
Situation Awareness via Information Hovering in Post-disaster
Communications

ABSTRACT
The majority of communication solutions for post-disaster areas
rely on cellular infrastructure support. But disasters such as fires,
floods, earthquakes, can disrupt communication network making
its services unavailable.

New portable antenna towers, as point-to-point radio commu-
nications, are a way to mitigate the communication when cellular
infrastructures are unavailable. But their deployment requires time
decreasing the likelihood of finding people alive in the following
of such events.

In this work, we present the architecture of Floater, a mobile ap-
plication that implements opportunistic communication for context-
aware services in post-disaster scenarios.

Floater is based on Floating Content, an opportunistic communi-
cations paradigm that geographically constrains message replica-
tion. We implement Floater using Google Nearby API that enables
seamless nearby interactions without having to be connected to
the Internet. Moreover, we provide the implementation notes and
the comparison of the technologies adapted with the respect of the
state-of-the-art.

1 INTRODUCTION
Communications are of paramount importance on the occurrence
of a disaster. When a catastrophic event occurs such as a flood,
an earthquake, or a fire, the exchange of information decreases
individual exposure to various risks, mitigates material damages,
and potentially saves lives [1].

Disasters such as fires, floods, earthquakes, disrupt communi-
cation network making its services unavailable. Such disruptions
can be a direct consequence of the disaster event or operated to
prevent further damages to the power lines —to reduce the risk of
cascading effects. New portable antenna towers, as point-to-point
radio communications, are a way to mitigate the communication
when cellular infrastructures are destroyed, deprived of power sup-
ply, or congested. But the deployment of portable antenna towers
requires crucial time decreasing the likelihood of finding people
immediately following such events —the possibility of finding peo-
ple alive aftermath an earthquake rapidly declines in the first hours
reaching practically zero in two-three days.

Given the ubiquitous and the technology embedded, smartphones
are of particular interest in these events. Smartphones can exchange
information also with devices used for monitoring infrastructures
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such as dams, bridges, or power plants, empowering users with
essential information. These devices enable opportunistic commu-
nications —direct communication between peers—- providing in-
formation exchange even in the unavailability of cellular infrastruc-
tures.

Opportunistic communications fit particularly well a disaster
scenario [2]. Smartphones, as well as the Internet of Things (IoT)
devices, create ad-hoc networks and eventually connect to the In-
ternet in a delay-tolerant mode [3] enabling critical information
exchange. Several solutions are available for smartphone-based
communications in the form of WiFi Access Point or cellular access
networks [4, 5]. These solutions aim at connecting two peers in a
delay-tolerant mode allowing the exchange of text, video, or voice
messages. Though of sure value for the affected population, such
solutions are inefficient in terms of bandwidth, memory, and energy.
In disaster scenarios with a massive exchange of information, with
no control on the amount of information shared nor on its rele-
vance, such solutions do not scale jeopardizing the communication
channels.

In this paper, we present Floater architecture, the prototype of a
mobile application that applies the concept of Floating Content in
order to implement, in a distributed fashion, a situation awareness
service for post-disaster scenarios. Floating Content or FC is an
opportunistic communications paradigm [6]. FC geographically
constrains message replication implementing infrastructure-less
spatial information storage within an area denoted as Anchor Zone.
FC allows Floater to create a tagged map of the disaster area shared
among participating peers, in order to exchange critical informa-
tion efficiently. We implement Floater using Google Nearby API
that enables seamless nearby interactions without having to be
connected to the Internet.

The rest of the paper is structured as follows: Section 2 illustrates
the state-of-the-art of the opportunistic communication applica-
tion focusing on post-disaster scenarios. Section 3 introduces the
FC model implemented by Floater app in Section 4. Section 5 de-
scribes Floater architecture, implementation and challenges. Finally,
Section 6 concludes the paper.

2 RELATEDWORK
The first 72 hours post-disaster, known as the golden relief time, are
the most critical ones to search and rescue efforts, after which the
probability in finding survivors drop drastically [7].

Authors in [8] present an evaluation of opportunistic communi-
cation in disaster-event, where forwarding information generated
in the incident location (e.g., victims’ medical data to a coordination
point), is critical for a quick, accurate, and coordinate intervention.
They compare the most significant opportunistic routing protocols
through simulations in realistic disaster-event. To address the lack
of communication and information support needed in this crucial
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time, authors in [9] introduce human-centric wireless sensor net-
work: an infrastructure that supports the capture and delivery of
shared information in the field.

TeamPhone, introduced in [10], is a system which provides
smartphones the capabilities of communications in disaster recov-
ery. TeamPhone enables connections among rescue workers in an
energy-efficient manner. A similar approach is proposed in [11] pro-
ducing the prototype of relay by smartphone, which delivers emer-
gency messages from disconnected areas as well as information
sharing among people in evacuation centers. COPE is an energy-
aware cooperative opportunistic alert diffusion scheme presented
in [12]. COPE supports rescue operations and maintains mobile
devices functionalities for maximum network coverage.

Authors in [13] introduce a cooperative opportunistic alert dif-
fusion scheme for trapped survivors during disaster scenarios to
support rescue operations.

Drones and vehicles support opportunistic communications in-
creasing the number of peers within the communication area. Au-
thors in [14, 15] present a vision for future unmanned aerial vehicles
assisted disaster management.

The above approaches and communication prototypes in disaster-
events do not implement any specific opportunistic communication
model leaving open the network optimization. Given the inefficient
network management, such systems may cause network overhead
delivering unreliable services.

Follow, we introduce Floater: a multi-platform application, based
on the Floating Content model, that limits the opportunistic com-
munication preventing network overhead.

3 FLOATING CONTENT BASICS
Floating Content or FC is an infrastructure-less communication
model that enables context-aware message exchanges in an area
denoted as Anchor Zone (AZ) and over a limited amount of time [6].

Users engaging in sharing a piece of content, denoted as seeders
node, initialize an AZ based on the application requirement (see the
blue node in Figure 1a). Within the AZ, the opportunistic exchange
takes place enabling probabilistic content storing. Every time a
node with the content comes in contact with a node without it,
within the AZ, the content is exchanged as shown in Figure 1b.
Without loss of generality, the Floating Content paradigm assumes
that the time taken to replicate the content is negligible with respect
to contact time. However, any other communication model can be
applied.

Nodes entering the AZ do not possess a copy of the content,
and those exiting the AZ discard their copy as shown in Figure 1c.
The typical behavior of a node consists in entering the AZ with no
content, receiving the content from another node, distributing the
content to nodes with no content met within the AZ, leaving the
AZ and dropping the content.

As a result of such opportunistic exchange, the content floats
(i.e., it persists probabilistically in the AZ even after the seeder(s)
left the AZ). In this way, the content is made available to nodes
traversing the AZ for the whole duration of its floating lifetime
without infrastructure support.

A first Floating Content performance parameter is content avail-
ability at a given time —the ratio between the number of nodes with
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Figure 1: Basic operation of Floating Content. 1a) Seeder (blue) de-
fines the AZ. 1b) Opportunistic message exchange between nodes.
1c) Nodes going out of the AZ (red) discard the content.

content over the total amount of nodes inside the AZ at that time.
A high value of availability is correlated with a low likelihood of
content disappearance from the AZ and a high likelihood of getting
the content for a node entering the AZ. This last feature is captured
by the success probability, the probability that a node entering the
AZ receives a copy of the content. The success probability is the
primary performance indicator, and the related to the performance
of applications and services relying on FC. The success probability
is a direct indicator of the effectiveness with which the floating
content is delivered and made available to nodes traversing the AZ.
Another relevant performance parameter is the time to get the con-
tent from entering the AZ, which is suitable for safety applications
requiring that the message reaches nodes as soon as possible.

FC studies consider a setup where infrastructure support to FC is
ubiquitous [16]. A data-based approach for dynamic management
of FC in vehicular scenarios that minimizes the overall use of band-
width and user storage space was proposed in [17]. Different from
existing results, [18] applies to arbitrary mobility scenarios and
spatio-temporal patterns of node density distributions by proac-
tively modulating the content replication and storage strategies
over time. The numerical assessment on a set of realistic scenarios
in [18] shows very high levels of accuracy, adapting content avail-
ability over time in a QoS aware manner. The above studies enable
us to balance the opportunistic replications and to rely on FC for
network and energy resources management.

4 FLOATER APP
Floater enables communications between peers in a common area
without requiring the support of a cellular network. The application
is available on Android and iOS [19].

The Floater app enables a user to send, receive, and manage
messages in the local user area or Anchor Zone —according to the
Floating Content communication model previously described. The
user that sends a new message can label it as follows:

• Victims, a user requiring help such as in a car breakdown
situation;

• Danger, a user spotting a particular danger such as a rough
road surface;

• Resource, a user localizing a new resource such as a restau-
rant;

• Caretaker, a user localizing health-point such as an ambu-
lance.
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Figure 2: Floatermessage category: (a)Mock-upmessage details.
(b) Mock-up message list.

The above categories identify the main application use cases. For
instance, a shop owner can advertise exclusive deals by floating
a Resource message nearby the interested shop; a pedestrian can
exchange a Danger message that spots a malfunction in the cross
traffic lights; or a skier can request help by sending a Victimmessage
aftermath an avalanche.

After selecting the category as shown in Figure 2a, the user can
add title, description, and pictures to the message. Floater enables
seamless nearby interactions using Bluetooth, WiFi, or ultrasound
network interfaces. The transmission radius is based on themessage
category. User can select the receiver radius in the application
setting —displayed on the app map page— discarding messages far
away from the actual user position.

Every user in the interested area is allowed to validate a message
(as shown in Figure 2b), as a way to confirm the validity of the
information carried by the message. In this way, the freshness and
accuracy of the information spread via Floating Content is checked.
The app automatically eliminates a message once it has been con-
firmed as wrong multiple times or out of date. The following list
summarizes the main actions enabled by the Floater App:

• send messages with a title, category, position, and an image;
• receive every message in a the configured zone. For instance,
a driver can lunch Floater to receive traffic information in
the local area avoiding congested roads.

• Ask about the validity of a message. The receiver can validate
or not the message. The automatic mechanism implemented
in Floater deletes rejected messages avoiding spam and over-
head.

• Filter the messages by categories, distance, date;
• see the messages on a map labeled with different markers;
• see deleted messages in the bin.

4.1 Use Cases
Floater provides connections between peers without using infras-
tructure communications that may be jeopardized by disaster events
such as a flood, an earthquake or a wildfire. The difficulties in
maintaining infrastructure base communications, in such disasters,
motivate the ad hoc communication. Applications proving offline
ad hoc communication such as Floater are the only solution to do
not let alone a population, a community, or a single human in an

emergency state. Despite disaster events, Floater allows the eval-
uation of a speech by the peers present in the audience, enables
inter-vehicular communications in Vehicular Ad-hoc Networks,
and provides connectivity when communication infrastructures are
overloaded such as in disaster events. Figure ?? illustrates (from
left) the available message list, the message creation, and Anchor
Zone coverage according to the victim’s position.

4.2 Floater via Google Nearby
We implement Floater using Google Nearby to establish direct com-
munication channels with other devices without data connections
(i.e., infrastructure support). Google Nearby increases the possibil-
ity of exchanging information between two nodes as it is based
on the use of Bluetooth, WiFi, and ultrasounds interfaces. In ad-
dition, whenever cellular communications are available, they are
used. This allows taking advantage of the surviving infrastructure
available in a post-disaster scenario. Figure 4 shows Google Nearby
connection procedure:

• Advertise and discovery procedures, respectively StartAd-
vertising and StartDiscovery methods, are called as soon as
the application starts.

• ConnectionLifecycle method handles incoming connection.
• As soon as an advertiser has been found, âĂĲEndpointDis-
covery method requires a connection by sending the name of
the device and an identifier. Only applications with the same
identifier can connect each other —no unwanted third-party
peers.

• Payload method fires when a new payload is received.
The choice of the communication technologies used for exchang-

ing content between two nearby nodes is managed by the Google
Nearby Interface in a way which is transparent to Floater, and based
on considerations on the quality of the channel (and hence also
on interference levels) and on the amount of information to be ex-
changed. Table 1 lists the fundamental differences between Floater
(implemented with Google API) and the existing solutions on the
market. We can see that Floater does not have special requirements,
and supports the most message types.

Feature Floater goTenna Fire Nearby Zello
Instant Message ✗ ✓ ✓ ✓ ✓

Require specific hardware ✗ ✓ ✗ ✗ ✗

Infrastructure-based ✗ ✗ ✗ ✗ ✓

Require the Internet ✗ ✗ ✗ ✓ ✗

Text ✓ ✓ ✓ ✓ ✗

Voice ✗ ✗ ✗ ✗ ✓

Position ✓ ✓ ✗ ✗ ✗

M
es
sa
ge

su
pp

or
te
d

Images ✓ ✗ ✓ ✓ ✗

Require an account ✗ ✓ ✓ ✓ ✓

Text ✗ ✓ ✓ ✗ ✓

Voice ✗ ✓ ✓ ✗ ✓

Ro
ut
in
g

ty
pe

Position ✓ ✓ ✓ ✓ ✗

Table 1: Floater vs. existing communication solutions
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Figure 3: Floater disaster event use case.

Google Proximity Beacon enables Google Nearby to react to
the user’s context through beaconing, to monitor the status of
the environment and the diagnostics endpoint, and to leverage
the physical Web using Bluetooth Low Energy (BLE) [20]. BLE is
designed to provide significantly lower power consumption. This
allows Android apps to communicate with BLE devices that have
stricter power requirements.

5 IMPLEMENTATION NOTES
In the following section, we highlight the motivation behind our
solution. We start with network management and the related prob-
lems concerning the application back end. Then, we discuss user
experience challenges focusing on problems such as error handling.
Finally, we conclude with user interface challenges and present the
designed mock-ups in this phase.

5.1 Application Back End
In a catastrophic event, message updated dissemination is an essen-
tial task. But the high dynamic of these disaster events may cause
inaccurate information dissemination —the high frequency of the
number of victims is an example of information hard to keep up to
date.

In Floater app, every message has a default lifetime. Users sup-
port this mechanism by providing information feedback: positive
feedback contents extend message lifetime, whereas negative feed-
back contents shorten it. Such feedback mechanism enables the
control on the number of messages allowing only relevant and up
to date information into the system.

Information trustfulness is another crucial feature of Floater app.
Since incorrect information may have critical consequences, users
can rate each message associated with a place. Such rating assists
users in evaluating information reliability and in ranking users
according to their trustfulness. This rating value, which includes
reliability and trustfulness, is attached to the new users’ messages
for ranking it.

5.2 Message Flow
We illustrate the sending-receiving message flow in Figures 5 and 6.
The respective methods are defined in the âĂĲCommunication
ManagementâĂİ class, which acts as a network router. When a user
clicks the send button in the Floater app, the message will be sent
only if the two following conditions are satisfied:

• connected devices are on the map. Otherwise, the message
will be placed in the message queue until a new device is
connected.

• The device has a current location. Otherwise, the message
will be placed in the location queue until the GPS receives a
new location.

Each message has a header that allows identifying the content and
checking its updates.

The receiving procedure needs to process the received message.
We designed the reception of the payload this way to make the
addition of a new type of data more accessible. Onmessage received,
the following conditions are checked:

• payload, for identifying message type (e.g., BYTE, FILE, or
STREAM).

• Header, for checking message updates.
• Status, for calling the corresponding method.

5.2.1 Duplicate Data. In the creation of a new message, Floater
uses user positions to check if a message of the same category
already exists in the user local area. If that is the case, a popup
message informs the user of presumable duplication.

5.2.2 New Peer Connection. When a new peer connects, he needs
to receive all the exchanged messages of the local area. To avoid
duplicate messages in the app content list, Floater executes a strict
data check when new messages appear —existing messages are
ignored at reception.

5.2.3 Application Settings. Floater allows users to change some
parameters such as the username and the transmission radius. But
the fundamental settings, such as message lifetime and the number
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Figure 4: Google Nearby connection procedure (Android Developers, 2017).

Figure 5: Sending message flow

Figure 6: Receiving message flow

of peers within the local area, are out of user control. Such critical
settings are related to the application back end.

5.2.4 Offline Challenges. Google Nearby Connection does not re-
quire any Internet connection 4. Floater app can be used regardless

of network availability. But it needs cellular connection for the here
listed operations.

• Application Installation: users need to have the application
installed before the disaster occurs. If that is not the case, vic-
tims are unable to communicate via Floater. To address this
issue, we envision a sharing feature in the application where
users can send the installer. This would allow unprepared
users to access the mesh network creating and replicating
information. To make the installer exchange easier, we envi-
sion a workaround: during the installation, the installer—an
Android Package Kit (APK)— is placed in the download folder
of the device. To transfer the APK to other devices, users
only need to send it via Bluetooth. This solution requires
absolute mastery of the device.

• Floating Content Maps: when an Internet connection is avail-
able, the application downloads the map required by the FC
model. But if no connection is available, the system needs to
download the map periodically in order to use it in offline
mode.

• Network Status: the number of peers that received the mes-
sage is an excellent indicator of the network health that
requires an internet connection for retrieving network data.

• Messages Classification: Since our application relies on mes-
sage exchange, a message identification system is compul-
sory. This system allows nearby users to differentiate mes-
sages and enables quick identification of the message type
by ranking both, users and messages.

5.3 User Experience Challenges
Error handling feature needs to be implemented to avoid inaccurate
information dissemination. Only for infotainment messages, we
propose the following approaches:

• a delay from 10 to 30 seconds between the sending requester
and the message transmission can prevent these mistakes.
The sending message is editable for the whole delay time.
Finally, It is sent to all connected peers once the delay has
been expired.

• Another approachwould be to immediately send themessage
and allow users to update it afterward. But this strategy
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may cause network overhead and inaccurate information
dissemination.

• A third option that avoids additional delay and network
overhead, is a double message acknowledge. A summary of
the message before the transmission adds additional control
of the message. The user reconfirms if the message must be
sent, or edits it.

For emergency messages, the priority is to send the message as
soon as possible. Therefore, error handling feature is applied only
after the message has been sent.

5.4 User Interface Challenges
Concerning the application layout, we implement a mock-ups of the
future user interface; this supports us in finding vital component
issues of the application. For instance, application colors have been
changed after the creation of the mock-up since they have not
provided adequate contrast of the elements on the screen.

The application is user-friendly; we use a bottom menu that
contains all the essential requirements such as the list of messages,
the map of all messages, and the application settings. The message
list contains all the messages in the user local area. Each message
has a title, a description, a category, and the sender position. On
top of that, the color band displays the message category and the
message fidelity (according to the ranks of the message and the
sender). This icon informs users about the freshness of the message;
the icon becomes a red exclamation point once the information is
outdated.

When a message has been selected, two buttons are present at
the bottom of the screen used to confirm or reject the message. This
mechanism supports the message expiration date. The application
map provides an overview of the user area showing the connected
peers and resources available.

5.5 Project Architecture
We implement Floater using Android Studio 3.0, which supports
both Java and Kotlin. We split the project as follows:

• Adapter, which contains the custom adapters for the lists in
the application.

• Model, which contains the Message and Endpoint classes.
• Utils, mostly consisted of abstract methods. This is where to
configure Google Nearby.

• View, all the codes related to the views present in the appli-
cation. We created sub-packages to help the organization of
the files.

All the dependencies present in the project are from Google;
we did not want to use an external framework as they might be
unsupported in the future.

6 CONCLUSIONS AND OPEN ISSUES
Floater provides a fast, effective, and reliable communication to
people affected by a disaster. Floater do not rely on existing net-
work infrastructure such as the cellular network or the Internet. We
illustrate how ad hoc networks can be used during disasters events
to provide the necessary support to victims left unprepared for the
arrival of relief. We focused our research on technologies embedded

on smartphones, given its ubiquitous. Google Nearby Connection
API is the technology we decided to use due to its robustness and re-
liability during our tests and implementation. However, simulations
can be carried out on a larger scale and with a greater diversity of
equipment testing Google Nearby limits. An optimization concern-
ing the case of offline maps needs to be provided.
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