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Abstract. The wide adoption of increasingly cheap and computation-
ally powerful single-board computers, has triggered the emergence of new
paradigms for collaborative data processing among IoT devices. Moti-
vated by the billions of ARM chips having been shipped as IoT gateways
so far, our paper proposes a novel continuous federation approach that
uses RDF Stream Processing (RSP) engines as autonomous processing
agents. These agents can coordinate their resources to distribute pro-
cessing pipelines by delegating partial workloads to their peers via sub-
scribing continuous queries. Our empirical study in “cooperative sens-
ing” scenarios with resourceful experiments on a cluster of Raspberry Pi
nodes shows that the scalability can be significantly improved by adding
more autonomous agents to a network of edge devices on demand. The
findings open several new interesting follow-up research challenges in
enabling semantic interoperability for the edge computing paradigm.

Keywords: Autonomous systems, stream processing, cooperative sens-
ing, query federation

1 Introduction

Over the last few years, Semantic Web technologies have provided promising
solutions for achieving semantic interoperability in the IoT (Internet of Things)
domain. Ranging from ontologies for describing streams and devices [10, 11], to
continuous query processors and stream reasoning agents [8], these efforts con-
stitute important milestones towards the integration of heterogeneous IoT plat-
forms and applications. While these different technologies enable the publication
of streams using semantic technologies (e.g., RDF streams), and the querying
of streaming data over ontological representations, most of them tend to cen-
tralise the processing, relegating interactions among IoT devices simply to data
transmission. This approach may be convenient in certain scenarios where the
streams, typically time-annotated RDF data, are integrated following a top-down
approach, for instance using cloud-based solutions for RDF Stream Processing
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(RSP). However, in the context of IoT, decentralised integration paradigms fit
better with the distributed nature of autonomous deployments of smart de-
vices [22]. Moreover, moving the computation closer to the edge networks, such
as sensor nodes or IoT gateways, will not only create more chances to improve
performance and to reduce network overhead/bottlenecks, but also to enable
flexible and continuous integration of new IoT devices/data sources [19].

Thanks to recent developments in the design of embedded devices, e.g., ARM
boards [23], single board computers are getting cheaper and smaller while in-
creasing their computational power. For example, a Raspberry computer costs
less than 40 EUR and its size is just roughly as big as the size of a credit card.
Despite the size, they are powerful enough to run a fully-functioning Linux dis-
tribution that provides both operational and deployment advantages. On the
one hand, they are both power efficient and cost-effective, while computation-
ally powerful. On the other hand, their small sizes make it easier to embed or
bundle them with other IoT devices (e.g., sensors and actuators) as a processing
gateway interfacing with outer networks, called edge devices.

RDF Stream Processing (RSP) [21] extends the RDF data model, enabling
to capture and to process heterogeneous streaming sensor sources under a uni-
fied data model. An RSP engine usually supports a continuous query language
based on SPARQL, e.g. C-SPARQL [3] and CQELS-QL [15]. Hence, an edge
device equipped with an RSP engine could play the role of an autonomous data
processing gateway. Such an autonomous gateway can coordinate the actions
with other peers connected to it to execute a data processing pipe in a collab-
orative fashion. However, to the best of our knowledge, there has not been any
in-depth study on how such a decentralised processing paradigm would work
with edge devices. In particular, an edge device has 10-100 times less resources
than those of a PC counter-part which is originally the expected execution set-
ting for an RSP engine. Hence, this raises two main questions: how feasible would
it be to enable such a paradigm for edge devices, and how it would affect the
performance and scalability. Putting our motivation in the context of 100 billion
ARM chips that have been shipped so far [4], enabling computational and pro-
cessing autonomy along with semantic interoperability will have a huge impact
even for a small fraction of this number of devices (e.g. 0.1% would account for
100s millions devices).

To this end, this paper investigates how to realise this edge computing
paradigm by extending an RSP engine (i.e., CQELS) as a continuous query feder-
ation engine to enable a decentralised computation architecture for edge devices.
A prototype engine was implemented to empirically study the performance and
scalability aspects on “cooperative sensing” scenarios. Our experiment results on
a realistic setup with the biggest network of its kind in Section 4 show that our
federation engine can considerably scale the processing throughput of a network
of edge devices by adding more nodes on demand. We believe this is the largest
experiment setup of its kind so far. The main contributions of the paper are
summarised below:
1. We propose a novel federation mechanism based on autonomous RSP En-

gines and distributed continuous queries.
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2. We present technical details on how to realise such a federation mechanism
by integrating an RSP engine and an RDF Store for edge devices.

3. We carry out an empirical study on performance and scalability on “coop-
erative sensing” that leads to various quantitative findings and then opens
up several interesting follow-up research challenges.

The paper is outlined as follows. The next section presents our approach
on continuous federation based on autonomous RSP. Section 3 describes the
implementation details of our federated RSP engine for edge devices. The setup
and results of the experiments is reported in Section 4. We summarise related
work in Section 5 and Section 6 concludes the paper.

2 Continuous Federation with Autonomous RSP

2.1 Preliminaries: RDF Stream Processing with CQELS-QL

CQELS-QL is a continuous query language for RSP that extends SPARQL 1.1
with sliding windows [15]. As an example, the CQELS-QL query below continu-
ously provides the “updates for the locations of 10 weather stations which have
reported the highest temperatures in the last 5 minutes”. This query then is also
used as Query Q3 in the experiments of Section 4.

1 SELECT ?sensor ?maxTemp ?lat ?lon
2 WHERE {
3 {SELECT ?sensor (MAX(?temp) as ?maxTemp)
4 STREAM ?streamURI [RANGE 5m ON sosa:resultTime]{
5 ?observation sosa:hasSimpleResult ?temp.
6 ?sensor rdf:type <TempSensor>; made:Observation ?observation.}
7 GROUP BY ?sensor}
8 ?streamURI prov:wasGeneratedBy ?sensor. ?sensor sosa:isHostedBy ?station.
9 ?station wgs84:Point ?loc. ?loc wgs84:lat ?lat;wgs84:lon ?lon.}

10 ORDER BY ?maxTemp
11 LIMIT 10

Listing 1: Query Q3 in CQELS-QL (prefixes are omitted)

In the original centralised setting, the above query can be subscribed to a
CQELS engine installed in one processing node. Stream data in RDF formats (e.g
JSON-LD or Turtle) can be provided to it from data acquisition nodes, called
streaming nodes. These streaming nodes collect data from sensors of weather
stations that can be geographically distributed in different locations. In practice,
an edge device can host both a CQELS node and a streaming node, but we
can assume they communicate via an internal process. As soon as the data
is collected, the sensor data is pushed to the CQELS engine via a streaming
protocol such as Websocket or MQTT. The incoming data continuously triggers
the processing pipeline compiled from Query Q3. Consequently, the computing
node that hosts this CQELS engine needs to have enough resources (bandwidth,
CPU and memory) to deal with the workload regardless of how many stream
nodes exist in the network. Hence, if the CQELS engine is only hosted on an
edge device, the physical limits of its hardware quickly becomes a bottleneck
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as shown in Section 4. To create a more scalable processing system, we need
to decentralise the processing pipelines of similar queries to a network of edge
devices connected to these stream nodes. The following two sections describe our
approach to enable this type of network.

2.2 Dynamic subscription & discovery for autonomous RSP engines

To enable a CQELS engine to work in a decentralised fashion, it would require
the capability to operate as an autonomous agent which can collaborate with
other peers to execute a distributed processing pipeline specified in CQELS-QL.
An autonomous CQELS node can dynamically join a network of existing peers
by subscribing itself to an existing node in the network, called a parent node, and
it then notifies the parent node about the query service and streaming service it
can provide to the network. These services can be semantically described by using
vocabularies provided by VoCaLS [27]. For instance, VoCaLS allows describing
the URIs of the streams and their related metadata (e.g. sensors that generated
the streams), which are used in the query patterns of the query Q3. Hence, a
subscription can be done by sending a RDF-based message via a REST API or
Websocket channel. Listing 2 illustrates a snippet of a subscription message in
RDF Turtle that is used in our experiments in Section 4.

1 <> a vocals:StreamDescriptor, vsd:CatalogService; dcat:dataset :NOAAWeather.
2 :NOAAWeather a vocals:RDFStream; prov:wasGeneratedBy :TemperatureSensor;
3 vocals:hasEndpoint :NOAAWeatherEndpoint; dct:title "Weather stream From Berlin".
4 :NOAAWeatherEndpoint a vocals:StreamEndpoint; dct:format frmt:JSON-LD;
5 dcat:accessURL "ws://192.168.178.5/noaa/berlin".

Listing 2: Example of subscription message in RDF

Based on the semantic description provided by the subscribed nodes, the
parent node can carry the stream discovery patterns which use a variable in the
stream pattern, as shown in line 4 of the query Q3. The variable ?streamURI then
can be matched in other metadata as shown in line 8. In this example, it is used
to link with the sensors that generated this stream. Recursively, the subscription
process can propagate the stream information upstream hierarchically, and vice
versa, the discovery process can be recursively delegated to downstream nodes
via sub-queries in CQELS-QL.

To this end, when an autonomous CQELS joins a network, it makes itself and
its connected nodes discoverable and queryable to other nodes of the network.
Moreover, each node can share its processing resources by executing a CQELS
query on it. This will help us treat the query similar to query Q3 as a query
to a sensor network whereby sensor nodes and network gateways collaborate as
a single system to answer the query of this kind. Next, we will discuss how to
federate such queries in “cooperative sensing” scenarios whereby such a network
of autonomous CQELS processing nodes will coordinate each other to answer a
CQELS-QL request in a decentralised fashion.
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2.3 Continuous Query Federation Mechanism

With the support of the above subscription and discovery operations, a stream
processing pipeline written in CQELS-QL can be deployed across several sites
distributed in different locations: e.g., weather stations provide environmental
sensory streams in various locations on earth. Each autonomous CQELS node
gives access to data streams fed from streaming nodes connecting to it. Such
stream nodes can ingest a range of sensors, such as air temperature, humidity
and carbon monoxide. When the stream data arrives, this CQELS node can
partially process the data at its processing site, and then forward the results as
mappings or RDF stream elements to its parent node.

In this context, when a query is subscribed to the top-most node, called
root node, it will divide this query to sub-query fragments and deploy at one or
more sites via its subscribed nodes. A query fragment consists of one or more
operators, and each fragment of the same query can be deployed on different
processing nodes. Recursively, a sub-query delegated to a node can be federated
to its subscribed nodes. All participant nodes of a processing pipeline can syn-
chronise their processing timeline via a timing stream that is propagated from
the root node. The execution process of sub-query fragments can use resources,
i.e. CPU, memory, disk space and network bandwidth of participant nodes to
process incoming RDF graphs or sets of solution mappings and generate output
RDF graphs/sets of solution mappings. Output streams may be further pro-
cessed by fragments of the same query, until results are sent to the query issuer
at the root node. For example, the sub-query of the query Q3 in below Listing 3
can be sent down to the nodes closer to the streaming nodes, then the results
will be recursively sent to upper nodes to carry out the partial top-k queries
in lines 10 and 11 until it reaches the root node to carry out final computation
steps to return the expected results.

1 SELECT ?sensor (MAX(?temp) as ?maxTemp)
2 WHERE{
3 STREAM ?streamURI [RANGE 5m ON sosa:resultTime]
4 { ?observation sosa:hasSimpleResult ?temp.
5 ?sensor rdf:type <TempSensor>; made:Observation ?observation.}
6 ?streamURI prov:wasGeneratedBy ?sensor.
7 }GROUP BY ?sensor

Listing 3: An Example of The Subquery of Q3

This federation process can be carried out dynamically thanks to the dynamic
subscription and discovery capability above. Moreover, the processing topology
of such as processing pipelines in our experiment scenarios of Section 4 can be
dynamically configured by changing where and how participant nodes subscribed
themselves to the processing networks. For example, we carried out five different
federation topologies in Section 4. The biggest advantage of this federation mech-
anism is the ability to dynamically push some processing operations closer to the
streaming nodes to alleviate the network and processing bottlenecks which often
happen at edge devices. Moreover, this mechanism can significantly improve the
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processing throughput by adding more processing nodes on demand as shown in
the experiments in Section 4.

3 Design and Implementation

To enable the cooperative federation of RSP engines on edge devices, we built
a decentralised version of the CQELS engine, called Fed4Edge. Fed4Edge was
implemented by extending the algorithms and Java codebase of the original
open sourced version of CQELS [15]. Thanks to the platform-agnostic design
of its execution framework [14], the core components are abstract enough to be
seamlessly integrated with different RDF libraries in order to port to different
hardware platforms. To tailor the RDF-based data processing operations on
edge devices (e.g ARM CPU, Flash-storage and the likes), we integrated the
core components of CQELS with the counterparts of RDF4Led [17], a RISC
style RDF engine for lightweight edge devices. The Fed4Edge system will be
open-sourced at https://github.com/cqels/Fed4Edge.

RDF4LED
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Fig. 1: Overview Architecture of Fed4Edge

The architectural overview of
the system is depicted in Figure 1.
The core components of CQELS
and RDF4Led such as the Dictio-
nary, Encoder, Decoder, Dynamic
Execution, Adaptive Query Opti-
miser, Buffer Manager are reused
in our Fed4Edge implementation.
And the extension plugins of them
such Adaptive Federator, Thing
Directory, Stream Input Handler
and Stream Output Handler are
built to facilitate the federation
mechanism proposed in Section 2.
The technical details of these
components are discussed next.

CQELS and RDF4Led share
similar RDF data processing flows
due to the fact that both systems
apply the same RDF data encod-

ing approach, which normalises RDF nodes into a fixed-size integer. By encoding
the RDF nodes, most of the operators on RDF data can be executed on a smaller
data structure rather than large variable-length strings. This approach is com-
monly used in many RDF data processors in order to reduce memory footprint,
I/O time, and improve cache efficiency. The platform-agnostic design of CQELS
allows the size of the encoded node to be tuned to adapt to a targeted platform
without changing the implementation of other core components. Therefore, the
Encoder, Decoder and Dictionary of RDF4Led can be easily integrated with
CQELS for the RDF normalisation tasks. After receiving RDF data from RDF
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stream subscriptions via the Stream Input Handler, the data is encoded by the
Encoder. The encoded RDF triples are then sent to the Buffer Manager for fur-
ther processing. The Decoder waits for the output from the Dynamic Executor,
transforms the encoded nodes back to a lexical representation before sending
them to the Stream Output Handler. The Encoder and Decoder share the Dic-
tionary for encoding and decoding. Instead of using a 64-bit integer for encoding
node as in the original version of CQELS, the Dictionary of RDF4Led uses
32-bit integers, which entails less memory footprint for cached data. Therefore,
backed by RDF4Led, Fed4Edge can process 30 million triples with only 80MB
of memory [17] on ARM computing architectures.

The Buffer Manager is responsible for managing the buffered data of windows
and then feeding the data to the Dynamic Executor. Furthermore, the Buffer
Manager also manages cached data for querying and writing the static data
in the Thing Directory. Stream data is evicted from the buffer by the data
invalidating policy defined by the window operators [15, 12]. Meanwhile, the
flash-aware updating algorithms of RDF4Led are reused in order to achieve fast
updating for static data [17].

The Dynamic Executor employs a routing-based query execution algorithm
that provides dynamic execution strategies in each node [12, 13]. During the
lifetime of a continuous query, the query plan can be changed by redirecting
data flow on the routing network. The Adaptive Optimiser continuously adjusts
the efficient query plan according to the data distribution in each execution
step[15, 17]. RDF4Led and CQELS employ a similar query execution paradigm.
While CQELS uses routing-based query execution algorithms, RDF4Led exe-
cutes SPARQL with a one-tuple-at-a-time policy. Therefore, the same cost model
of the Adaptive Optimiser can be applied when calculating the best plan for a
query that has static data patterns. The Buffer Manager treats the buffer for
join results of the static patterns as a window, and depending on the available
memory, it will apply the fresh update or incremental update policy.

The Adaptive Federator acts as the query rewriter, which adaptively divides
the input query into subqueries. For the implementation used in our experiments
in Section 4, the rewriter will push down operators as close to the streaming
nodes as possible by following the predicate pushdown practice in common logical
optimisation algorithms. The Thing Directory stores the metadata subscribed
by the other Fed4Edge engines (cf. Section 2) in the default graph. Similar
to [7], such metadata allows endpoint services of the Fed4Edge engines to be
discovered via the Adaptive Federator. When the Adaptive Federator sends out
a subquery, it notifies the Stream Input Handler to subscribe and listens to the
results returning from the subquery. On the other hand, the Stream Output
Handler sends out the subqueries to other nodes or sends back the results to the
requester.

4 Evaluation and Analyses

4.1 Evaluation Setup
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Fig. 2: The Evaluation Cluster of 85
Raspberry PI Nodes

Hardware & Software: The hard-
ware for the experiment is a cluster of
85 Raspberry Pi model B nodes, each
one is equipped with: Quad Core 1.2GHz
Broadcom BCM2837 64bit CPU, 1GB
RAM and 100 Mbps Ethernet. All nodes
are connected to five TP-LINK Jet-
Stream T2500-28TC switches. Each has
24 100 Mbps Ethernet ports 4 1000Mbps
uplinks shown in Figure 2. As to the
switching capacity, T2500-28TC has a
non-blocking aggregated bandwidth of
12.8Gbps. Four switches for connecting
streaming nodes will be connected to the
fifth one via the 1000Mps links. This fifth
switch is used to connected CQELS pro-
cessing nodes. Every node uses Raspbian
Jessie as the operating system and Open-
JDK 1.7 for ARM as the JVM. We set
512MB as the maximum heap size for the
Fed4Edge engine.
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Fig. 3: RDF Stream Schema For NCDC Weather Data

Datasets and Queries: To prepare the RDF Stream dataset for the evaluation,
we used the SSN/SOSA ontology [10] to map sensor readings of the NCDC
Integrated Surface Database (ISD) dataset 5 to RDF. The ISD dataset is one of
the most prominent weather datasets, which contains weather observation data

5
https://www.ncdc.noaa.gov/
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from 1901 to present, from nearly 20K stations over the world. A weather reading
of a station produces an observation that covers measurements for temperature,
wind speed, wind gust, etc. depending on the types of sensors equipped for that
station. Each observation needs approximately 87 RDF triples to map its values
and attributes to the schema illustrated in Figure 3. The data from different
weather stations was split to multiple devices which acted as streaming nodes
(i.e., the white nodes in Figure 4). Each streaming node hosts a Websocket server
which manages WebSocket stream endpoints. The data is read from CSV files in
local storage, then mapped to the RDF data schema in Figure 3 before streaming
out.

We designed the following queries in order to show the advantages of coop-
erative federation for querying streaming data over a network of edge devices.
Listings 4 and 5 respectively present the queries Q1 and Q2 that are used for
measuring the improvement of the streaming throughput in simple federation
cases. Q1 will return the updated temperature and the corresponding location
and Q2 will answer the location where the latest temperature is higher than 30
degrees. The subquery of Q1 and Q2 contains only triple patterns for querying
streaming data. With these simple join patterns, the behaviour of the system is
mostly influenced by the behaviour of the network. The filter at line 7 of Q2 will
reduce the number of intermediate results sent from the lower node, and there-
fore, it can highlight the benefit of pushing down processing operators closer to
the data sources.

1 SELECT ?temp ?lat ?lon ?resultTime
2 WHERE {
3 STREAM ?streamURI [LATEST ON ssn:resultTime] {
4 ?obs sosa:hasSimpleResult ?temp; sosa:resultTime ?resultTime.
5 ?sensor rdf:type iot:TempSensor; made:Observation ?obs.}
6 ?streamURI prov:wasGeneratedBy ?sensor. ?sensor sosa:isHostedBy ?station.
7 ?station wgs84:Point ?loc. ?loc wgs84:lat ?lat;wgs84:lon ?lon.}

Listing 4: Q1: Return updated temperature and the corresponding location.

1 SELECT ?lat ?lon
2 WHERE {
3 STREAM ?streamURI [LATEST ON ssn:resultTime] {
4 ?obs sosa:hasSimpleResult ?temp; sosa:resultTime ?resultTime.
5 ?sensor rdf:type iot:TempSensor; made:Observation ?obs.
6 FILTER (?temp > 30) }
7 ?streamURI prov:wasGeneratedBy ?sensor. ?sensor sosa:isHostedBy ?station.
8 ?station wgs84:Point ?loc. ?loc wgs84:lat ?lat;wgs84:lon ?lon.}

Listing 5: Q2: Return the location where the latest temperature is higher than
30 degree.

For the queries that can show the collaborative behaviour of the participant
edge nodes, we used the queries Q3 (as described in the example of Section 2)
and query Q4 in Listing 6. The query Q3 has aggregation and top-k operators
and the Q4 includes a complex join across windows.
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1 SELECT ?city ?temp ?windspeed
2 WHERE {
3 STREAM ?streamURI [RANGE 5m ON ssn:resultTime] {
4 ?obs1 sosa:hasSimpleResult ?temp; sosa:resultTime ?resultTime.
5 ?obs1 sosa:hasFeatureOfInterest ?foi1.
6 ?foi1 ssn:hasProperty iot:Temperature. ?foi1 :hasLocation ?loc.
7 FILTER (?temp > 30) }
8 STREAM ?streamURI [RANGE 5m ON ssn:resultTime] {
9 ?obs2 sosa:hasSimpleResult ?windspeed; sosa:resultTime ?resultTime.

10 ?obs2 sosa:hasFeatureOfInterest ?foi2.
11 ?foi2 ssn:hasProperty iot:WindSpeed. ?foi2 :hasLocation ?loc.
12 FILTER (?windspeed > 15) }
13 ?streamURI prov:wasGeneratedBy ?sensor. ?sensor sosa:isHostedBy ?station.
14 ?station wgs84:Point ?loc. ?loc geo:city ?city.}

Listing 6: Q4: Return the city where the temperature is higher than 30 degree
and the wind speed is higher than 15km in the last 5 minutes.

4.2 Experiments

Baseline Calibration (Exp1): In this experiment, we calibrated the maximum
processing capability of a processing node as the baseline for the following fed-
eration experiment. We increased the number of stream nodes to observe the
bottleneck phenomena whereby increasing more streaming nodes decreases the
processing throughput of the network. Each streaming node will stream out
recorded data as its maximum capacity. We will use Query 1 and its two vari-
ants as the testing queries. These two variants are made by reducing four triple
patterns into 1 and 2 patterns respectively. The throughput is measured by
using a timing stream whereby each streaming nodes will send timing triples
indicating when each of them starts and finishes sending their data. In each test
we will equally split 500k-1M observations among streaming nodes and record
how much time to process these observations to calculate the average through-
put. Note that we separated the streaming and processing processes in different
physical devices to avoid performance and bandwidth interference which might
have an impact on our measurements.

Fan-out Federation (Exp2): To test the possibility of increasing the processing
throughput by increasing more edge nodes as autonomous agents to the network,
we carried out the tests on five topologies as shown in Figure 4. The first topology
(1-hop) in Figure 4a was the configuration that gave the peak throughput in
Exp1. Let k be the number of hops the data has travel to reach to the final
destination, we will increase k to add more intermediate nodes to this topology
to create new topologies. As a result, we can recursively add n nodes to the
root node (k=2, namely 2-hop) and then n nodes to the root node’s children
nodes (k = 3, namely 3-hop) whereby n is called the fanout factor (denoted as

n-fanout). Then, we have
∑k−1

i=0 ni as the number of nodes of a topology with
k hops and fanout factor n. We choose n = 2 and n = 4 (corresponding to
the number of streaming nodes at the maximum throughput reported in Exp1
below), thus, we have four new topologies with 3, 5, 7 and 21 processing nodes in
Figure 4b, Figure 4c, Figure 4d, and Figure 4e. In each processing topology, the
lowest processing nodes are connected with 4 streaming nodes. We will record
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the throughput and delay for processing three queries (Q1, Q2, Q3 and Q4) on
these five topologies in a similar fashion to Exp1.

(a) 1 node (1-
hop)

(b) 3 nodes (2 hop, 2-
fanout)

(c) 5 nodes (2 hop, 4-fanout)

(d) 7 nodes (3-hop, 2-
fanout)

(e) 21 nodes (3-hop,4-fanout)

Fig. 4: Federation Topologies

4.3 Results and Discussions
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Fig. 5: Baseline Calibration

Figure 5 reports the results of the ex-
periment Exp1. The maximum pro-
cessing throughput for three variants
of Query 1 on one single edge device
is from 4200-5000 triples correspond-
ing to 4 streaming nodes. It is in-
teresting that increasing the number
of streaming nodes more than 4 will
gradually decrease the overall process-
ing throughput. The results are con-
sistent with different complexities of

the variants of Query 1. We observed that the CPU usages were around 60-70%
and the memory consumption is around 270-300MB in all tests. Therefore, we
can conclude that the bottleneck was caused by the bandwidth limitations. We
also carried out a similar test with Q1 on a PC (Intel Core i7 i7-7700K, 4GHz,
1GBb Ethernet and 16GB RAM) as the root node which has more than 10 times
of processing power, memory and network bandwidth than those of a Raspberry
Pi model B. As we expected, the PC’s maximum throughput is approximately
36k triples/second, around 8-10 times the one with a Raspberry Pi. Note that
this PC costs more than the price of 40 Raspberry Pi nodes.

Figure 6a shows the results of throughput improvements via federating the
processing workload on other intermediate nodes in four proposed topologies.
The results show that adding more nodes will increase the processing throughput
in general. Most queries have their processing throughput consistently boosted
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up as a considerable amount of processing load were done at the intermediate
nodes. However, the increase is not consistently correlated with the total number
of processing nodes. In fact, the topology with 5 nodes in Figure 4d gives a
slightly higher throughput than those of the topology with 7 nodes in Figure 4c.
This can be explained by the fact that both topologies have 4 processing nodes at
the lowest levels (called leaf processing nodes, i.e, connecting to streaming nodes)
but the data in the latter topology has to travel 1 more hop in comparison with
the former. Due to our pushing down rewriting strategy presented in Section 3,
these two upper blue nodes in Figure 4c did not significantly contribute to the
overall throughput but on the other hand cause more communication overhead.

Look closer to the reported figures, we see a high correlation between the
number of leaf processing nodes, i.e. nk−1, and the processing throughput in
all topologies. This shows that our proposed approach is able to linearly scale
a network of IoT devices by adding the more devices on demand. In particu-
lar, a network of 21 Raspberry Pi nodes can collaboratively process up to 74k
triples/seconds or equivalent to roughly 8500 sensor observations/second that are
streamed from other 64 streaming nodes. Hence, the above 20K weather stations
across the globe of NCDC can be queried via such a network with the update
rate 20-30 observations per minute which are much faster than the highest up-
date rate currently supported by NCDC 6, i.e. ASOS 1-minute data. Moreover,
the processing capacity of this network is twice more than that of the above PC
but it only costs roughly a half of the PC. Regarding the energy consumption,
each Raspberry Pi only consumes around 2W in comparison of 240W of the
above PC.
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Fig. 6: Federation Topologies

Figure 6b reports the average time for each observation to travel through a
processing pipeline specified by each query on different topologies, i.e., average
processing time. It shows that adding more intermediate nodes for query Q1
and Q2 can lower the average processing time as it can reduce queuing time at
some nodes. That means communication time might be a dominant factor for
the delay in these processing pipelines. In queries Q3 and Q4, we witness the
consistent increase in processing time wrt. the number of hops which explains
the nature of query Q3 and Q4 that needs more coordination among nodes.

6
https://www.ncdc.noaa.gov/data-access/land-based-station-data



Autonomous RDF Stream Processing on IoT Edge Devices 13

However, it is interesting that increasing 1 hop in organising a network topology
just adds 10-15% delay while the maximum throughput gain is linear to nk−1.

4.4 Follow-up Challenges

We observed the CPU, memory consumption and bandwidth in our experiments.
It is interesting that all tests used 60-70% of CPU (across 4 cores), 25-30%
of physical memory and 20-40% of Ethernet bandwidth (i.e., 100Mbps). Our
reported performance figures show that edge devices have enough resources to
enable semantic interoperability for the edge computing paradigm. From our
analyses of hardware and software libraries, the most potential suspects for the
processing bottleneck are related to the communication among the nodes. Hence,
there is a lot of room to make our approach much more efficient and scalable.
In this context, to help 100 billions and more edge devices to reach their full
potential, we outline some interesting research challenges below.

The first challenge is how to address the multiple optimisation problems
that such a federated processing pipeline entails. The first one is how to opti-
mise an RSP engine for edge devices which have distinctive processing and I/O
behaviours from those of PC/workstations due to their own design philosophies.
The second challenge is about how to find optimal operator placements on very
dynamic execution settings. The subsequent challenge is how to define cost mod-
els which are no longer limited to processing time/throughput, but need to cover
several cost metrics such as bandwidth, power consumption and robustness.

Looking beyond database-oriented optimisation goals, another relevant re-
search challenge would be how to model socioeconomic aspects as the control or
optimisation scheme for such a cooperative system. In particular, autonomous
RSP processing nodes can be operated by different stakeholders which have dif-
ferent utility functions dictating when and how to join a network and to share
data and resources. To this end, the coordination strategies become related to
the game theory which inspired some relevant proposals in both the stream
processing and Web communities. For instance, [1] proposed a contract-based
coordination scheme based on mechanism design, a field in economics and game
theory that designs economic mechanisms or incentives toward desired objec-
tives. Similarly, [9] also proposed to use mechanism design for establishing an
incentive-driven coordination strategy among SPARQL endpoints. Inspired by
this line of work, we also proposed an architecture for in-cooperating blockchain
with RDF4Led [18] to pave the way to in-cooperate with such incentive and
contract-based coordination strategies.

Regarding cooperation and negotiation among RSP autonomous agents, a
potential research challenge is the study and exploration of protocols and strate-
gies that follow the multi-agent system paradigm. Although early works on the
topic [26] point at potential opportunities in this area, several aspects have not
been studied yet. These include the usage of individual contextual knowledge
for local decision making (potentially through reasoning) and for a resource-
optimised distribution of tasks among a set of competing/associated nodes. The
dynamics of these federated processing networks would need to adapt to changing
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conditions of load, membership, throughput, and other criteria, with emerging
behaviour patterns on the sensing and processing nodes.

5 Related work

Semantic interoperability in the IoT domain has gained considerable attention
both in the academic and industrial spheres. Beyond syntactic standards such as
SensorML, semantically rich ontologies such as SSN-O/SOSA [10] have shown a
significant impact in different IoT projects and solutions, such as OpenIoT [24],
SymbIoTe [25], or BigIoT [5]. Other related vocabularies, such as the ThingsDe-
scription ontology, have also recently gained support from different IoT vendors,
aiming at consolidating it as a backbone representation model for generic IoT
devices and services. Regarding the representation of data streams themselves,
the VoCaLS vocabulary [27] has been designed as a means for the publication,
consumption, and shared processing of streams. Although these ontology re-
sources provide different and complementary ways to represent IoT and stream-
ing data, they require the necessary infrastructure and software components (or
agents) able to interpret the stream metadata, and apply coordination/coopera-
tion mechanisms for federated/decentralised processing, as shown in this paper.

The processing of continuous streaming data, structured according to Se-
mantic Web standards has been studied in the last decade, generally within the
fields of RDF Stream processing (RSP) and Stream Reasoning [8]. A number of
RSP engines have been developed in this period, focusing on different aspects
including incremental reasoning, continuous querying, complex event processing,
among others [3, 15, 6, 20]. However, most of these RDF stream processors lack
the capability of interconnecting with each other, or to establish cooperation
patterns among them. The coordination among RDF stream processing nodes is
sometimes delegated to a generic cloud-based stream processing platform such
as Apache Storm (e.g [16]) or Apache Spark (e.g [20]). In contrast, in this pa-
per, we investigate a more decentralised environment whereby participant nodes
can be distributed across different organisations. Moreover, the hardware capa-
bilities of such processing nodes are different from the cloud-based setting, i.e.
resource-constraint edge devices.

Regarding the distributed processing and integration of RSP engines on a
truly decentralised architecture, different aspects and building blocks have sur-
faced in the latest years. Initial attempts to provide HTTP-based service inter-
faces for streaming data were explored in [3]. Other contributions in this line
are the RSP Service Interface7, and the SLD Revolution framework [2]. These
propose the establishment of distributed workflows of RSP engines, using lazy-
transformation techniques for optimised interactions among the engines. Further
conceptualisations of RDF stream processing over decentralised entities have
been presented in works such as WeSP [7]8, which advocates for a community-
driven definition of stream vocabularies and interoperable interfaces. Cooper-

7
http://streamreasoning.org/resources/rsp-services

8
http://w3id.org/wesp/web-data-streams
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ation strategies among RDF stream processors, or stream reasoning agents is
discussed in [26], introducing potential challenges and opportunities for feder-
ated processing through negotiation established across multi-agent systems.

6 Conclusion

This paper presented a continuous query federation approach that uses RSP en-
gines as autonomous processing agents. The approach enables the coordination
of edge devices’ resources to process query processing pipelines by cooperatively
delegating partial workload to their peer agents. We implemented our approach
as an open source engine, Fed4Edge, to conduct an empirical study in “coop-
erative sensing” scenarios. The resourceful experiments of the study show that
the scalablity can be significantly improved by adding more edge devices to a
network of processing nodes on demand. This opens several interesting follow-up
research challenges in enabling semantic interoperability for the edge computing
paradigm. Our next step will be investigating on how to adaptively optimise the
distributed processing pipeline of Fed4Edge. Another interesting step is study-
ing how the communication will effect its performance and scalability on an
Internet-scale setting whereby the processing nodes are distributed across differ-
ent networks and countries.
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