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3 UMEA University, Sweden
{davide.calvaresi, michael.schumacher}@hevs.ch, najjar@cs.umu.se,

{yazan.mualla, stephane.galland}@utbm.fr

Abstract. Advances in Artificial Intelligence (AI) are contributing to
a broad set of domains. In particular, Multi-Agent Systems (MAS) are
increasingly approaching critical areas such as medicine, autonomous ve-
hicles, criminal justice, and financial markets. Such a trend is producing
a growing AI-Human society entanglement. Thus, several concerns are
raised around user acceptance of AI agents. Trust issues, mainly due to
their lack of explainability, are the most relevant. In recent decades, the
priority has been pursuing the optimal performance at the expenses of
the interpretability. It led to remarkable achievements in fields such as
computer vision, natural language processing, and decision-making sys-
tems. However, the crucial questions driven by the social reluctance to
accept AI-based decisions may lead to entirely new dynamics and tech-
nologies fostering explainability, authenticity, and user-centricity. This
paper proposes a joint approach employing both blockchain technology
(BCT) and explainability in the decision-making process of MAS. By
doing so, current opaque decision-making processes can be made more
transparent and secure and thereby trustworthy from the human user
standpoint. Moreover, several case studies involving Unmanned Aerial
Vehicles (UAV) are discussed. Finally, the paper discusses roles, bal-
ance, and trade-offs between explainability and BCT in trust-dependent
systems.

Keywords: MAS · goal-based XAI · explainability · UAV · Blockchain.

1 Introduction

Human decisions are increasingly relying on Artificial Intelligence (AI) tech-
niques implementing autonomous decision making and distributed problem solv-
ing. Human-system interaction is pervading many domains, including health-
care [7], Cyber-Physical Systems [13, 32], financial markets [39], and cloud com-
puting [36]. Such entanglements enforced the ratification of the recent European
General Data Protection Regulation (GDPR) law which underlines the right to
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explanations [15] and ACM US Public Policy Council (USACM)’s algorithmic
transparency and accountability [1].

Therefore, the design of transparent and intelligible technologies is an im-
pelling necessity. However, the interaction between autonomous AI-based sys-
tems (e.g., robots and agents) and humans decision processes raises concerns
about the trust, reliability, and acceptance of autonomous systems. Recent stud-
ies proved that for both humans and software agents/robots, the trust into au-
tonomous intelligent systems is strengthened if rules, decisions, and results can
be explained. Hence, in the last decade, the hype about eXplainable Artificial
Intelligence (XAI) [26, 4] picked again. However, the majority of the recent stud-
ies focus on the interpretability and explanations for data-driven algorithms [5,
19, 25, 42], thus still leaving open investigations concerning explainable agents
and robots [4].

Humans tend to associate rationales to understanding and actions, develop-
ing a “mental states” [27]. A missing explanation can generate understanding
that does not necessarily reflect AI’s internal stance (self-deception). To a certain
extent, dangerous situations may arise, putting the user safety at risk. According
to the recent literature [5, 38], explanations help users to increase confidence and
trust, whereas misunderstanding the intentions of the intelligent system creates
discomfort and confusion. Therefore, endowing these agents and robots with ex-
plainable behavior is paramount for their success. Interacting with these systems,
however, there are domains and scenarios in which giving a proper explanation
is not (i) possible, (ii) worth it, or (iii) enough. Therefore, the novelty proposed
by this work is the following.

Contribution:
This paper proposes to combine XAI, with blockchain technologies to ensure
trust in domains where, due to environmental constraints or to some character-
istics of the users/agents in the system, the effectiveness of the explanation may
drop dramatically.

The rest of this article is organized as follows. Section 2 presents the back-
ground of this work in the domains of trust, explainability, and blockchain tech-
nology. Section 3 identifies three key research domains in which the synergy
between BCT and XAI is necessary. Section 4 highlights the major challenges,
Section 5 presents the proposed solution. Section 6 presents a use-case scenario,
Section 7 discusses the scope of attainable solutions in which a combination of
BCT and XAI is to be successful, and finally Section 8 concludes the paper.

2 Background

This section gives an overview of trust (Section 2.1), explainability (Section 2.2),
and blockchain (Section 2.3) which are the key elements enabling the under-
standing of what their combination can provide to Multi-Agent Systems (MAS).
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2.1 Trust

Autonomy is considered a basic feature for intelligent agents. Although it is
highly desirable, such a property raises several challenges [41]. For example,
(i) the agent designer must take into account the autonomy of other agents
(run-time adaptation is a must for any agent to be competitive), and (ii) it is
unrealistic to assume that other agents adopt a same/similar conduct.

Thus, artificial societies need some sort of control mechanisms. Tradition-
ally, computational security has been claimed to be able to address a set of
well-defined threats/attacks by relying on cryptography algorithms [22]. Yet,
this approach requires the existence of a Trusted Third Party (TTP) to pro-
vide public and private keys and other credentials, which, for decentralized and
open application scenario, becomes unrealistic [8]. On turn, several other soft
control techniques have been defined to provide a certain degree of control with-
out restricting the system development. These approaches rely on social control
mechanisms (e.g., trust and reputation) that do not prevent undesirable events
but ensure some social order in the system [16]. Nevertheless, they can allow the
system to evolve in a way which prevents them from appearing again.

Several definitions have been proposed to define the notion of trust. Yet, the
definition proposed by Gambetta et al. [24] is particularly useful and adopted
by the MAS community.

“Trust is the subjective probability by which an agent A expects that
another agent B performs a given action on which its welfare depends”.

Therefore, trust is seen as an estimation or a prediction of the future or an
expectation of an uncertain behavior, mostly based on previous behaviors [10].
A second form of trust is the act of taking a decision itself (e.g., relying on,
counting on, or depending on the trustee). Summarizing, trust is both:

(i) a mental state about the others trustworthiness (an evaluation) and
(ii) a decision or intention based on that evaluation [41]. To evaluate the trust,

an agent relies on the image of the other agents. An image is an evaluative
belief that tells whether the target is good or bad with respect to the given
behavior. Images are results of internal reasoning from different sources of
information that lead the agent to create a belief about the behavior of other
agents [41].

2.2 Explainability

Explaining the decisions taken by an “intelligent system” has received relevant
contributions from the AI community [17, 28]. Earlier works on sought to build
explainable expert systems. For this reason, after a prosperous phase, explain-
ability received less attention in the 2000’s. Recently, as AI systems are getting
increasingly complex, explainable AI (XAI) reemerged to push for interpreting
the “black-box” machine learning mechanisms and understanding the decisions
of robots and agents. Consequently, research on XAI can be classified in two
main branches:
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– Data-driven (so-called perceptual [37]) XAI:
It aims at interpreting the results of “black-box” machine learning mech-
anisms such as Deep Neural Networks (DNN) [49]. This research achieved
intriguing results (e.g., understanding why a DNN mistakenly labelled a
tomato as a dog [45]). Therefore, the lust to interpret, or provide a meaning
for an obscure machine learning model (whose inner-workings are otherwise
unknown or non-understandable by the human observer) is tickling the re-
searchers.

– Goal-driven (so-called cognitive [37]) XAI:
Research from cognitive science has shown that humans attribute mental
states to robots and autonomous agents. This means that humans tend to
attribute goals, intentions and desires to these systems. This branch of XAI
aims at explaining the rationales of the decisions of intelligent agents and
robots by citing their goals, beliefs, emotions, etc. [4]. Providing such expla-
nations allows the human to understand capabilities, limits, and risks of the
agent/robot they are interacting with, and thereby raising the user awareness
and trust in the agent, facilitating critical decisions [4, 14].

2.3 Blockchain technology

Blockchain is a distributed technology employing cryptographic primitives that
rely on a (i) membership mechanism, and (ii) a consensus protocol to maintain
a shared, immutable, and transparent append-only register [10]. Observing The
information (digitally signed transactions) delivered by the entities part of the
network are grouped into blocks chronologically time-stamped.

The single block is identified by a unique block-identifier, which is obtained by
applying a hash function to its content and it is stored in the subsequent block.
Such a technique is part of a set of mechanisms considered tamper-proof [9] mod-
ification of the content of a block, can be easily verified by hashing it again, and
comparing the results with the identifier from the subsequent block. Moreover,
depending on the distribution and consensus mechanism, the blockchain can be
replicated and maintained by every (or a sub-set) participant(s) (so-called peers).
Thus, a malicious attempt to tamper the information stored in the registry can
be immediately spotted by the participants, thus guaranteeing immutability of
the ledger [9]. Several technological implementations of the blockchain can exe-
cute arbitrary tasks (so-called smart contracts) allowing the implementation of
desired functionality. Alongside the blocks, such smart contracts represent the
logic applied and distributed with the data [29].

Technology BCT can be distinguish between permissionless and permissioned
(public and private) blockchain systems [44]:

– A blockchain is permissionless when the identities of participants are either
pseudonymous or anonymous (every user can participate in the consensus
protocol, and therefore append a new block to the ledger).
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– A blockchain is permissioned if the identities of the users and rights to par-
ticipate in the consensus (writing to the ledger and/or validating the trans-
actions) are controlled by a membership service.

Moreover, on the one hand, a permissioned blockchain is public when any-
one can read the ledger, but only predefined set of users can participate in the
consensus. On the other hand, it is private when even the right to read the ledger
is controlled by a membership/identity service.

3 Application Domains

Trust is still an outstanding open challenge in the area of intelligent systems.
However, Blockchain technology and techniques derived from the XAI disci-
pline can be tightly coupled to provide reconciling, feasible, and cost-effective
solutions. On the one hand, explainable behaviors can enable the trustor to
evaluate the soundness and the completeness of the actions of the trustee, and
thereby it can evaluate its competences, and examine the rationale behind its
behavior. On the other hand, BCT can allow the trustor to unequivocally as-
sess the reputation of the trustee based on existing history knowledge about it.
In this paper, we explore reconciling solutions combining both XAI and BCT.
This synergy can be beneficial for several application domains involving collab-
orations among agents to undertake joint decisions in a decentralized manner.
Below, we identify three types of applications in which such a synergy would be
highly beneficial.

Cloud Computing is a distributed ecosystem involving multiple actors each con-
cerned with accomplishing a different set of goals. Agent-based systems have
been underlined as a platform capable of adding intelligence to the cloud ecosys-
tem and allowing to undertake critical tasks such as resource management in a
decentralized manner that considers the distributed and multi-partite nature of
the cloud ecosystem [46]. In a typical three partite scenario, it involves: (i) Cloud
providers who seek to offer an adequate Quality of Service (QoS) while minimiz-
ing the energy consumption and maintenance costs of its data-centers [23], (ii)
Cloud users whose aim is to minimize the cost they pay to the provider while fur-
nishing a satisfactory service to their end-users [35], and brokers. In exchange for
a fee, a broker reserves a large pool of instances from cloud providers and serves
users with price discounts. Thus, it optimally exploits both pricing benefits of
long-term instance reservations and multiplexing gains [48]. In such a scenario,
given the multitude of providers, brokers and offers available in the cloud market,
both explainability and trust are critical to help these actors make their strategic
decisions. For instance, when recommending resources from a particular cloud
provider, a broker could rely on BCT technology to assess the reputation and the
trustworthiness of the provider. Several important data could be inscribed on
the ledger including the availability, reliability and the average response time of
the virtual instances leased from this provider. When giving a recommendation,
the broker might also use explainability to provide a transparent service to its
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client and explain why some specific decision were made (e.g., the choice of one
provider) and why some un-expected events took place (e.g., an SLA violation).

Smart Cities. The densely populated smart cities are administrated by several
governmental and civil society actors, where vivid economic services involving
a multitude of individual stakeholders take place. In such services, the use of
agents for Unmanned Aerial Vehicles (UAVs) is gaining more interest especially
in complex application scenarios where coordination and cooperation are neces-
sary [33]. In particular, in the near future, UAVs will require access to an inter-
operable, affordable, responsive, and sustainable networked system capable of
providing service, joint, inter-agency, and real-time information exchanges. Such
systems must be distributed, scalable, and secure. The main components are hu-
man interfaces, software applications, network services, information services, and
the hardware and interfaces necessary to form a complete system that delivers
secured UAVs operations [29]. Recalling that BCT allows creating a peer-to-
peer decentralized network with an information protection mechanism [3], such
a network can provide secure communication system within the MAS [21], thus
operating as distributed control and secure system to ensure the trust among
UAVs and other actors.

User Satisfaction Management. Agents are autonomous entities bound to indi-
vidual perspectives, for these reasons, user agents were used to represent user
satisfaction [36]. However, end-user satisfaction is known to be subjective [34]
and influenced by several Influence Factors (IF) [40], including Human IFs (e.g.,
expertise, age, personality traits, etc.), Context IF (e.g., expectations) and Sys-
tem IFs (i.e., the technical properties of the systems used to consume the service).
Both XAI and BCT can have key contributions helping agents overcome these
challenges and improve user satisfaction. On the one hand, explainability enables
the agent to provide convincing recommendations to the user by showing that
the agent’s decisions were in line with the user preferences. On the other hand,
BCT can play an important role in assuring both the user and her agent that pri-
vacy and authentication measures are integrated to protect the user preferences
and private data from exploitation.

4 Challenges

The combination of MAS, BCT, and XAI can be particularly strategic in several
application fields. Real-world scenarios are often characterized by a combination
of limited resources such as computational capability, memory, space, and in
particular time [12, 13, 20]. Therefore, Section 4.1 tackles the application of the
proposed solution in Resource-Constrained (RC). Another relevant dimension
characterizing real-world application is the trust in the systems or in their com-
ponents [10, 11, 41]. Thus, Section 4.2 addresses the Lack of Trust (LT) as main
driver.
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4.1 RC Scenarios

In real-world applications, systems must cope with a bounded availability of
resources. On the one hand, we can mention tangible resources such as mem-
ory, computational capability, and communication bandwidth [13]. On the other
hand, we can have reputation, trust, and time. The latter is crucial especially in
safety-critical scenarios, when failing to deliver a result in/on time might have
catastrophic consequences [6].

A possible example can be a UAVs firefighting scenario.
Let us assume that a UAV detects a fire in a nearby woods, and that the

fire has already spread to an extent unmanageable by a single UAV. The only
viable option for the UAV which detected the fire is to ask for support from
the firefighting center, managed by humans, to send other UAVs. This requires
the UAV to explain the situation to the representative human in the firefighting
center. Considering that such a situation needs an intervention as prompt as pos-
sible, the UAV requesting assistance cannot produce and deliver an “extensive”
explanation for its requests, plans, and the consequences of possible inaction.
Achieving a consensus on an over-detailed (for the situation) explanation would
be unaffordably time-consuming, thus leading to potentially considerable losses.
A possible solution is to enable the requester to rely on BCT, which can ensure
its possible trustworthiness (e.g., via reputation) and authenticity, compensating
a less detailed explanation leading to a faster reaction to handle the fire.

4.2 LT Scenarios

In scenarios where time is not critical, the opportunity is given to an agent
with low reputation to express itself to increase the trust with other actors.
For example, a swarm of UAVs can be created to perform tasks that cannot be
performed by one UAV or to increase the efficiency of a specific task. In such
situations, there is a need for a mechanism for UAVs to join a swarm. Yet, a UAV
with a low reputation may find it difficult to join a swarm. With explainability,
it is possible that swarm management gives this UAV a chance to express itself
in order to increase its trust and hence its chances to be accepted in the swarm.
Another example is when it is not possible to determine the reputation of a UAV
due to the inability to access the blockchain. This UAV can be given the chance
of explaining its goals to increase the likelihood of an agreement.

5 Proposed Solution

According to the application domains and scenarios presented in Section 4, a
two-folded solution (for RC and LT scenarios) follows.

5.1 RC

In scenarios in which the operating time is constrained (Section 4.1) and de-
livering a complete and high-quality explanation is not viable, the quality and
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granularity of a given explanation might be degraded to still comply with the
timing constraints.

Similarly, if the understanding capability of the recipient of a given explana-
tion is limited (Scenarios 3 and 4 in Table 1), the quality of the explanation can
be lowered (since it might not be understood/appreciated) saving both time and
effort (e.g., computational capability, memory).

Lower quality explanations are characterized by less details (coarse-grained)
or unfaithful explanations. While offering brief insights on how and why a de-
cision was taken, coarse-grained explanations do not provide a fully detailed
explanation unless this is explicitly demanded by the explainee. Unfaithful ex-
planation do not respect the actual mechanism that led to a given decision. In-
stead, their aim is to provide an understandable and easy explanation. A possible
way of providing unfaithful explanation is relying on contrastive explanations.
The latter consist of justifying one action by explaining why alternative actions
were not chosen. While contrastive explanations do not necessarily describe the
decision-making process of the agent, recent research has shown that they can
be easily produced and easily understandable by the user [30]. Therefore, both
coarse-grained and unfaithful explanations convey the message, thus accomplish-
ing the explicative intent. Since an effective explanation might not be the most
precise or faithful, it is possible to infer that precision and effectiveness of an
explanation can be decorrelated. On the one hand, if the principal objective is to
share the rationale behind a given decision, opting for an effective and potentially
less precise explanation might be the best option [4]. On the other hand, if trans-
parency is a mandatory requirement, a detailed and faithful explanation must
be provided. For example, time available to produce and provide an explanation
in a given context/situation is a factor influencing the agent, thus possibly im-
pacting on the faithfulness of its explanations. In case the amount of time is too
constrictive, the agent might opt for a short, simple, and unfaithful explanation
(even though a detailed one would be preferred). Moreover, depending on time
available, context, and explainee, the explainer may attempt at explaining the
same concept employing different types of data or same data but with different
granularity and complexity (e.g., images, text, or raw data).

To lower the explanation quality/granularity, without affecting the trust
(information-, user-, or agent-wise), we propose to enforce the provided explana-
tion with BCT. By doing so, we would compensate a less effective explanation
with the guarantees provided by BCT technology, still keeping the system run-
ning and the trust unaffected by a time-critical scenario.

Table 1 lists four possible situations we have identified. Beside the Time
Available, expressed in seconds, the other features are represented by adimen-
sional numbers (useful to provide a quick and synthetic overview). Ratio, stands
for correlation between the quality of a given explanation (possibly combined
with the support of BCT) and how it is understood, perceived or accepted (if
relying more on the BCT then on the actual explanation) by the recipient.
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Table 1: Possible combinations of explanations’ quality and blockchain support
with the recipient’s capabilities of understanding.

Scenario
Time Available

(seconds)
Explanation

quality
Recipient

Understanding
Blockchain

support
Gain

1 10 10 10 0 10/10
2 5 7 10 3 10/10
3 10 10 5 0 10/5
4 10 2 5 3 5/5

Scenario 1 the first scenario reproduces an ideal situation: having (i) enough
time to provide a comprehensive and solid explanation and (ii) a recipient who
has time and can process/understand the provided explanation. In this case, the
support of the BCT is not necessary.

Scenario 2 short in time, and with a recipient able to fully understand and
process the explanation, the agent opts for degrading the quality of the expla-
nation relying on the contribution of BCT. In this case, the recipient’s decision
might not be affected by the lack of granularity of the received explanation.

Scenario 3 although the available time is enough to produce a robust explana-
tion, the recipient is not able to entirely understand/process it. Therefore, since
the explanation goes already over its purpose, it is not necessary to employ the
BCT.

Scenario 4 the available time might be more than enough to produce a robust
explanation, which however goes beyond the understanding capability of the
recipient. Therefore, to save time and resources, the explanation can be degraded
and coupled with the support of BCT, enough to match the recipient expectation
and capability.

5.2 LT

In circumstance where an agent/user has a reputation lower than a given thresh-
old, it can be labelled as not fully trustworthy. In this condition, although the
user/agent might be able to provide an excellent explanation, it could not be
trusted, or it could not get a chance to express it. Therefore, binding the ex-
planation with BCT might relieve the agent explaining from the burden of a
low reputation (obtained for a whatever unfortunate reason in a precedent point
in time). Such a solution/approach can be associated to the famous dilemma
“The Boy Who Cried Wolf” narrated by Aesop [2], the well-known Greek fab-
ulist and storyteller. The fable narrates of a young shepherd who, just for fun,
used to fool the gentlemen of the nearby village making fake claims of having
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his flock attacked by wolves. However, when the wolves attacked the flock for
real, the villagers did not respond to the boy’s cries (since they considered it to
be just another false alarm). Therefore, the wolves end up ravaging the entire
flock. This story is used as an example of the serious consequences of spreading
false claims and alarms, generating mistrust in the society and resulting in the
subsequent disbelieving the true claims. To “cry wolf”, a famous English idiom
glossed in Oxford English Dictionary [18], was derived from this fable to reflect
the meaning of spreading false alarms.

Such a moral, applied to human societies, can also be applied to agent so-
cieties. For example, the requests of a UAV with a low reputation might be
neglected because its records on the the ledger showed that it has been issuing
false alarms about fires in the woods. However, with the possibility of explaining
its new alarms and supporting its claims with tangible proofs (e.g., images and
footage from the fire location), if its explanations were convincing enough, the
UAV might be able to overcome (and improve) its low reputation.

The next section addresses the UAVs package delivery, which is a use case
from the real world. In such a scenario, multiple UAVs need to coordinate in order
to achieve a common goal. To do so, members of the same UAV team (i.e., swarm)
should share a common understanding and maintain a trustworthy relationship.
To address these concerns, potentially time-constrained, the following section
studies UAVs interaction and reputation by employing explainability and BCT.

6 Explainability and BCT: the UAVs package delivery
use case

In 02 Aug 2018, the U.S. Patent and Trademark Office issued a new patent
for retail giant Walmart seeking to utilize BCT to perfect a smarter package
delivery tracking system [43]. Walmart describes a “smart package” delivered by
a UAV that includes a device to record information about a blockchain related
to the content of the package, environmental conditions, location, manufacturer,
model number, etc. The application states that the blockchain component will
be encrypted into the device and will have “key addresses along the chain of the
packages custody, including hashing with a seller private key address, a courier
private key address and a buyer private key address” [47].

Typically, modeled as agents, UAVs can be organized in swarms to help them
achieve more than what they could solely. A decentralized swarm management
system can add or remove UAVs from the swarm. To join the swarm, a reputa-
tion threshold should be acquired by the UAV. In cases of low reputation UAV
(Section 5.2), the choice is given to the UAV to explain the reasons it must join
the swarm.

UAVs use voting in the swarm to decide decisions like adding/removing
UAVs, tasks to perform, etc. Before each vote, the possibility is given to each
UAV to explain what it considers the best for the swarm in terms of what goals
to achieve and how to do them. The swarm management system has a blockchain
distributed ledger that is connected to Internet through various wireless networks
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(e.g., WiFi, 4G/5G, satellite). It allows the swarm to check the reputation of any
UAV willing to join the swarm as well as the reputation of any outer actors that
wish to communicate with the swarm.

For example, suppose that a new UAV has joined the swarm and is granted
a private key. Once the UAV exists on the blockchain distributed ledger of the
swarm management system, the levels of access, control, and/or authority are
determined for the new UAV.

External actors (UAVs or people) may ask the swarm to perform tasks for
them. Negotiation will commence between the external actor and the swarm that
considers the trade-off between explainablity and reputation of the actor, the
profit of performing the task (in case of commercial swarms), the general welfare
(in case of governmental or non-profit organizations). If the swarm accepts to
perform a given task, smart contracts can be used to transfer commands between
agents in the form of data or executable code in real-time.

Let us assume that an actor (human, device, etc.) in a smart home asks the
swarm to make a delivery order. Depending on the time window of the deliv-
ery transaction, different scenarios that combine reputation and explainability
are considered (Section 5.1). Figure 1 shows the steps to consider as per the
constraints of the scenario.

If an agreement is reached, a smart contract is generated with the order data
(e.g., package characteristics, client data, location, and designated UAV) and the
information is sent to the Blockchain. Then, the UAV commits a transaction to
the traffic coordinator to provide an air corridor for it and a new smart contract
is concluded between them.

The UAV starts the delivery to the smart home. Once near the smart home,
the UAV will contact the smart window using a wireless network. The smart
window is connected to the internet as any other device in the smart home.
This allows it to ask the blockchain if it recognizes and verifies this UAV and
its swarm, and if it is the swarm that singed the smart contract. If the UAV
is trustworthy, the window will open to allow it to drop the package. When
the delivery is completed, the UAV notifies the traffic coordinator that the air
corridor is no longer needed.

To achieve all of that, there is a need for defining two important aspects.
First, protocols for the registration, verification, peer-to-peer interaction of the
UAVs. Second, smart contracts between the swarm and any other actor in the en-
vironment (UAV, device, human, etc.), that govern the services used or provided
by the swarm. Moreover, the use of a blockchain infrastructure helps in iden-
tifying misbehaving UAVs by multiple parties and such activities are recorded
in an immutable ledger. These misbehaving assessments may be performed by
analytical algorithms or machine learning models performed off-chain and inter-
faced with the blockchain ledger through smart contracts. Once determined, the
misbehaving UAV will be given the chance to explain its behaviour and actions
in the after-action phase (Section 5.2).
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Of course, the service provided by the UAV will affect the weights of impor-
tance for the reputation and explainablity. For example, in time critical situa-
tions, there is no time for long/complex explanation, and the reputation plays
the more significant role.

7 Discussion

Analyzing the solutions proposed in Section 5, Figure 1 summarizes the possible
outcomes eliciting the attainable solutions.

In particular, time availability is the predominant factor. If an agent is short
in time, explainability might not be an option. Therefore, the agent is demanded
to have a trustworthy reputation (proved by the BCT) to achieve a possible
agreement. In the case no explanation can be provided and the reputation value
is below an acceptable threshold there is no possible solution, and the request
of the agent (as we saw in the UAV example above), is rejected.

TIME

BCT
f(XAI, BCT )

f(0, ·)f(·, 0) f(·, ·)

XAI
mandatory

Possible
Solution

No
Solution

Trustworthy
Reputation

Yes

No

Trustworthy
XAI

No Yes

No

Not enough Enough

Yes

Fig. 1: Decision process wrt available time, explanation, and reputation.

If the available time to produce an explanation is enough, explainability
becomes an option. The agent can rely on f(XAI,BCT ), a combination of ex-
plainability and BCT. The agent might rely only on explainability f(·, 0), only
on BCT f(0, ·), or on any given combination of both f(·, ·). In the latter case, the
weights composing this combination mainly depend on the (i) specific context,
(ii) nature of the problem to be explained, (iii) explanation capability of the
agent and on (iv) understanding capability of the agent receiving the explana-
tion. Moreover, on the one hand, having explainability might be necessary and
enforced by law. On the other hand, low reputation/trustworthiness of an agent
cannot be ignored even if it provided an adequate explanation.
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BCT
(Reputation)

Time

+
+

Trust
(Credibility)

+/-

- Expectation
- SoM

+/-
+/-

+/-

ReasoningExplanation
A1 An

A2

Understanding

Generate 
Explanation

Explanation

Fig. 2: Representation of the explaination life-cicle.

Figure 2 shows a sequence of interaction within a society of agents, the first
agent A1 attempts to send an explanation to agent A2. Depending on the sce-
nario, A1 might possibly be short in time, might possibly be able to rely on BCT
for reputation. Based on the explanation/reputation submitted by A1 to A2, the
latter would be able to assess the trustworthiness of A1, compare the behavior
of A1 with its own expectation, and define/update a State of Mind (SoM) about
A1 intentions. As a result of this reasoning process, A2 (delineated by the blue
box) builds an understanding of A1 and its explanation. Such an understanding
is then used to: (i) generate an explanation describing A1 behavior and commu-
nicate it with other agents An, (ii) refine A2’s SoM, reasoning, and expectations
about A1, and (iii) possibly coming back to A1 to ask more details/clarifications
about its explanation.

na th BCT

th

XAI

na th BCT

th

XAI

Fig. 3: Symmetric and Asymmetric XAI and BCT contributions

Figure 3 illustrates the possible synergy between XAI and BCT. The blue
diagonal line represents the threshold delineating whether the combination of
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XAI and BCT satisfies the minimal requirements (area in green) or not (area in
red). In the left figure (symmetric case), the contributions from XAI and BCT
are equal, thus symmetric. In the right figure (asymmetric case), a contribution
from either XAI or BCT has higher impact (XAI in the example in the figure).

In the domain of UAVs, where the regulations are not mature enough [33], the
combination of reputation and explainablity will increase the trust of clients in
the use of UAVs for package delivery and other applications, while the properly
tuned weights given to each factor (reputation and explainablity) will insure
that various services could be provided. To acquire the mentioned tuned weights,
tests should be conducted. However, some regulations restrict the use of UAVs
in cities, so to perform tests with real UAVs, it is needed access to expensive
hardware and field tests that usually consume a considerable amount of time
and require trained and skilled people to pilot and maintain the UAV. In this
context, the development of simulation frameworks that allow transferring real-
world scenarios into executable models using computer simulation frameworks
are welcome [31].

The design and realization of mechanisms computing trust and reputation of
agents communities via blockchain are strictly dependent on the application sce-
narios and available technologies. Therefore, they are delegated to future studies.
Nevertheless, at the current stage, it is possible to provide key research direc-
tions. For example, as mentioned in Section 2.1, to undertake the trust evaluation
process, agents rely on the social image of other agents [41]. An agent constructs
such an image relying on (i) direct experiences (e.g., direct interactions between
the trustor and the trustee), (ii) communicated experiences (e.g., interactions
between the trustee and another agent communicated to the trustor), and (iii)
social information (e.g., monitoring social relations and position of the trustee
in the society). The interactions and mechanism enabling the computation of
trust and reputation can be stored on a blockchain. Thus, depending on the
agent image retrieved from such a trusted technology, other agents may decide
whether granting or not their trust or if demanding for more explanations might
be needed to take a more appropriate decision. Yet, concerning privacy and
permissions, there are several open questions to be taken into account. More-
over, since agent could communicate their experiences and opinions about other
agents behaviors, a mechanism should be devised to prevent malicious agents
from adding their unauthentic experiences to the ledger.

8 Conclusions

Most of today’s applications are deployed in a distributed and open techni-
cal ecosystems involving multiple parties each with different goals constraints.
This paper proposed an approach combining BCT and explainability supporting
the decision-making process of MAS. Such an approach can remove the current
opaqueness of decision-making processes making them interpretable and trust-
worthy from both agent and human user point of views. It is worth to recall
that explanability allows collaborating parties to express their intentions and
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reach common understandings and that BCT offers a decentralized authentica-
tion mechanisms capable of ensuring trust and reputation management. Then,
it identified some applications where the contribution of these technologies re-
vealed to be crucial. Three scenarios have been identified: (i) BCT are strictly
necessary, (ii) explainability is mandatory, and (iii) a combination of them is
possible and subject to a threshold function. Moreover, several practical case
study involving UAVs have been discussed, analyzing roles, balance, and trade-
offs between explainability and BCT in trust-dependent systems. This work is
an initial step towards building synergies between explainable AI and BCT.
The future work is to (i) investigate a MAS model suitable for XAI and BCT,
(ii) design and develop a MAS framework to implement explainable and BCT
dynamics, (iii) realize smart contracts supporting an efficient communication
among light weight devices, (iv) assess a possible interdependence among ex-
plainability and BCT (in particular involving remote robots such as UAV and
HGV), and iv) apply and study the developed solutions to UAVs swarm.
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Ph.D. thesis, PhD thesis, École nationale supérieure des mines de Saint-Étienne
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