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Abstract—This paper presents the performances of machine
learning algorithms on aerial images object detection for high
precision agriculture. The dataset used focuses on geotagged
pictures of vineyards. We demonstrate that advanced machine
learning methodologies like Decision Tree Ensemble, outper-
form state-of-the-art image recognition algorithms generally used
within the agriculture field. The innovative approach described
here improve object detection and obtain an accuracy of 94.27%
which is an increase of more than 4% compared to the state-of-
the-art. Finally, methodology and possible developments for high
precision agriculture are discussed in this study.

Index Terms—Machine Learning, Decision Tree Ensemble,
Random Forests, Prediction, Hyper-spectral images, Agricultural
health, Precision agriculture, Image recognition

I. INTRODUCTION

Nowadays, precision agriculture aims at increasing pro-

ductivity and maximizing the yields of a crop. The entire

crop cycle can benefit from an application of the correct

amount of spray (such as water, fertilizers, pesticides or

fungicides) at the proper time and place. In parallel, research

on multispectral image analysis of agricultural fields is start-

ing to detect diseases in plants [1]. Farmers generate maps

of spatial variabilities based on geo-located sensors. These

sensors collect many variables and provide historical and real-

time information. Recently, Unmanned Aerial Vehicles (UAV)

have enabled precision agriculture. These drones are equipped

with multispectral or RGB cameras to collect aerial images

and create maps of the selected region [2].

High precision agriculture applies mainly to yield moni-

toring or remote sensing. It is only started to be applied to

vineyards on complex landscapes and difficult topographies.

To provide better management of vineyards and other cultures,

new services are under development around the world. For

example, a service for the automatic collection of data related

to culture for automatic spotting, designation of zones, and

prediction of the evolution of a zone is in preparation [1].

Currently, projects are based on satellites providing high-

quality images to automatically detect specific zones and

generate advanced geographical data [3] [4].

Today, image recognition field massively uses Machine

Learning (ML) algorithms, for online images matching or

satellite image mapping [5] for example.

The current research is based on the needs above and

focuses on the detection of the vine and potential disease on

images taken by Unmanned Aerial Vehicles (UAV). UAV are

used for multiple reasons such as the price and the accessibility

of this type of product, compared to satellites. With an auto-

generated flight plan, the drone can fly over a specifically

defined zone of the field, carrying products and spraying it

out to the designated area.

The present paper will describe how the application of

Machine Learning to images taken by a UAV improves the

overall performance of automated drone plan generation.

II. STATE-OF-THE-ART

As described above, machine learning applies the image

recognition broadly and image analysis for research purpose

and its use is increasing for business products. Projects are

currently underway or have recently been completed to im-

prove the quality of image recognition and object detection.

This section reviews and explains these research projects.

A. Pixel-based and Object-oriented classification

Image processing most basic operation is image classifica-

tion [6]. Two classification process are mainly used: (1) the

pixel-based classification (PBC) and (2) the object-oriented

classification (OOC).

The PBC uses conventional statistical techniques. All pixels

are categorized into a specific class or thematic. This classifi-

cation is based on features extracted from the pixel, such as

the spectral information and spectral estimated signature.

The OOC classifies objects presents on the picture. Spatial-

spectral features of the high-resolution (HR) satellite data

information is used as the main feature. Last research projects

and development for the OOC focuses on the rule-based

classifier and the nearest neighbor classifier.

The Pixel-based Classification ignores the impact of mixed

pixels by combining the spectral response from the training

dataset [7]. In contrast, the PBC cannot recognize objects

bigger than a pixel [8], due to the lack of analysis of the

relationship between pixels [9].

By using spectral information like shapes, texture, and

relationships between contexts, the OOC increases the object

detection accuracy. Furthermore, the detection accuracy is
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improved by the usage of the vector-based GIS and a large

set of features like the contextual properties [10] [11] [12].

B. Object-based image analysis by application of nonlinear
scale-space filtering

This research project presents a second powerful and widely

used methodology for image recognition. This method analy-

ses images through nonlinear scale-space filtering. Classifica-

tion of different pictures and various aerial images is provided

through a recently developed platform [13].

This framework demonstrates the importance of the qualita-

tive properties and classifier such as multilevel object represen-

tation and Support Vector Machine classifier (SVM). Further-

more, it eliminates the need to tune several parameters during

the segmentation. These platform algorithms outperform the

previous development regarding the final graphical represen-

tation and the overall accuracy. Fig. 1 shows the precision and

visualization obtain with the explained framework.

Fig. 1. Classification visualization and accuracy including and excluding the
AML filtering. The green zones are vegetation, grey zones are the asphalt,
the orange zones are the tile roofs and the white zones are the bright roofs.

C. Vineyard analysis from very High-Resolution Satellite Data

The research of Karakizi & al. [4] focuses on the devel-

opment of automated and efficient agriculture methods. It

is presented as a framework and it is based on multispec-

tral data analysis for object classification. Even if multiple

research projects are focusing on aerial images analysis for

specific zone detection [14] [15] [16] [17] [18], because of the

complexity of vineyard fields very few of them address this

specific use case. The number of analysis regarding precision

agriculture is reduced. This complexity depends on:

• The landscape (vines in the mountains for example)

• The paths and roads going through the vineyards

• Leaves and trunks mixed with metal to maintain the vine

The work presented in [4] describe vine varieties discrim-

ination and applies machine-learning algorithms to reach an

overall accuracy close to 92%. The error is generated by

multiple factors. The first type of error comes from the ground

truth definition which is generated by somehow imprecise

human evaluation. The second type of errors is due to a lack

of data for some specific classes (certain kind of vines for

example) which will be ignored by the algorithms.

III. DATASET AND DATA PROCESSING

The dataset is composed of images from five vineyards in

the canton of Valais, Switzerland. Many UAV flights generate

aerial images and combine GeoTIFF images format to keep

the geolocation information. A photogrammetry software pro-

duces a full image, with aerial images, containing the overall

vineyards to represents the reality of the field to create a flight

plan for the drone. These images are produced with software

provided by Pix4D [19], a company that develops a suite of

photogrammetry software for drone mapping and 3D models.

The application of the research of Lorenzo Comba & al.

[20] generates the baseline based on original UAV images.

The baseline is described more in details in the next section.

Because of the Machine Learning methodology used, the

dataset is manipulated to match the requirements. The full

image of the vineyard is divided into tiles of 30x33 pixels.

Because of the size of the tiles, they possibly contain multiple

categories: (1) Road, (2) Vineyard and (3) Other (See Fig. 2).

The definition of the tile size is based on previous experiments.

The tile needs to contain enough data to be detected as an

object but precise enough to be classified as a single category.

After the pre-processing, the dataset comprises 13’005 images.

Each image receives a label containing the category name.

When a tile contains at least 30% of vine, it is categorized as

vineyard. This manual process result is summarized in Table

I.

TABLE I
DATASET SUMMARY AFTER SUBDIVISION. IT PRESENTS THE CATEGORIES

AND NUMBER OF TILES.

Class Number of tiles Size of tiles
vineyard 7’022 30x33 pixels

road 2’082 30x33 pixels
other 3’903 30x33 pixels

Number of tiles per vineyard 2’601
Total number of tiles 13’005

Fig. 2. Vineyard subdivision to obtain 13’005 tiles with a size of 30x33 pixel
each.

104



Each tile used to train and test the DTE model went through

the data preparation process (See Fig. 3). This process is

defined as follow:

• Dataset: image opening, labeling with a category the

image, features extraction

• Feature elimination: the model generated with the back-

ward features elimination is applied. This removes noisy

features

• Prediction: application of the model trained on the train-

ing dataset

• Evaluation: scorer generation to diffuse the result and

performance of the classification

IV. BASELINE DESCRIPTION

The baseline is based on the research from Lorenzo Comba

& al. [20], using the dataset described before. This research

is mainly based on the image intensity variation and Hough

Transform [21] for vine categorization.

First, the dataset quality is controlled. Due to the different

color intensities, the object may be differentiated. Fig. 4 shows

the original vineyard image with the two selected objects. It

demonstrates a visual difference between color intensities.

Fig. 5 confirms the difference in the intensity between

the road and the vines. The color intensity is significantly

stronger on the vineyard. It reinforces the possibility to use

the existing methodology to classify grapes based on color

intensity feature.

Morphological processes increase overall accuracy [22].

Two transformations are applied: (1) opening and (2) closing

transformations. First, opening transformation removes noise

with a succession of erosion and dilation process. Then the

closing process applies dilation and erosion to close small

missing pixel inside the foreground objects (applied with

OpenCV) [23]. These transformations fortify the foreground

color and intensity, in this case, the lines of vines. Fig. 6

shows the result of this process with a strong overview of the

vineyards. The lines between the vines and the road are white.

Some issues because of the small intensity difference with the

road on some parts (bottom left of the graph). These parts are

wrongly associated with the vineyard.

V. VINE DETECTION IMPROVEMENT WITH DTE

The Decision Tree Ensemble (DTE), based on Random

Forests, uses features extracted from tiles of the vineyard to

create all the necessary trees. The algorithm is based on three

groups of features extracted from each tile. It represents 86

features in total, summarized below:

• First order statistics: Min, max, mean, geometric mean,

sum, variance, skewness, kurtosis, etc.

• Tamura: Granularity, Contrast, Kurtosis of directional-

ity, Standard Deviation Directionality, Max Directionality

and Skewness.

• Haralick: Statistical features based on gray-level co-

occurrence matrix.

The feature elimination process is applied to detect and

select features that reduce the overall accuracy and increase

the computational time. Even if the DTE selects the feature

internally with the most information in it, applying backward

feature elimination process will help to reduce quicker the

number of features and improves the performances. This

technique trains a model on n input features. Then, one feature

at a time is removed and the model is trained n times on n-1

input features. The feature producing the smallest increase in

the error rate is eliminated. The classification is repeated using

n-2 features. An error rate is provided during each iteration.

Finally, by selecting the maximum acceptable error rate, the

smallest number of features mandatory to train the model is

defined [24]. The elimination process determines the minimal

amount of features for image classification to 16 features.

Based on an iterative process, fine-tuning of the algorithm

is done over similar dataset sampling, revealing a final con-

figuration with the following criteria:

• Split criterion: Information Gain Ratio

• Tree depth: No limitation

• Minimum child node size: No minimum value

• Number of trees: 100

• Rows data sampling method: Stratified

• Attributes data sampling method: Square root

VI. RESULTS AND DISCUSSION

This section presents the results of the baseline algorithms

application and the solution using Decision Tree Ensemble.

The overall accuracy and the standard error are proposed for

each methodology.

The baseline and the Decision Tree Ensemble are applied

to specific vineyards, with different landscape features (size,

orientation, slope). Results are presented in Table II. Accuracy

variation rise between vineyards, but results are not signifi-

cantly different based on the standard error.

TABLE II
PERFORMANCES COMPARISON BETWEEN THE BASELINE AND THE

DECISION TREE ENSEMBLE ON TWO DIFFERENT TYPE OF VINEYARDS.

Vineyard 1 Vineyard 2
Baseline DTE Baseline DTE

Acc 90.02% 94.27% 89.60% 94.32%
Std err ±1.17% ±1.13% ±1.01% ±1.14%

Decision Tree Ensemble model generates an accuracy at

the Equal Error Rate of 94.275% ±1.14% (See Table III).

Vines are detected correctly with some errors due to mixed

categories on specific tiles. This mix comes from a wrong

manual labeling; multiple classes are present on the same

tile or there are missing data within a particular category.

Furthermore, DTE is very stable throughout all iterations

executed and keeps a stable accuracy.

In comparison, the baseline generates an accuracy at the

Equal Error Rate of 90.076% ±1.09%(See Table IV).

Experiments are significantly different with a better perfor-

mance using the DTE. The number of misclassifications with

the baseline is higher. Table III and IV show the classification

results for each method. The vineyard tiles are correctly
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Fig. 3. Overview of the DTE model generation. This extract of the DTE structure shows the sequence of decision for a tile classification.

Fig. 4. Original GeoTIFF vineyard image. (A) is a sample of a road and (B)
a sample of a vine for intensity feature analysis.

Fig. 5. Graphical representation of the color intensity for a road and for a
vine. It shows the number of pixel per intensity level for each category.

classified at 95.1% (136 over 143 tiles) with the DTE and only

at 86.7% (124 over 143 tiles) with the baseline methodology.

In opposite, the roads are better detected with the baseline

(86.3%) than with the DTE (81.8%). The other objects

detection is stable with both algorithms.

Fig. 6. Results after an intensity augmentation and a reduction of the noise
with morphological processes. The top left image shows the transformed
image, the top right image is the original black and white image. The heat
map (bottom) shows the color intensity with line of vine in blue.

VII. CONCLUSION

Detecting objects in a vineyard using the DTE produces the

best accuracy in comparison with the baseline. Furthermore,

the number of objects of type vineyard misclassification is

smaller than with the baseline. Misclassification of vineyard

objects have an impact on the diffusion of the treatment

products. Parts of the vineyard will not be managed. In

opposite, spraying a small part of the road has a smaller impact

on the precision agriculture efficiency.

This high accuracy vine detection is used as a preliminary

project for automated flight plan generation. As presented

in this study, the accuracy is increased drastically by the

implementation of Machine Learning algorithms. It becomes
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interesting for the High Precision Agriculture to use this

process and help farmers within their field management.

Furthermore, the DTE is a simple algorithm for a computer

to apply with a reduced number of features, obtained with the

backward feature elimination process (See Fig. 7).

Fig. 7. Overview of the DTE model generation. This extract of the DTE
structure shows the sequence of decision for a tile classification.

TABLE III
OVERALL CONFUSION MATRIX FOR THE DTE MODEL ON THE FULL TEST

DATASET (262 SAMPLES)

Class / Prediction vineyard road other
vineyard 136 7 0
road 8 36 0
other 0 0 75

Accuracy 94.275%
Std error ±1.14%

TABLE IV
OVERALL CONFUSION MATRIX FOR THE BASELINE ON THE FULL

DATASET (262 SAMPLES).

Class / Prediction vineyard road other
vineyard 124 19 0
road 6 38 0
other 0 1 74

Accuracy 90.076%
Std error ±1.09%
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