
Abstract 
Data collection for hospital-acquired infection 
prevalence study is resource consuming. Data 
mining techniques can be applied to data 
extracted from the hospital data warehouse in 
order to report potential cases to be reviewed by 
infection control practitioners (ICP). The 
objective of this paper is to investigate the 
minimal set of attributes required for an 
automated cases reporting. Information gain and 
SVM recursive feature elimination combined 
with a chi-square filtering were used to select the 
most important features in the prevalence 
database of the 2006 survey. The temperature 
and workload were included within the 20 most 
important features. These attributes are not well 
documented and removed from the list of 
important features. The results obtained with the 
resulting dataset were acceptable because the ICP 
will have to analyze the electronic health record 
of only 22.73% of hospitalized patients. 

1 Introduction 
Hospital-acquired infections or nosocomial infections 

(NI) are those infections acquired in a hospital, 
independently of the reason of the patient admission. NI 
appears after 48 hours after the patient admission. These 
infections may be related to medical procedures such as 
the implantation of infected urinary tracts or simply occur 
during the hospitalization where the micro-organisms are 
transmitted from other patients, medical staff or are a 
consequence of the hospital environment contamination. 

In Switzerland, 70 000 hospitalized patients per year 
are infected and 2 000 deaths per year are caused by NI. A 
hospital aware of the quality of the patient care should 
have an infection prevention, control and surveillance 
program. The surveillance is the process of detecting these 
infections. Prevalence surveys are recognized as valid and 
realistic approaches of NI surveillance strategies [French 
et al, 1983]. Prevalence of NI is presented as prevalence 
of infected patients, defined as the number of infected 
patients divided by the total number of patients 
hospitalized at the time of study, and prevalence of 
infections, defined as the number of NIs divided by the 
total number of patients hospitalized at the time of study 

[Sax et al, 2002]. From these formulas, the prevalence 
survey is resource and labor consuming: the electronic 
health record (EHR) of all patients admitted for more than 
48 hours the day of survey should be analyzed by 
infection control practitioners (ICP). If necessary, 
additional information is obtained by interviews with 
nurses or physicians in charge of the patient. 

The University Hospitals of Geneva has been 
performing yearly prevalence survey since 1994. The 
prevalence database contains 83 attributes ranging from 
administrative information, demographic characteristics, 
admission diagnoses, comorbidities and severity of illness 
scores, type of admission, exposure to various risks of 
infection, clinical and paraclinical information, and data 
related to infection when present. One of the main 
characteristic of the prevalence data is the nature of the 
attribute values: most of them are nominal. An attribute 
value summarizes the presence or absence of a particular 
risk factor or a sign and symptom of an infection like 
central venous catheter or an antibiotic treatment that can 
be found in the EHR of the patient. Only the year of birth 
and the workload values are numerical. Another important 
characteristic of the prevalence data is the imbalance 
between the positive and negatives cases: there are around 
10% of positive cases. 

IT can bring a valuable support for NI surveillance. The 
hospital data warehouse contains all the data in the 
hospital operational system except the data of the day. A 
complex data processing may be implemented to extract 
all necessary information from the data warehouse, 
analyze and summarize the information and populate the 
prevalence database. This approach is too ambitious 
because of the nature of data to be analyzed: some of them 
may be found in free text or not well documented in the 
EHR and require an intervention of a specialist. The most 
realistic approach is to query the hospital data warehouse 
in order to populate the N most important item of the 
prevalence database (N<<83 where 83 is the numer of 
attributes in the prevalence database) and apply data 
mining techniques to report “potential cases” to be 
reviewed by the ICP. The potential cases are those 
predicted as positive cases by a classification algorithm. 
The main advantage of this approach is the reduction of 
their workload, and will allow them to evaluate the 
presence of NI on subset of patients; they can have much 
more time to analyze the content of the patient record and  
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Figure 1: Illustration of Fisher’s linear discriminant. The algorithm searches for the direction providing the best 
separation of the classes when projected upon. In this figure, the third image (bottom left) provides the best 
separation of the datasets. 

 
may found new risk factors. Indeed, the most consuming 
time during a NI prevalence survey is the data collection, 
which represents approximately 800 hours per year 
[Cohen et al, 2004]. 

Various data mining techniques were applied at the 
University Hospitals of Geneva to support NI prevalence 
survey since 2002. We can quote among others the use of 
different form of the SVM algorithm optimization 
including asymmetrical margin approach [Cohen et al, 
2003], one-class SVM [Cohen et al, 2004], a comparison 
of SVM with other classification algorithms [Cohen et al, 
2006]. In this paper, we are analyzing the minimal set of 
features necessary to report potential cases to be reviewed 
by ICP. We will remove important features if they are not 
well documented in the EHR. The differences with the 
previous works lie in the objective of the experimentation, 
the methodology and the dataset used. 

2 Background 

2.1 Nosocomial infection prevalence data: 
In this work, we performed a retrospective analysis of 

prevalence data collected at the University Hospitals of 
Geneva (6 hospitals and 2’200 beds) during the 2006 NI 
prevalence survey. The dataset contains five data 
categories: 1) demographic information, 2) admission 
diagnosis (classified according to McCabe [McCabe and 
Jackson, 1962] and the Charlson index classifications 
[Charlson et al, 1987]); 3) patient information at the study 
date (ward type and name, status of Methicillin-Resistant 
Staphylococcus Aureus portage, etc); 4) information at the 
study date and the six days before (clinical data, central 
venous catheter carriage, workload, infection status, etc) 

and 5) those related to the infections i.e. for infected 
patients (infection type, clinical data, etc.). In this study, 
we are interested in the four first categories of data as they 
are related to patient infection, which comprises 45 
attributes. The dataset contains 1573 cases.  

To homogenize the data values, we transformed all 
numerical data into nominal ones. The year of birth was 
converted into age and discretized into 3 categories (0-60; 
60-75; >75) as in [Sax et al, 2002], and a new variable 
“hospitalization duration” was created. A Mann-Whitney-
Wilcoxon statistical test on the workload value provides a 
significant difference between infected and non-infected 
patients. As it is the unique attribute having missing 
values (91 cases including 2 positive cases), all cases 
having no workload value were removed. The latter and 
the hospitalization duration were discretized using the 
minimum description length principle [Kononenko, 1995]. 
Patients admitted for less than 48 hours at the time of the 
study and not transferred from another hospital were also 
removed. The final dataset contains 1384 cases containing 
166 positive cases (11.99%). And finally, all attributes 
were binarized. Let us call this dataset S. 

2.3 Class imbalance problem 
The class imbalance problem is an important problem 

in machine learning since the class of interest is 
represented with a small number of examples [Japkowicz 
and Stephen, 2002]. In the presence of imbalanced 
datasets, classification algorithms tend to classify the 
larger class accurately while generating more errors in the 
minority class. If a positive class has a ratio of 10%, a 
classification accuracy of 90% may be meaningless if the 
classification is not sensitive at all.  
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The class imbalance problem induces specific 
approaches to train classifiers and evaluate their 
performance. Two approaches were proposed to deal with 
the class imbalance problem in [Cohen et al, 2004; 
Estabrooks, 2004]. The first one is to modify the 
classification algorithm or at least use an algorithm able to 
deal with imbalanced data. The second resamples the data 
to reduce the imbalance effect. The latter has the 
advantage of being independent of any classification 
algorithm. 

2.4 Fisher’s Linear Discriminant 
The basic idea behind linear discriminant algorithms is 

to find a linear function providing the best separation of 
instances from 2 classes. Fisher’s linear discriminant 
(FLD) is looking for a hyperplane directed by w, which (i) 
maximizes the distance between the mean of the classes 
when projected on the line directed by w and (ii) 
minimizes the variance around these means [Fisher, 
1936]. An illustration of this property is highlighted on 
the figure below (Figure 1). 

Formally, FLD aims at maximizing the function:  
 
 
 

where SB is the scatter matrix between classes and SW the 
scatter matrix within classes. This equation permits to 
formulate FLD as an algorithm aiming at minimizing the 
variance within the classes and maximizing the variance 
between classes. An unknown case will be classified into 
the nearest class centroid when projected onto a 
hyperplane directed by w. 

In a classification task, an object is a member of exactly 
one class and an error occurs if the object is classified into 
the wrong one. The objective is then to minimize the 
misclassification rate. With FLD algorithm, the scatter 
matrix within classes SW is evaluated on the training 
datasets. To minimize the misclassification rate on unseen 
test sets (generalization error), a regularization factor r (0 
≤ r ≤ 1) is introduced into the computation of SW [Hastie 
et al, 2001]. The regularization factor r has to be 
optimized to minimize the misclassification error. 

3 Material and methods 
Two feature selection algorithms were used 

independently. The first based on the information gain 
(IG) of each attribute [Quinlan, 1986] and the second 
based on the combination of attributes using SVM 
Recursive Feature Elimination (RFE) [Guyon, 2002]. 
These 2 algorithms return all the features ranked by order 
of importance. To filter the most important ones, a chi-
square statistic test was performed to filter the 
discriminative features to be retained for an evaluation 
with a classification algorithm. These feature selection 
algorithms were applied to 100 training sets build from 
the original dataset S. The significant attributes retained 
by both feature selection algorithms over the 100 training 
datasets were retained to build a second dataset S1. 
Afterwards, we removed the important features in S1 
which are not well documented in the EHR to obtain a 

third dataset S2. We then evaluated the performance of 
the FLD algorithm on these two datasets. For 
classification purposes, we used the open-source toolbox 
MATLABArsenal1. This MATLAB package contains 
many classification algorithms and in particular the 
regularized FLD algorithm as described above. FLD was 
chosen as it has only one parameter so easier to optimize. 

The methodology adopted to evaluate the performance 
of the FLD is inspired by the experimental setup described 
in [Rätsch et al, 2001]. One hundred (100) partitions of 
training and testing sets were generated with the data 
source S1 and S2 having respectively a ratio of 60% 
(approximately 830 cases) and 40% (approximately 554 
cases). The original data distribution is kept in both 
partitions i.e. 11.99% of positive cases. Five balanced 
dataset (50% of positive cases and 50% of negative cases) 
were created from the first five training sets. A grid search 
algorithm is then applied to these down-sampled datasets 
using a 5-folds cross-validation to find the best parameters 
of the classification algorithm. The regularization factor r 
takes values from 2-20 to 1 during this process. The best 
parameter of each training set was the one providing the 
highest recall (i.e. the parameter permitting to predict 
highest rate of true positive cases) and the highest 
precision. The best value selected for the classification 
algorithm is the median of the 5 best parameters obtained 
with the five down-sampled data. The 100 training sets 
(having the original class distribution) are then used to 
train the FLD models with this best parameter. This 
process allowed us to build 100 models and to validate 
each of them on the corresponding testing set. The general 
performance of the classifier is computed as the mean of 
the 100 classification performances on the test sets. The 
performance of the classification algorithm with the 2 
datasets (S1 and S2) is also compared with respect to the 
Mann-Whitney-Wilcoxon statistical test. 

4 Results 

4.1 Feature selection 
Twenty (20) attributes were retained from the two 

feature selection algorithms; IG and SVM RFE returned 
the same features after the Chi-square filtering. The 
hospitalization duration up to 7.5 days, was retained as a 
discriminative attribute. Two admission diagnoses are 
discriminative: those classified as “non fatal” and “fatal in 
less than 6 months” according to the McCabe 
classification, transfer as admission, “congestive 
cardiomyopathy” and “diabet with organ affected” as 
comorbidities. In the third data category, the intensive 
care unit and obstetrical wards, absence or actual MRSA 
colonization are the most discriminative attributes. In the 
fourth data category, an antibiotic treatment, fever, a 
surgery, a stay at the intensive care unit during the 
hospitalization, a presence of artificial ventilation, urinary 
tract, central venous catheter and the 3 categories of 
workload value were significantly discriminative.  

                                                 
1 http://www.informedia.cs.cmu.edu/yanrong/ 
MATLABArsenal/MATLABArsenal.htm  
(last accessed October 2008) 



 
Table1: List and rank of features obtained after applying IG and SVM RFE followed by a Chi-square filtering. The first 
column provides the rank of each attributes. The two algorithms provided the same features but not with the same rank. 
 
Rank IG + Chi-square filtering SVM RFE + Chi-square filtering 

1 Antibiotic therapy Antibiotic therapy 
2 Fever Hospitalization duration up to 7.5 days 
3 Mechanical ventilation Transfer from another hospital as admission 
4 Urinary tract Mechanical ventilation 
5 Workload value > 91.5 McCabe score fatal < 6 months 
6 Workload value <=45.5 Fever 
7 Stay at the intensive care unit during hospitalization Urinary tract 
8 Central vein catheter Diabetes with organ affected 
9 Hospitalization duration up to 7.5 days Congestive cardiomiopathy 
10 Intensive care unit ward Intensive care unit ward 
11 Obstetrical ward Workload value > 91.5 
12 Surgery Workload value <=45.5 
13 McCabe score fatal < 6 months Stay at the intensive care unit during hospitalization 
14 No MRSA colonization McCabe score non fatal 
15 Actual MRSA colonization Surgery 
16 McCabe score non fatal Actual MRSA colonization 
17 Workload value between 45.5 and 91.5 Central vein catheter 
18 Diabetes with organ affected No MRSA colonization 
19 Transfer from another hospital as admission Workload value between 45.5 and 91.5 
20 Congestive cardiomiopathy Obstetrical ward 

 
 

 

Figure 2. The mean and standard deviation of each performance metrics on the datasets S1 and S2. Sig (respectively NS) 
indicates (no) significant difference between the performance measure on the two datasets. 
 

 



Table 1 summarizes the features returned by both IG 
and SVM RFE. The feature selections described above 
provided two clinical features, which are not always 
documented or at least not documented in a machine 
readable format in the clinical database: fever and 
workload value. These attributes were removed to create 
the second dataset S2. 

4.2 FLD performances 
The grid search algorithm applied on the two datasets 

S1 and S2 returned respectively r =0.5 and r =1 as the 
best parameter. The figure above (Figure 2) summarizes 
the performance metrics (recall, precision, f-measure, 
accuracy and the ratio of positive predictions) obtained 
with the two datasets in terms of their mean, standard 
deviation (SD) and the performance comparisons.  

Dataset S1 and S2 permit to obtain respectively a mean 
recall (±SD) of 65.37% (±6.76) and 82.56 (±4.22), a 
precision (±SD) of 41.50% (±3.9) and 43.54% (±4.59), a 
f-measure (±SD) of 50.58(±3.83) and 56.87(±4.29) over 
the 100 data split realizations. The mean accuracy (±SD) 
for S1 and S2 are 84.83%(±1.04) and 85.04%(±1.65) and 
the positive prediction ratios are respectively 18.82% 
(±1.72) and 22.73% (±1.55).  

According to the results above, if we query the hospital 
data warehouse with the features present in the dataset S1 
and S2 and classify the results with the FLD algorithm, 
we can expect retrieving an average of (±SD) 65.37% 
(±6.76) and 82.56 (±4.22) of the infected patients. The 
mean numbers of potential cases (±SD) to be submitted to 
the ICP are respectively 18.82% (±1.72) and 22.73% 
(±1.55) of the hospitalized patients.  

A Mann-Whitney-Wilcoxon statistic test provided a p 
value < 0.001 for accuracy, precision, f-measures and the 
positive prediction ratio. According to this test, there is a 
statistically significant difference between the accuracy, 
precision, f-measure and the ratio of positive prediction. 
The removal of the temperature and the workload features 
improved the performance of the FLD. 

5 Discussion and conclusion 
In this paper we investigated the minimal set of features 

necessary to report potential cases to be reviewed by 
infection practitioners. IG and SVM RFE were used to 
select these features and Fisher’s linear discriminant was 
chosen as classification algorithm. The removal of the 
attributes characterizing fever and workload value 
significantly improved the performance of the classifier. 
This result may surprise as these attributes was retained 
by the IG and SVM RFE as important features to predict a 
NI. However, this phenomenon is not new in statistical 
and machine learning domain. This phenomenon is called 
redundancy or negative interaction [Kludas et al, 2008]. 
This redundancy cannot be evaluated with IG as it only 
evaluates quantity of information brought by each 
attribute to the value of the class. It was not also handled 
by the SVM RFE because it eliminates X features per 
iteration (1 in our case) and do not try all possible 
combinations of features. 

The results we obtained with the S2 dataset are 
acceptable. The ICP will only review the EHR of 22.73% 
of hospitalized patients. The precision value indicates that 
43.54% of these patients are infected and they represent 
82.56% of all infected patients. The precision rate is 
satisfactory because the data of non-infected patients are 
necessary for statistical tests in order to identify the most 
important risk factors. The ICP will also have enough 
time to identify new risk factors from the infected 
patients’ EHR and propose new preventive measures for 
the future.   

5.1 Limits of this work 
The evaluation of the discriminative power of the 

selected features was carried out using Fisher’s linear 
discriminant algorithm because of its simplicity: one 
parameter (0<r<=1) to optimize during the grid search 
process. A comparison with other classification 
algorithms such as Support Vector Machines (SVM) and 
the Kernel FLD has to be carried out. The grid search 
algorithm for algorithm parameters optimization has high 
computational cost especially for classification algorithms 
with more than one parameter to optimize such as SVM or 
the Kernel FLD. A gradient descent method could 
converge more rapidly to the best parameter and can 
improve the generalization performance as described in 
[Chapelle et al, 2002]. 

5.2 Future work 
The results obtained were promising and in the future, 

we plan to evaluate the discriminative power of the 
selected features with more than one classification 
algorithm. The result of these evaluations i.e. the minimal 
attributes required to predict most of the positive NI cases 
will be retained to build queries for the hospital databases 
in order to automatically report potential cases for the 
prevalence surveys. This automated nosocomial infection 
reporting will permit to conduct more prevalence surveys 
with less cost than the usual method for conducting 
prevalence studies.  
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