time guarantees.266

• Standard and extensible messaging & metadata. Sensing devices should be able to exchange267

data, in different formats and representations, potentially using Web standards for representing268

metadata. Possible information to be specified are time constraints, performatives, conditions,269

and negotiation protocols.270

• Asynchronous and distributed communication. Sensors should be able to send and receive271

messages, as well as coordinating among them without the need of a central entity that governs272

their interaction flow.273

• Semantic stream data management. Semantic representations should be employed to allow274

sensors to understand and act accordingly to a given stream of data. These representations should275

align with Web standards (e.g., OWL, RDF), and allow extensibility and high expressiveness.276

4. Real-time stream processing agents model277

Having enumerated the main challenges related to real-time compliance in stream processing278

agents for applications in the digital rehabilitation domain, in this section we introduce an agent-based279

model that addresses those issues. First, we describe the RDF stream processing formalization used280

throughout the paper. Then, we propose a multi-agent model in which behaviors are linked to281
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time-bound constraints. Finally, we describe how interactions among these agents are established,282

using semantic standards.283

4.1. RSP Data Model284

The RSP model describes how data streams can be represented as potentially infinite sequences of285

RDF triples annotated with timestamps [44]. According to [45], we define an RDF triple as a tuple:286

(s, p, o) ∈ (I ∪ B)× I × (I ∪ B ∪ L)

where s is the subject, p is the predicate, and o is the object; and I, B, and L are the disjoint infinite287

sets of IRIs, blank nodes, and literals, respectively. A set of RDF triples is called an RDF Graph.288

Moreover, collections of RDF Graphs can be represented as RDF datasets. A named RDF graph is a pair:289

(n, G), with n ∈ (I ∪ B), and G is an RDF graph

Then, an RDF dataset is a set D defined as:290

D = {G0, (n1, G1), (n2, G2), . . . , (ni, Gi)}

The RDF graph G0 is called the default graph for D, and (nj, Gj) are named graphs, with j ∈291

{1, 2, . . . , i}.292

These time-agnostic definitions can be extended to support the notion of RDF streams, seen as a293

sequence of special RDF datasets, or RDF stream elements, each of which is formalized as follows:294

s = (Gt, (n, G))

Gt carries the timestamp of the stream element, including a triple of the form (n, p, τ), where p is295

a predicate that describes a timestamp annotation (e.g. schema:observationDate, or ssn:resultTime296

from well-known ontologies such as SSN, SOSA, or Schema.org), and τ is the timestamp. For simplicity,297

we represent the timestamp of a stream element as τs. The named graph G contains the payload of the298

stream element. Then, a stream S is defined as an unbounded ordered sequence of stream elements:299

S = (. . . , si, . . . , sj, . . . )

In this sequence, for every si and sj, the order is established by their timestamps, i.e. τsi < τsj ,300

where τsk is the timestamp in Gt of the stream element sk. Furthermore each stream S may be identified301

by an IRI n, in a tuple (n, S).302

Given the unbounded nature of streams, windows are defined as a way to refer to portions of the303

stream over time, so that processing and querying operators can be applied. A window W applied304

over a stream S consists of a finite set of stream elements from S. Different strategies can be used to305

extract this finite subset of elements from the stream. In this work, we focus on time-based windows,306

defined as follows:307

Wu,v(S) = {s | s ∈ S and u ≤ τs < v}

In this time window, Wu,v the time parameters u, v represent an interval that delimits the contents308

of the window based on timestamps of the stream elements. Notice that a window length could be309

specified instead of the interval upper bound. To illustrate the usage of windows, we present an310

example of a CQELS [33] query (Listing 1) that obtains heartbeat measurements form a specific sensor,311

under a window of 2 seconds. In this case, the stream is identified through a URI, over which the312

window boundaries are specified. Notice that different strategies can be applied as to how and when313

the contents of the window are filled (e.g., when the window closes, or as soon as the window content314

changes).315
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316

317
PREFIX sosa: <http://www.w3.org/ns/sosa/>318

PREFIX m3lite: <http://purl.org/iot/vocab/m3-lite#>319

SELECT ?hearbeat320

WHERE {321

STREAM <http://hevs.ch/streams/user1/kneesensor> [RANGE 2s]322

{323

?obs sosa:madeBySensor ?hbSensor.324

?hbSensor a m3lite:HeartBeatSensor.325

?obs sosa:simpleResult ?heartbeat.326

}327

}328329

Listing 1: CQELS continous query over a stream of heartbeat observations.

4.2. Stream processing agent model330

A stream processing agent α can be formalized as a tuple with the following structure:331

α = (K, G, B, F)

Where K represents the agent’s beliefs, G corresponds to the goals, B represents the behaviors,332

and F, a selection function.333

The set of beliefs K is represented as RDF statements on a dataset. In the case of data streams, K334

may also include stream elements from one or more streams, available through the application of a time335

window, as explained above. As an example, consider Listing 2, which represents a sequence of RDF336

stream elements on a stream in JSON-LD format. This specific example shows heartbeat observations,337

each of which is contained on a timestamped graph, as indicated in the model introduced previously.338

The agent may use this information as part of its beliefs, although as the stream is potentially infinite,339

it may only keep the latest heartbeat values, typically bounded through a time window.340

341

342
{343

"@context": {344

"prov": "http://www.w3.org/ns/prov#",345

"sosa": "http://www.w3.org/ns/sosa/",346

"ex": "http://example.org#"},347

"@graph": [348

{ "prov:generatedAtTime": "2019-09-22T05:00:00.000Z",349

"@id": "ex:Graph1",350

"@graph": [351

{ "@id": "ex:heartbeatObs1",352

"sosa:simpleResult": 34.5 }] },353

{ "prov:generatedAtTime": "2019-09-22T05:00:05.000Z",354

"@id": "ex:Graph2",355

"@graph": [356

{ "@id": "ex:heartbeatObs2",357

"sosa:simpleResult": 44.5 }] }358

]359

}360361

Listing 2: RDF stream elements containing heartbeat observations in JSON-LD. This example shows
how stream elements can be represented as time-annotated graphs and containing RDF triples that
represent the stream contents (e.g. sensor observations).

G is a set of goals, which account for restrictions and targets defined for the agent. These may362

include time-bounded restrictions over the desired goals, which may have an impact on the real-time363

strict scheduling mechanisms, as we will see later.364

B represents the set of behaviors for the agent. Each behavior b ∈ B represents a strategy or365

procedure to solve a certain problem. Each behavior is characterized by the following elements366

b = (a, sela). a ∈ A is an action from the set A of actions that the agent can execute, while sela :367

K× (D, T)→ A is the function that defines which action to take depending on the current belief k ∈ K,368
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and the temporal restrictions: deadline (D) and period (T). The deadline is the maximum elapsed time369

to execute the action, while the period is the frequency at which the agent may launch the action.370

Finally, F is a selection function that specifies which behavior the agent will take, according to the371

current goals in G and beliefs in K.372

In this paper, for simplicity, we consider the case of simple behaviors, referred to as tasks. One373

particular task model is named periodic tasks (i.e., tasks whose execution recur endlessly after a374

fixed period T) [46]. Besides the period T, and relative deadline D this model of task also includes375

information such as the release time R, and computation time C (typically a worst-case estimation). To376

guarantee compliance with strict-timing constraints, the agent local scheduling algorithm evaluates377

the feasibility of its task-set based on the related utilization factor. In particular, the utilization factor Ub378

of a given task (periodic behavior) b in a task-set Γ is computed dividing its computation time Cb by379

its period Tb (when period is equal to deadline: T = D). Therefore, the utilization factor of a given380

agent α at a given time t is defined by381

Uα(t) = ∑
b∈Γ(t)

U with U =
C
T

(1)

Then, the task-set is considered feasible if its utilization factor is less (or equal) than the least upper382

bound (≤ Ulub) of its scheduling algorithm [46].383

4.3. Negotiation among RSP Agents384

RSP Agents interact with each other in a structured manner, through protocols based on existing385

standards for multi-agent cooperation, negotiation, and delegation. Among these protocols, we focus386

on those defined by FIPA [47]. In Figure 3 depicts two examples of standard FIPA negotiation protocols.387

Figure 3 (a) represents a request for a given task/data from a given initiator to a given participant. This388

latter can accept or refuse the request. If the answer is positive and the initiation awards the task389

execution, the participant will start performing it.390

Figure 3 (b) depicts a protocol in which the initiator launches a call-for-proposals (cfp), asking other391

agents to bid for the execution of a task. The participant then makes a proposal (or called bid), which392

can be accepted or rejected by the initiator.393

(a) FIPA: request protocol. (b) FIPA: call for proposals.
Figure 3. Examples of FIPA interaction protocols. The standard protocols establish the way in which
agents interact, providing an abstraction of generic message exchanges.

Using primitive negotiation protocols of this type as building blocks, RSP agents can develop394

more complex interactions among them. As an example, consider limb sensors producing continuous395

streams of movement observations in Figure 4. The first agent requires raw data from the second agent396

and thus performs a request, in the form of an RSP query. After agreeing, the second agent will inform397

the results of the request, but unlike a traditional request, it will stream the sensor data back. There are398
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different possible ways of actually implementing data delivery, as we will see in Section 5, but in a399

general sense, we can abstract the stream as a sequence of messages delivered in a specific order.400

Figure 4. Simple request interaction between two sensor agents: continuous RSP query. This interaction
can be embedded into a FIPA request protocol, with the addition of a continuous set of final responses
instead of a single one. The continuous query will expect multiple responses until the query is canceled
or its execution expires.

As another example of interaction among agents in digital physiotherapy in Figure 5, we illustrate401

a scenario in which the agent organizes and coordinates their work autonomously, on behalf of the402

sensors and devices they represent. First, two body sensors publish the tasks or behaviors they can403

provide, using a register agent as an intermediary. These tasks can refer, for example, to the provision404

of RDF streams of movement computation data, or physiological aggregated data. Then, the agent405

acting on behalf of the patient monitoring system asks the registry for metadata about those agents406

providing a specific type of task. Having the list of sensors that provide these features, it emits a cfp407

request, to which the sensor agents may bid, and get awarded the execution of the job. Once the bid is408

granted, the exchange of RDF streams can be established using a specific channel (e.g., MQTT, HTTP,409

and WebSocket).410

Figure 5. Call-for-proposal interaction among stream processing agents. This interaction can be
represented as a FIPA call-for proposals, in which sensor agents publish the tasks they can provide
(e.g. sensing and monitoring) in a register agent. Then an application agent can request for agents who
are capable of a certain tasks, and emit a cfp. After a bid is performed, the task can be sscheduled and
executed.

The protocol described above shows the capacity of RDF stream agents to establish collaboration411

strategies in a decentralized manner. However, to allow the compatibility and understanding of412

the protocols, it is essential to represent these interactions through semantic and machine-readable413

standards. In Listing 3 we show an excerpt of a FIPA call-for-proposals in JSON-LD, which can be used414

as a message exchanged among RSP agents, e.g. for a scenario such as the one in Figure 5.415

416

417
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{418

"prov:generatedAtTime": "2017-09-14T04:00:00.000Z",419

"@id": "ex:callForProposals1",420

"@graph": [421

{ "@id": "ex:cfp1",422

"ag:permormative": "ag:CallForProposals",423

"ag:sender": "ex:agent1",424

"ag:protocol": "ag:ContractNet",425

"ag:ontology": "http://example.org/healthOntology#",426

"ag:content": "..." }],427

"@context": {428

"prov": "http://www.w3.org/ns/prov#",429

"ex": "http://example.org#",430

"ag": "https://w3id.org/rdf-agents/msg#"}431

}432433

Listing 3: FIPA call for proposal message represented in JSON-LD. This example shows an excerpt
of a message emitted by an agent soliciting a service or task to which other agents may bid for. The
message itself is repreented in RDF and is exchanged through the RSP agent interfaces.

The proposed model presented in this section essentially contributes on three main novel aspects434

with respect to the state of the art: (i) the addition of real-time constraints in the RDF stream processing435

model; (ii) the modelling of RDF stream processors (or reasoners) as decentralized agents; and (iii) the436

alignment of RSP agent interactions as extensions to standard multi-agent system protocols, with a437

particular accent on sensor-based application such as digital rehabilitation.438

5. An agent-based architecture for decentralized RDF Stream Processing439

The model described in the previous section introduces the notion of stream processing agents,440

capable of acting according to beliefs and goals (e.g., knowledge) represented as RDF streams, and441

including real-time constraints. The streaming nature of the data exchanged by these agents makes it442

necessary to change certain paradigms regarding the delivery and processing of data, leaning towards443

continuous data processing mechanisms. The Web provides the necessary infrastructure and standards444

for enabling decentralized communication and interaction among software agents and constitutes an445

appropriate foundation layer for the implementation of the model in Section 4. To successfully make446

RDF streams available on the Web, Dell’Aglio [11] outlined a set of requirements partially derived from447

the more general guidelines for stream processors [48]. These can be summarized as (1) prioritizing448

active paradigms for data exchange, (2) combination of streaming and stored data, (3) availability,449

distribution, and scalability, (4) wide range of stream operations, (5) availability of stream metadata,450

(6) support for a variety of streams, and (7) reuse of existing protocols and standards.451

While we endorse these requirements in general, this paper emphasizes the need for guaranteeing452

that RSP engines interact with each other in a decentralized manner, following the nature of the Web.453

This implies a departure from the usual setting in previous RSP approaches, where a server-centric454

paradigm governs continuous query processing and data flows among entities. An example of such455

an approach is reflected in the interaction patterns of a continuous query workflow, where the entire456

focus is solely on the query engine server.457

We propose an architecture centered on RSP agents (i.e., autonomous agents that can be deployed458

in a distributed fashion and that are able to communicate and exchange RDF streams) and their459

corresponding metadata (Figure 6) through their inbox.460

As described in the model, each RSP agent encapsulates a set of beliefs, goals, and behaviors, and461

interacts with other agents exchanging messages and streams of data through its inbox. Each agent462

may act as a sender or receiver of two main types of messages:463

• RDF stream elements: these are RDF triples or graphs from a given RDF stream, as defined in464

Section 4. The stream delivery of these messages, either pulled or pushed, can be applied in465

different scenarios (e.g., feeding a stream, delivering query answers, and pushing reasoning466

entailments).467
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Figure 6. RSP Agents architecture. Each agent encapsulates beliefs, goals and behavior, and manages
incoming messages through its mailbox. The execution of real-time constrained tasks is governed by
an internal scheduler, and the constraints themselves are included in the agent behavior. Ontologies
and vocabularies are included as part of the agent beliefs or knowledge, as well as the contents of
dynamic stream that the produce/consume. Interactions among RSP agents happen through RDF
message exchange of either metadata or continuous RDF streams.

• RDF stream metadata: these are essentially metadata messages required to perform tasks such as468

retrieving a stream description, declaring and RDF stream, filter a set of stream endpoints, and469

declaring a query.470

Each agent is linked to a unique identifier that can be used to locate it, and it can have a set of471

endpoints, which can be used to reach the RSP agent resources (i.e., its streams and metadata). The472

resources of each RSP agent includes the metadata of the RDF streams it manages, as well as other473

information relative to them (i.e., background RDF datasets, RDF stream buffers, ontology TBoxes,474

and RDF constraint rules). Not all of these resources need to be accessible to other agents. The goals475

and beliefs of the agent are typically private, and may evolve over time, as they may be affected by476

changes in incoming RDF streams. The behavior of each agent defines how it proceeds at the arrival477

of incoming messages. In particular, it typically implements internal processing mechanisms such as478

continuous query processing, complex event processing, and stream reasoning. To do so, the agent479

may emit new messages (e.g., response to a query), create new agents (e.g., a pushing emitter, or a480

subscriber handler), or schedule other actions (see Figure 6).481

Regarding the requirements mentioned above, this architecture addresses them in the following482

ways. For requirement 1, it natively supports asynchronous message passing, including the ability to483

push streams of messages if necessary. Concerning the combination of streams and stored data, the484

model takes a no-sharing approach for state information, so, in principle, any stored RDF data is only485

locally accessible and modifiable. The solely allowed procedure to exchange it is through message486

delivery, which is fundamental also to guarantee scalability and distribution (requirement 3). The487

behavior of each RSP agent allows sufficient freedom and flexibility to implement different types of488

operators and processing mechanisms (requirement 4), while the explicit definition of RDF stream489

metadata covers (requirement 5). The variety of streams is not restricted by the model (requirement 6),490

and the usage of well-established standards is also advocated.491

Finally, the execution of behaviors is governed by the scheduler component, which may include492

different strategies [49] depending on the type of tasks and the constraints it may have. In particular,493

in this paper we refer to real-time compliance to strict deadlines for task execution, as described in494

Section 4.495
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5.1. Messages and Notifications in RSP Agents496

The RSP agent architecture attributes particular importance to the exchange of messages, as they497

are the basic way to share information and coordinate interactions. The architecture adopts specific498

considerations about how the messages (also called notifications) are handled, taking into account the499

differences in dealing with streaming vs. stored RDF data.500

501

Format & vocabularies. Messages in RSP agents fall under two fundamental categories: RDF stream502

elements, and RDF stream metadata. In both cases, RDF is the underlying data model used to503

represent the information that is exchanged, although there are minimal expectations. For RDF stream504

elements, these are expected to conform to the general RDF stream abstract model, as described by505

the W3C RSP Community Group 3 and as in Section 4. However, this abstract model provides high506

flexibility concerning the use of a particular vocabulary (e.g., using the SSN ontology for representing507

sensor streams, the Event ontology for streams of events, or the PROV ontology for provenance508

descriptions). Concerning the metadata, it would be advisable to provide a standard vocabulary for509

RDF stream descriptions, as proposed in [50], although this goes beyond the scope of this paper.510

511

Message storage. RSP engines are designed in such a way that RDF stream elements flow through512

them, and produce continuous results. Therefore, the stream is not stored, at least not in the way it is513

done in a traditional database or data store. Consequently, RDF stream elements are accessed through514

time windows, as in the RSP model, and older messages are bound to fade as time passes.515

516

Message resolvability. As a consequence of the previous observation, it is hard to allow stream517

messages to be retrievable after an RSP agent has processed them. This differs from other RDF/Linked518

Data use cases where data dynamics do not follow a streaming paradigm. As we will see later, this519

leads to the introduction of input and output RDF streams, which restrict RSP agents to either only520

write or read from a stream. In any case, resolving a particular stream element is of less importance in521

the context of RSP, than resolving the current contents of a stream, or a view over a stream.522

523

Push message delivery. While on traditional Web standards, pulling is the primary method524

for delivering data (e.g., through HTTP GET/POST requests), it is not always the most suitable525

option for data streams. As described below, our proposed RSP agent architecture provides526

alternative delivery methods, allowing the usage of WebSocket or HTTP Server-sent-events. The527

abstract description of the RSP agent leaves the message delivery method open for either of the options.528

529

Querying. Given the ubiquity of query access patterns in RDF stream processing, it would be natural530

to include explicit interaction specifications for registering standing queries, as well as accessing their531

results as streaming notifications. This applies not only for window-based continuous queries, but532

also for Complex Event Processing, and given use cases in stream reasoning.533

5.2. Stream Receivers, Senders and Consumers534

The RSP agent architecture specifies three main types of agents: Stream Receiver, Stream Sender,535

and Stream Consumer. An RSP agent may play the role of one or all of these types.536

5.2.1. Stream Receiver537

The Stream Receiver is a profile for an RSP agent that is capable of receiving and processing the538

following types of messages:539

3 https://www.w3.org/community/rsp/

https://www.w3.org/community/rsp/
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• RetrieveAllStreams: to request metadata of all RDF streams registered in the receiver agent.540

• CreateStream: to request the declaration of an RDF stream. This message includes the metadata541

of the RDF stream to be created.542

• RetrieveStream: to request for the metadata of a given RDF stream in the receiver agent. Its IRI543

identifies the requested stream.544

• SendStreamItem: to add a stream element to an existing RDF stream residing in the requested545

receiver agent. This message includes the stream element itself, as well as the RDF stream IRI.546

• RetrieveStreamItem: to request for a specific stream element. The message includes the IRI of the547

RDF stream and the element itself. As in-stream systems and element might be volatile, in the548

sense that it might not be de-referenceable after some time, this message also includes views549

over stream elements (e.g., based on time recency)550

• PushStreamItems: to request for stream items to be pushed back. The message includes the RDF551

stream IRI.552

• CreateQuery: to request for a continuous query to be registered. The query includes the reference553

to the stream IRIs to be used and the IRI of the resulting stream of responses.554

The Stream Receiver will act upon arrival of any of the above messages to its inbox. We show in555

Algorithm 1 a sketch of how the agent reacts to these messages. The receive method of the agent is the556

interface used to indicate what action to take in each case.557

Algorithm 1 Stream Receiver: receive function
1: procedure RECEIVE(msg)
2: sender ← msg.sender
3: switch msg:
4: case RetrieveAllStreams:
5: send(getAllStreams) to sender
6: case CreateStream:
7: ack← postInputStream(msg.body)
8: send(ack) to sender
9: case RetrieveStream:

10: send(getStream(msg.uri) to sender
11: case SendStreamItem:
12: postStreamItem(msg.uri, msg.body)
13: case RetrieveStreamItem:
14: send(retrieveStreamItem(r.uri)) to sender
15: case PushStreamItems:
16: handler ← pushStreamItems(msg.uri)
17: handler.onReceive(data) :
18: send(data) to sender
19: case CreateQuery:
20: ackgetspostQuery(msg.body)
21: send(ack) to sender

The steps taken are self-explanatory in most cases. The Stream Receiver calls internal methods,558

for instance to create a stream (postInputStream) or to retrieve a stream item (retrieveStreamItem). In559

practice, these methods will be implemented on top of exiting RSP, CEP, or stream reasoners, binding560

their native implementations to this interface.561

The Stream Receiver can manage several RDF streams registered within it. Streams may be of two562

different kinds:563

• Input streams: these streams are essentially meant only to receive new items, but are not intended564

to be consumed by other agents other than the one that hosts it. Examples of such streams are565

those used as input for RSP queries: other RSP agents can feed these streams, but the query566

processor on the Stream Receiver is the only one that consumes it.567

• Output streams: these are those RDF streams that are meant to be consumed by other RSP agents,568

but fed only by the agent that hosts it. An example of such a stream is the continuous result of an569

RSP query engine.570

RDF streams can also be available as both input and output.571
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Figure 7. RSP Stream Receiver, processes incoming messages from the sender that posts RDF stream
items, and sends RDF stream items to a consumer. In case of real-time constraints, the scheduler will
rely on a real-time compliant strategy to satisfy the established policies.

5.2.2. Stream Sender572

This type of RSP agent characterizes those interactions related to sending RDF metadata, as well573

as RDF stream contents to another agent. The sender defines the following basic operations:574

• postStream: send RDF stream metadata to declare it on a Stream Receiver. The sender emits a575

CreateStream message through this operation.576

• postStreamItem: send and RDF stream element to an (input) stream on a given Stream Receiver.577

This is typically a feed stream message.578

• postQuery: register a query on a Stream Receiver with a CreateQuery message.579

Apart from these operations, a sender must also be able to discover the Stream Receiver endpoints.580

For this, it has a discover operation, which for a given stream IRI, requests the endpoint or endpoints581

available for sending (or consuming) stream elements. The sender also has operations to retrieve582

the metadata of a given RDF stream, or all available RDF streams on a receiver (getStream, and583

getAllStreams, respectively). These operations are common to a Stream Consumer, described below.584

5.2.3. Stream Consumer585

A Stream Consumer characterizes RSP agent interactions relative to receiving RDF stream data. It586

essentially defines two operations:587

• getStreamItem: requests to consume an RDF stream item. Implementations of this operation can588

derive different strategies for retrieving RDF stream contents. Given the dynamicity of streams,589

it is usually unfeasible to collect them one by one through their identifiers. Alternatively, these590

implementations may rather rely on stream views that may capture, for example, the latest591

stream items on a given window of time, or the ones complying to some filtering criteria.592

• pushStreamItems: requests stream items to be pushed to the consumer. Conversely to the previous593

operation, which is essentially poll-based, this one requests the receiver to act as a sender as soon594

as there is an RDF stream element available for consumption.595

For example, let us consider the Stream Receiver depicted in Figure 7. First, it receives a message596

on its inbox, requesting the metadata of a specific stream. The receiver dispatches back the metadata597

to the requester, which then post new elements to this stream. Then a consumer may also request598

a specific stream item to the receiver through a corresponding message. To make these interactions599

possible, the agents need to have first the addresses of the other agents, and if necessary, discover their600

endpoint locations.601

The RSP agent architecture detailed in this section constitutes a first specification of how the stream602

reasoning agents vision [9] can be implemented. Beyond existing stream processing engines for RDF603

data and stream reasoners, which typically work based on top-down organization and communication604

approaches, this architecture relies on decentralized RSP agents, capable of self-organizing and605

coordinating processing actions and streaming data exchange.606
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6. Stream processing agents simulation607

To design and assess the behavior of a real-time compliant multi-(streaming)-agent system for608

digital rehabilitation, we have set up a virtual environment using the MAXIM-GPRT [51] simulator.609

More precisely, the case study presented in Section 3 has been used to define scenarios in which610

real-time compliance is assessed, under different conditions and parameters. The simulator enables611

the design and analysis of multi-agent behaviors composed of both General-Purpose (GP) and612

Real-time (RT) algorithms. Therefore, MAXIM-GPRT has been used to design, simulate, and assess the613

performance of several agents’ setups with respect to performance metrics such as compliance with614

strict timing constraints (deadline miss ratio), utilization factors, negotiated workload, response time,615

and lateness.616

6.1. Simulated Scenarios and Setups617

We studied the following scenarios in the context of digital rehabilitation:618

S1: One physiotherapist, One patient, Two sensors;619

S2: One physiotherapist, Two patient, Two sensors;620

S3: One physiotherapist, One patient, Five sensors.621

The S1 scenario can refer to a simple rehabilitation setting, in which body sensors capture622

motion data from a specific part of the body (e.g., knee movement) during particular exercises. The623

patient monitoring application is also represented through an agent, which can coordinate with the624

physiotherapist agent. S2 refers to a similar scenario, but extended to more than one patient. The625

scenario in S3 considers more motion sensors (and agents), for more complex rehabilitation treatments.626

These scenarios serve as a basis for exploring the potential of the agent-based architecture and allow a627

system designer to choose the most suitable configuration for a given situation.628

These scenarios have been studied considering real-time assumptions for negotiation and629

interaction among agents. In particular, according to [13], (i) Earliest Deadline First (EDF) has been630

employed as agent local scheduler (coupled with the Constant Bandwidth Server - CBS - to deal with631

sporadic and aperiodic tasks) [46]; (ii) it has been assumed a bounded-time delay (e.g., between 10632

and 50 milliseconds) communication middleware (RTPS-like) [52,53]; and (iii) the Reservation-Based633

Negotiation protocol (RBN) has been used to enforce a real-time compliant task negotiation among634

the agents [54]. Moreover, to analyze and prove the unsuitability of best-effort approaches (e.g.,635

general-purpose such as FIFO and RR-like) in the studied scenarios, S3 has been studied only varying636

the agent local scheduler (i.e., FIFO) and the negotiation protocol (i.e., contract Net - CNET [55])637

keeping unaltered inputs and communication middleware. Hereafter, we refer to S3 as S3rt (real-time638

configuration) and S3gp (general-purpose configuration).639

For the sake of clarity, MAXIM-GPRT allows several more real-time and general-purpose640

configurations. However, assessing the impact of every available algorithm with respect to this641

case study goes beyond the scope of this paper. The configuration mentioned above produced642

sufficient results to well identify and explain the challenges, capabilities, and performances of both643

general-purpose and real-time algorithms at the service of streaming-agents for digital rehabilitation644

purposes. Table 1 details the general setups of the tested scenarios and Figure 8 shows the role of every645

agent per scenario.646

Scenario N. of
agents

Comm. delay
(milliseconds)

Sim. time
(seconds)

DF
scheduler

DF
server

Agent local
scheduler

Agent
server

Negotiation
protocol

Contractor
heuristic

Award
heuristic

S1 4 10∼50 200 EDF CBS EDF CBS RBN ALL BEST
S2 7 10∼50 200 EDF CBS EDF CBS RBN ALL BEST

S3rt 7 10∼50 200 EDF CBS EDF CBS RBN ALL BEST
S3gp 7 10∼50 200 FIFO - FIFO - CNET ALL BEST

Table 1. General setup of the scenarios.
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Figure 8. Simulated configurations for S1, S2 and S3. S1 represents a single patient multi-agent scenario,
S2 a simultaneous two-patient scenario, and S3 a multi-agent scenario with multiple coordinating
body-sensors.

In this study, we have used simple behaviors, which for simplicity are referred as tasks.647

In particular, we have employed both periodic tasks (recurring after a constant period) and648

aperiodic/sporadic task models (the arrival of the task is not predictable) [46]. Every periodic task is649

characterized by a task id, the agent executor (Ex), the agent demander (Dm), the worst case of their650

computational time (C), the release time (R), a period (T), a relative deadline (D), first activation ( f .R.),651

last activation (l.R), a flag indicating if that task is public (Pub) — meaning that the agent is willing to652

perform it on demand, and a flag indicating if such a task is just part of the agent’s knowledge or if it653

part of its running task-set. Moreover, if the task is aperiodic, T cannot be applied. Nevertheless, it can654

be indicated, if any, a number of executions (n) and an associated server to bound its execution [46]. In655

particular, Task id, Ex, Dm, and S are integers IDs; C is measured in CPU-clock cycles — normalized in656

instances of time measured seconds [46]; and R, T, f.R, and l.R are instances of time — expressed in657

seconds.658

To enable the agents to demand a task execution, we implemented the concept of need. Such a659

need is characterized by id of the agent willing to require for its execution, a need id, a release time660

(R), the duration of the bidding window to negotiate its execution (W), a starting time to begin the661

task execution (RT) and its finishing time (TD), a number (n) of executions (if not periodic), and a662

max (maxT) and min (minT) period to execute the demanded task (used only in specific conditions663

specified at negotiation time). In particular, Need id, Agent id, and task(s) are integer IDs; and R, W,664

TR, TD, MinT, and MaxT are expressed in seconds. Although the configurations and the workloads665

have been changed among the scenarios studied, the semantics of the task has been kept the same (see666

Table 2). The needs generation depends on the specific application scenario (e.g., the need for a specific667

inertial information given a particular rehabilitating joint.668

Fostering fairness, the server handling common aperiodic communication tasks (e.g., read and669

write messages) have been kept uniform for all the agents among all the scenarios, and are characterized670

as shown in Table 3671

Task Behavior
τ0 Kernel task
τ1 read message
τ2 write message
τ3 compute inertial information
τ4 compute inertial information
τ5 display graphical information
τ6 synchronization task
τ7 on-board data elaboration
τ8 MIDI signal reproduction

Table 2. Task descriptions.

Server id Agent Budget Period Type Task(s) served
S100 all 1 10 CBS τ1
S200 all 1 10 CBS τ2

Table 3. Common server characterization.
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6.1.1. Scenario S1672

As shown in Figure 8(a), the mapping agent - device is the following: agent0→ physiotherapist673

device, agent1→ patient device, agent2→ femur sensor, agent3→ tibia sensor. In this scenario, the674

kernel tasks have been setup uniform among the devices of the same type. For example the kernel675

tasks τ0 are the same for both physiotherapist and patient device, and the same among femur and tibia676

sensor. The complete characterization of the task-sets employed in this scenario is detailed in Table 4.677

Table 5 details the needs used to generated the dynamics represented in Figure 8(a). In particular, given678

the agents and tasks distribution of this scenario, agent0 needs the information from the participant (in679

this case, the data are made available by the agent1, the agent executing on the tablet/smartphone of680

the only participating patient). In turn, agent1 needs the inertial information from the wearable sensors681

(to compute the aggregated plots) — thus it will ask them to agent2 and agent3.682

Agent id Task id Ex Dm C R T D n f.R l.R S Pub Act
0 0 0 0 3 0 20 20 -1 - - - 7 3

1 0 0 1 - - - - - - S100 7 3

2 0 0 1 - - - - - - S200 7 3

1 0 1 1 3 0 20 20 - - - - 7 3

1 1 1 1 - - - - - - S100 7 3

2 1 1 1 - - - - - - S200 7 3

5 1 - 4 - 20 20 - - - - 3 7

2 0 2 2 2 0 15 15 - - - - 7 3

1 2 2 1 - - - - - - S100 7 3

2 2 2 1 - - - - - - S200 7 3

3 2 - 4 - 20 20 - - - - 3 7

3 0 3 3 2 0 15 15 - - - - 7 3

1 3 3 1 - - - - - - S100 7 3

2 3 3 1 - - - - - - S200 7 3

4 3 - 4 - 20 20 - - - - 3 7

Table 4. Agents’ task-set for Scenario S1.

Agent id Need id R W TR TD n MinT MaxT Task(s)
0 0 4 10 70 200 - 20 25 5
1 0 5 10 60 200 - 20 20 3

1 5 10 60 200 - 20 20 4
Table 5. Agents’ needs for Scenario S1.

It is worth to recall that a task-set ΓJ of a given agent j is feasible if its utilization factor is less (or683

equal) than the least upper bound4 (≤ Ulub) of its scheduling algorithm [46]. The utilization factor Uk of684

a single task τk is computed dividing its computation time Ck by its period Tk
5: Uk =

Ck
Tk

. Therefore,685

the utilization factor of a given agent aj at a given time t is defined by686

U j(t) = ∑
τk∈Γj(t)

Uk (2)

Figure 9 shows the trend of the utilization factors of all the agents taking part in S1. It is possible687

to notice that the utilization of each agent does not exceed the upper bound (Ulub ≤ 1) defined for the688

tested scheduling algorithm (EDF).689

All the negotiated needs (see Table 5) have been accepted. Hence, as visible in Figure 9, agent 2,690

agent 3, and agent 4 increase their utilization U at a certain point. In particular, looking at Figure 10, it691

is possible to see that the basic utilization of agent 2 is U = Uτ1 + US100 + US200 = (3/20) + (1/10) +692

(1/10) = 0.35. At t = 8.06s, agent 2 negotiates the execution of the task τ5. According to the RBN693

4 For example, in the case of algorithms such as EDF and CBS Ulub = 1.
5 In the case where the period Tk and deadline Dk are equal.
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Figure 9. Agens utilization over the simulated time [0 - 200s] in scenario S1. y-axis: utilization
(adimensional); x-axis: time (seconds).

protocol, the acceptance of a new task is subject to the schedulability test [49]. In this case, adding the694

τ5 to its task-set would bring its potential utilization factor to Upot = 0.55 (see black circle in Figure 12).695

The negotiation ends with agent 0 awarding the execution of τ5 to agent 1. When agent 1 receives such696

a communication turns its Upot in actual U (see t = 18.06s in Figure 10).697

Figure 10. Utilization factor of agent 2 [0-200s] in scenario S1. y-axis: utilization (adimensional); x-axis:
time (seconds).

Figure 11 shows the response time for all the tasks executed by agent 2. It is possible to notice that698

the design tested in this scenario generates linear response time with negligible exceptions due to a699

few moments of intense message exchange.700

Moreover, starting from t = 67s (see Figure 12), it is possible to see the timely execution of τ1701

(twice, reading the inertial positions shared by agent 2 and agent 3) and τ5 plotting those information702

on the screen of the used device.703
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Figure 11. Response time of tasks performed by agent 2 in scenario S1. y-axis: response time (seconds);
x-axis: time (seconds).

Figure 12. Graphical representation of the local scheduler of agent 2 in scenario S1, [0-200s]. Due to
the length of the selected period, the timeline is depicted in three lines. The task τ5 (in orange) timely
displays information after the inertial positions were reported from the agent sensors.
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6.1.2. Scenario S2704

To implement the scenario shown in Figure 8(b), the mapping agent - device is the following:705

agent0→ physiotherapist device, agent1→ patient 1 device, agent2→ femur sensor (patient 1), agent3706

→ tibia sensor (patient 1), agent4→ patient 2 device, agent5→ femur sensor (patient 2), and agent6→707

tibia sensor (patient 2).708

To replicate the same conditions per patient, even in S2, the kernel tasks have been setup uniform709

among the devices of the same type (see Table 6). The complete characterization of the task-sets710

employed in this scenario is detailed in Table 6. Table 7 details the needs used to generated the711

dynamics represented in Figure 8(b). In particular, in this scenario, we have two patients (with two712

sensors and one tablet/smartphone each) and one physiotherapist. Therefore, agent0 will demand713

aggregated information to agent1 and agent4, which, in turn, will demand inertial information to714

respectively agent2 and 3 and agent4 and 5.715

Agent id Task id Ex Dm C R T D n f.R l.R S Pub Act
0 0 0 0 3 0 20 20 -1 - - - 7 3

1 0 0 1 - - - - - - S100 7 3

2 0 0 1 - - - - - - S200 7 3

1 0 1 1 3 0 20 20 - - - - 7 3

1 1 1 1 - - - - - - S100 7 3

2 1 1 1 - - - - - - S200 7 3

5 1 - 4 - 20 20 - - - - 3 7

2 0 2 2 2 0 15 15 - - - - 7 3

1 2 2 1 - - - - - - S100 7 3

2 2 2 1 - - - - - - S200 7 3

3 2 - 4 - 20 20 - - - - 3 7

3 0 3 3 2 0 15 15 - - - - 7 3

1 3 3 1 - - - - - - S100 7 3

2 3 3 1 - - - - - - S200 7 3

4 3 - 4 - 20 20 - - - - 3 7

4 0 4 4 3 0 20 20 - - - - 7 3

1 4 4 1 - - - - - - S100 7 3

2 4 4 1 - - - - - - S200 7 3

6 4 - 4 - 20 20 - - - - 3 7

5 0 5 5 2 0 15 15 - - - - 7 3

1 5 5 1 - - - - - - S100 7 3

2 5 5 1 - - - - - - S200 7 3

7 5 - 4 - 20 20 - - - - 3 7

6 0 6 6 2 0 15 15 - - - - 7 3

1 6 6 1 - - - - - - S100 7 3

2 6 6 1 - - - - - - S200 7 3

8 6 - 4 - 20 20 - - - - 3 7

Table 6. Agents’ task-set for Scenario S2.

Agent id Need id R W TR TD n MinT MaxT Task(s)
0 0 4 10 70 200 - 20 25 5

1 4 10 70 200 - 20 25 6
1 0 5 10 60 200 - 20 20 3

1 5 10 60 200 - 20 20 4
4 0 5 10 60 200 - 20 25 7

1 5 10 60 200 - 20 25 8
Table 7. Agents’ needs for Scenario S2.

The Scenario S2 is based on S1, doubling the number of participants (and therefore the number716

of sensors). On the one hand, the behaviors characterizing patient 1 and his/her device and sensors717

(agent 1, agent 2, and agent 3) and patient 2 and his/her device and sensors (agent 4, agent 5, and agent 6)718

remained unaltered. On the other hand, the sole actor potentially affected by the growth of patients is719

the physiotherapist, therefore agent 0.720

Hence, although increasing the number of patients does not impact on the response time of the721

kernel task of agent 0 (see Figure 14b) the response time to process the incoming messages has already722
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Figure 13. Agents Utilization over the simulated time [0 - 200s] in scenario S2. y-axis: utilization
(adimensional); x-axis: time (seconds).

been affected, in some cases doubling its value. Figure 14a shows the response time of the agent 0 in S1723

and Figure 14b shows its response time in S2. While agent 0 is still respecting strict timing constraints,724

the demand for more stringent performance may, at a certain point, require to adapt the system design725

to the scale of the application domain.726

(a) Response time of agent 0’s tasks in S1. (b) Response time of agent 0’s tasks in S2.
Figure 14. Response times in scenarios S1 and S2. y-axis: response time (seconds); x-axis: time (seconds).

6.1.3. Scenario S3rt727

To simulate behaviors and conditions represented in Figure 8(c), the mapping agent - device is the728

following: agent0→ physiotherapist device, agent1→ patient device, agent2→ right arm sensor, agent3729

→ chest sensor, agent4→ left arm sensor, agent5→ right femur sensor, and agent6→ left femur sensor.730

To simulate sensor heterogeneity, in S3rt, it has been assumed different workloads for the several731

kernel and specific tasks. The complete characterization of the task-sets employed in this scenario is732

detailed in Table 8. Table 9 details the needs used to generated the dynamics represented in Figure 8(c).733

In particular, agent0 demands for the usual aggregated data, to the only participant (agent1), which, in734

turn, demands inertial information to all the distributed wearable sensors to compute the complex735

kinematics of the motor tasks targeted in this scenario.736

The execution of the tasks and needs listed above produces the utilization factors plotted in737

Figure 15. As we can see, beside agent 0 and agent 1 which remained unaltered, the dynamics generated738

by the release of the needs affected the rest of the agents (especially given their higher utilization739

factors).740

Indeed, in S3rt, only part of the need have been satisfied. In particular, agent 1 and agent 5 recorded741

100% of acceptance and agent 3 and agent 6 accepted only 50% of the demanded tasks. To understand742

such behavior, let us look at Figure 16. Agent 3 has positively answered (bidded) to the execution of743

a task, which would bring its utilization to U = 0.53. Before the confirmation (award) of such a bid,744
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Agent id Task id Ex Dm C R T D n f.R l.R S Pub Act
0 0 0 0 3 0 20 20 -1 - - - 7 3

1 0 0 1 - - - - - - S100 7 3

2 0 0 1 - - - - - - S200 7 3

1 0 1 1 3 0 20 20 - - - - 7 3

1 1 1 1 - - - - - - S100 7 3

2 1 1 1 - - - - - - S200 7 3

5 1 - 4 - 20 20 - - - - 3 7

2 0 2 2 2 0 15 15 - - - - 7 3

1 2 2 1 - - - - - - S100 7 3

2 2 2 1 - - - - - - S200 7 3

3 2 - 4 - 20 20 - - - - 3 7

3 0 3 3 2 0 15 15 - - - - 7 3

1 3 3 1 - - - - - - S100 7 3

2 3 3 1 - - - - - - S200 7 3

4 3 - 4 - 20 20 - - - - 3 7

8 3 - 11 - 16 16 - - - - 3 7

4 0 4 4 6 0 11 11 - - - - 7 3

1 4 4 1 - - - - - - S100 7 3

2 4 4 1 - - - - - - S200 7 3

7 4 - 15 - 16 16 - - - - 3 7

5 0 5 5 3 0 15 15 - - - - 7 3

1 5 5 1 - - - - - - S100 7 3

2 5 5 1 - - - - - - S200 7 3

3 5 - 6 - 23 23 - - - - 3 7

6 0 6 6 4 0 15 15 - - - - 7 3

1 6 6 1 - - - - - - S100 7 3

2 6 6 1 - - - - - - S200 7 3

6 6 - 9 - 20 20 - - - - 3 7

Table 8. Agents’ task-set for Scenario S3rt.

Agent id Need id R W TR TD n MinT MaxT Task(s)
0 0 4 10 70 200 - 20 25 5
1 0 5 35 60 200 - 20 20 3

1 5 35 60 200 - 20 25 4
3 0 6 10 60 200 - 20 20 3

1 10 10 80 200 - 20 20 6
4 0 15 10 80 200 - 20 25 6
5 0 25 10 100 200 - 16 16 8
6 0 35 10 90 200 - 20 20 7

Table 9. Agents’ needs for Scenario S3rt.

Figure 15. Agents Utilization over the simulated time [0 - 200s] in scenario S3rt. y-axis: utilization
(adimensional); x-axis: time (seconds).

agent 3 receives a second request. According to the RBN protocol, an agent can accept the execution745

of a given task only if it can allocate it (without overcoming its maximum utilization factor). In this746
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case, the schedulability test performed at t = 29.06s to verify the possible allocation of the second747

negotiated tasks brings its utilization at U = 1.22. Therefore, the bid for such a task has been negative748

(rejected). In turn, at t = 48s, the first bid has been awarded. Thus, the potential utilization factor turns749

into effective utilization.750

Figure 16. Agent 3 Utilization over the simulated time [0 - 200s] in scenario S3rt. y-axis: utilization
(adimensional); x-axis: time (seconds).

Finally, let us analyze agent 5 to see how it is performing with the utilization is U = 1, the751

theoretical maximum to still ensure predictability.752

(a) Utilization over 200s of the agent 5 in S3rt. y-axis:
utilization (adimensional); x-axis: time (seconds).

(b) Response time over 200s of the agent 5 in S3gp.
y-axis: response time (seconds); x-axis: time (seconds).

Figure 17. Utilization and response time of agent 5 in S3rt.

Initially, its utilization is U = 0.4 (due to running τ0, τ1, and τ2). At t = 10.07s it receives a first753

request for the execution of τ3, which, if accepted, would raise its utilization to U = 0.7. Right after, at754

t = 12.07s, it receives a second request for executing τ3. At t = 12.07s, agent 5 has not received yet an755

answer (award/rejection) for the previous bid. Thus, besides its actual utilization is still U = 0.4, it has756

to consider its potential utilization Upot = 0.7 to perform the schedulability test. Bidding positively to757

both the requests would bring its potential utilization to Upot = 1. So, it bids positively once again. At758

t = 21.12s and t = 45.01s, it gets respectively awarded its two bids. Therefore, as visible in Figure 17a759

its Upot turns into U.760

Although operating on the edge of its capabilities, agent 5 does not record any deadline miss761

during the entire simulation. Nevertheless, high variability in the response time can be acknowledged762

(see Figure 17b). To refine the response time, adjustments on the initial design might be required. The763

MAXIM-GPRT tool can be a valuable support in such a process.764

6.1.4. Scenario S3gp765

In the scenario S3gr, it has been used the same task-set of used in S3rt (see Table 8) and the same766

needs distribution and characterization (see Table 9).767
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However, considering the general-purpose nature of the underlying mechanisms (FIFO as agent local768

scheduler and CNET as negotiation protocol), no timing guarantee con be enforced nor predicted [13,769

49,54]. Hence, over 200 seconds of simulation, agent 3 misses 8% and agent 4 misses 52% of their770

deadlines. Figure 18 shows that agent 3 at t = 40s refuses to execute a task that would raise its771

utilization at U = 1.5 (which would have entailed unpredictable consequences).772

(a) Utilization over 200s of the agent 4 in S3rt (b) Utilization over 200s of the agent 4 in S3gp.
Figure 18. Comparison among the utilization of agent 4 in S3rt and S3gp. y-exes: utilization
(adimensional); x-axes: time (seconds).

The combination of FIFO and CNET lacks mechanisms typical of real-time systems crucial to773

handle workloads, deadlines, and strict timing constraints. Hence, in S3gp, agent 4 accepts to execute774

the demanded tasks. As a result, both the tasks executed by agent 4 record deadline miss. Clearly, in the775

scenario S3rt, agent 4 has a more conservative (refusing to execute the demanded task), Conversely, in776

S3gp agent 4 is more flexible (accepting the demanded task), which, however, resulted in compromising777

its predictability and reliability. To better understand the visibly different response time provided by778

agent 4 in the two tested scenarios, Figure 19 shows the performances recorded.779

(a) Response time over 200s of the agent 4 in S3rt. (b) Response time over 200s of the agent 4 in S3gp.
Figure 19. Comparison among the response time of agent 4 in S3rt and S3gp. y-exes: response time
(seconds); x-axes: time (seconds).

Although less, the flexibility of the general-purpose algorithms cost to the agent 3 to record 8%780

of deadline miss. The comparison of the response time among scenario S3rt and S3gp is shown in781

Figure 20.782

(a) Response time over 200s of the agent 3 in S3rt (b) Response time over 200s of the agent 3 in S3gp.
Figure 20. Comparison among the response time of agent 4 in S3rt and S3gp. y-axes: response time
(seconds); x-axes: time (seconds).
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7. Implementation & experimentation with RSP agents783

We have implemented the RSP agent architecture as a library available in Scala. The code is784

open-source, and it is available in Github6. The core of the RSP agents implementation is written785

using the Akka Actors library7. Akka provides the essential programming abstractions to create786

actors, providing message dispatching, remoting, actor hierarchies, and other features. The RSP787

agents implementation defines traits (analogous to interfaces in Java and other languages) for its788

main types of objects. For instance, the StreamReceiver trait implements the receiver agent described789

in Section 5.2.1. These traits are independent of the communication layer, i.e., it allows plugging790

different types of channel implementations, such as MQTT or WebSocket. Additional modules can be791

plugged into the architecture (e.g., for concrete implementations of specific RSP engines). In our initial792

implementation, we have focused on using CQELS as underlying RDF stream processors, although we793

have also implemented classes for C-SPARQL and TrOWL. To allow the integration with these existing794

engines, it suffices that they provide a JVM-compatible API. RSP agent traits make use of abstract795

methods that need to be implemented for any specific extension. For example, the StreamReceiver796

trait defines abstract methods that allow: feeding an RDF stream with graph (consumeGraph), register a797

query (query), push data results (push), and terminate push and clean resources (terminatePush).798

In the remainder of this section, we present a set of experimental results of the implementation799

of RSP agents. The goal of these experiments is to show how the agent architecture implemented in800

the library performs under different configurations. By changing the number of senders/receivers,801

concurrent operations, rates of streaming data flow, etc., we present various scenarios which could be802

implemented in a digital physiotherapy use-cases. Although in single patient scenarios, the number of803

senders and receivers would be usually low, when dealing with larger numbers of simulteneous users,804

the number of required agents will also increase.805

In the following experiments, the main metric is the throughput, measured in terms of efficiency806

(i.e., the rate between the actual number of RDF stream elements processed per unit of time, and807

the maximum ideal number of processed elements). The choice of this metric is based first on the808

need to assess the behavior of the platform to different conditions of the input streams (e.g., number809

of streams/senders, the velocity of the streams, number of parallel processors). The usage of a rate810

indicator is due to the fact that an absolute throughput is clearly variable depending on the input811

stream characteristics. Therefore the efficiency rate provides a normalized parameter. Queries and812

data have been adapted from SRBench [56], using an upgraded version of the datasets, using the new813

version of the SSN Ontology8, and a synthetic generation stream feeder. The original data consists814

of sensor observations extracted from the LinkedSensorData [57] initiative, based on observations815

collected since 2002 by 20K sensor stations. There are typically five sensors per station, i.e. a total of816

around 100,000 sensors in the data set. The sensors measure phenomena such as temperature, position,817

visibility, pressure, etc. Irrespective of the application domain, the experiments described in this818

section show the feasibility of the stream reasoning agents architecture in a concrete implementation819

All experiments were run on Ubuntu 16.04 LTS, Intel Core i7-7700U (3.60GHz, 8MB cache, Quad-Core).820

In the first set of experiments, we measured the throughput efficiency, for different input stream821

rates (1,10,10, and 1000 graphs/s), and a different number of concurrent senders, and a single receiver822

(Figure 21a).823

Clearly, the efficiency decreases considerably as the input stream increases. A drastic increase824

produces a significant drop in efficiency, either if it is by increasing the number of senders or the input825

rate. This is basically due to the limitations of CQELS as the underlying engine. The next experiment is826

set in exactly the same conditions, except that it uses five concurrent stream receiver agents instead of827

6 https://github.com/jpcik/ldn-streams
7 http://akka.io
8 https://www.w3.org/TR/vocab-ssn/

https://github.com/jpcik/ldn-streams
http://akka.io
https://www.w3.org/TR/vocab-ssn/
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(a) Throughput efficiency: one receiver. (b) Throughput efficiency: five receivers.
Figure 21. Throughput efficiency vs. input stream rates, for different sets of concurrent senders.

only 1 (Figure 21b). As can be seen, using more receiver agents already provides a higher throughput828

efficiency for a larger number of cases.829

The next experiment provides more information on how a set of CQELS engines running as830

RSP agents can handle a total of 10K concurrent senders, each spitting one graph per second. The831

experiment is set for 1,5, 10, 20, 50, and 100 concurrent CQELS agent receivers. As can be seen832

in Figure 22a, with 5, 10, and 20 concurrent senders, there is a considerable improvement in the833

throughput efficiency. However, increasing even more receivers produces a sustained decrease, as the834

CPU is not able to scale on its own to that number of engines. A distributed deployment would be835

required to scale in that case.836

(a) Throughput efficiency: 10K concurrent senders. (b) Throughput efficiency: different input
stream rates.

Figure 22. Throughput efficiency vs. number of RSP senders.

The next experiment shows how RSP stream receivers (CQELS engine) respond to a different837

number of senders (1, 10, 100, 1000, 1000). It shows results for input streams of 1, 10, 100, 1000 graphs/s838

(Figure 22b). The graph shows the progressive efficiency decrease as the input stream (combined with839

the number of senders) increases. For instance, for 10K senders, and 1K graphs/s, the input load is of840

10M graphs/s, which is too much for a single receiver instance.841

In the next experiment, we evaluate a similar scenario, but this time, adding CQELS RSP instances842

(1, 2, 5, 8, and 10 concurrent engines). The results are shown for different numbers of RSP concurrent843

senders (2K, 4K, 8K, 10K, and 16K). For very high input loads, the system is still capable of at least 0.5844

efficiency. It is clear that at this point, a cluster deployment would be required.845

The final experiment was performed only for RSP agents ingesting but not processing data. It846

shows results for a different number of RSP agents ingesting streams (1, 5, 10, 20, 50, and 100 concurrent847

agents), and for 100, 1000, and 10000 senders. As can be seen, for 1K and 10K adding additional848

resources in general increases the overall efficiency (Figure 24).849



Version February 4, 2020 submitted to Sensors 29 of 33

Figure 23. Throughput efficiency vs. number of RSP senders, for different numbers of RSP receiver
engines.

Figure 24. Throughput efficiency vs. number of RSP receivers without processing, for different sets of
concurrent senders.

8. Discussion & Conclusions850

This paper proposes a novel approach for enabling decentralized stream processing in digital851

rehabilitation by proposing a stream processing agent-based architecture that enforces real-time852

constraints. The idea behind these decentralized stream processing agents is that they are capable853

of sharing not only streaming data, but also processing duties, using collaboration and negotiation854

protocols, while relying on common vocabularies/ontologies that consider the high dynamicity of855

their beliefs, state, goals, and behavior [9,58]. These features are essential to provide highly responsive856

feedback and accurate data analytics, which are required in digital physiotherapy.857

858

Compared to the state of the art, this work provides the following contributions:859

• Stream reasoning agents model. Beyond existing approaches in stream reasoning or RDF stream860

processing (as seen in Section 2), the proposed model does not only focus on complex processing861

algorithms and methods over semantic streams, but also on the autonomous cooperation among862

agents that produce and consume those streams, following the vision described in [9].863

• Real-time compliance for RSP agents. Existing RSP systems provide execution models that do864

not support mechanisms for compliance with strict real-time constraints. Filling this gap, our865

proposed model incorporates these constraints at its core, which can be implemented using866

existing strategies as in [12].867

• Real-time agent simulation results for digital rehabilitation. The simulation environment presented in868

the paper constitutes an important milestone for modelling and configuring agent-based systems869

for different scenarios, considering strict real-time specifications. While in previous works on870

digital rehabilitation feedback was typically provided on best-effort strategies, these simulations871

provide indication of how and when real-time scheduling strategies can be helpful in order to872

deal with strict timing limitations.873

• Implementation and evaluation of RSP agents. The feasibility and behavior of the RSP agents concept874

has been demonstrated in this work, through a concrete implementation that relies on an existing875
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RSP engine. This is a first implementation of the agent model for RDF stream processing, beyond876

the centralized systems present in the literature, as seen in Section 2.877

The model, simulation and implementation presented in this paper also constitute an important878

milestone towards the adoption of agent-based technologies for real-time sensing applications. The879

results of this research work open several opportunities, even if there are some limitations taht we880

need to consider, as explained below.881

882

Opportunities - Based on the principles of stream reasoning and RDF stream processing, the proposed883

model incorporates the flexibility of autonomous organization of streaming agents, with the capability884

of defining strict deadlines for agent behaviors. This feature is a fundamental advantage for digital885

physiotherapy, as it enables reliable in-time feedback among sensors and/or eHealth applications for886

patient support. Moreover, sharing common ontology models and underlying RT-MAS mechanisms,887

additional sensors and devices can be easily plugged. The approach proposed in this paper888

relies upon and extends previous works on stream reasoning, also including the representation of889

heterogeneous data streams as dynamic knowledge graphs on which complex-event processing (CEP)890

and inductive/deductive reasoning can be applied. This feature addresses the challenges related to891

sensor and agent heterogeneity, relying on standards for representing agent negotiation protocols892

and sensor metadata. The simulation results developed in this paper provide indication that this893

approach can have deep impact in digital rehabilitation scenarios, allowing the self-configuration of894

decentralized sensor solutions. Complementary to these results, the evaluation performed on the RDF895

stream processing agent implementation, provides evidence of the feasibility of allowing agent-based896

interactions among sensing devices. Finally, the simulator employed in this study might be a strategic897

tool for future system design and setup, before including the human in the loop.898

899

Limitations - The simulation scenarios tested in this study have relied on synthetic data generated by900

the execution environment. In real-world applications, getting such information might require further901

tasks such as a more complex signal processing and more complex agent interactions (depending902

on the kinematic chain of a given motor exercise), which might entail more complex semantic903

representations of the exchanged information. Moreover, many real sensors are still unable to “run”904

RT-agents (due to the lack of a proper RT-MAS framework for embedded systems). Operating in905

safety-critical conditions, the development of 3rd-party hardware and software might require a longer906

developing time, thus slowing down the adoption of the proposed solution. Another important aspect907

to consider refers to the fact that in this work we do not handle uncertainty of both streaming and908

static knowledge. Agents beliefs may have different levels of uncertainty, for which techniques such as909

fuzzy multi-criteria decision-making [59]. Moreover, RSP agents may require to adopt strategies for910

scheduling streaming task under uncertainty conditions [60], or rely on discrepancy measures in case911

of disagreements [61]912

913

In terms of impact, this approach may constitute a first step towards a more decentralized914

understanding of how IoT devices can be used for supporting eHealth applications. Particularly in915

digital physiotherapy, it would be important to explore the challenges of deploying stream processing916

agents in clinical environments. Furthermore, it will be crucial to study how real-time constraints917

might be included as extensions of RDF validation languages such as SHACL [62].918
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