
A Deep Learning Strategy for Vehicular Floating Content
Management

Gaetano Manzo
Juan Sebastian Otalora

University of Applied Sciences
Western Switzerland

(HES-SO)

name.surname@hevs.ch

Marco Ajmone Marsan
IMDEA Networks Institute,

Spain
Politecnico di Torino, Italy

ajmone@polito.it

Gianluca Rizzo
University of Applied Sciences

Western Switzerland
(HES-SO)

gianluca.rizzo@hevs.ch

ABSTRACT
Floating Content (FC) is a communication paradigm for the lo-
cal dissemination of contextualized information through D2D con-
nectivity, in a way which minimizes the use of resources while
achieving some specified performance target. Existing approaches
to FC dimensioning are based on unrealistic system assumptions
that make them, highly inaccurate and overly conservative when
applied in realistic settings. In this paper, we present a first step
towards the development of a cognitive approach to efficient dy-
namic management of FC. We propose a deep learning strategy for
FC dimensioning, which exploits a Convolutional Neural Network
(CNN) to efficiently modulate over time the resources employed by
FC in a QoS-aware manner. Numerical evaluations show that our
approach achieves a maximum rejection rate of 3%, and resource
savings of 37.5% with respect to the benchmark strategy.

1. INTRODUCTION
In the next generations of mobile internet connectivity, starting

with 5G, new techniques to offload cellular networks will play a
key role in coping with traffic peaks and to deliver quality of ser-
vice and/or quality of experience (QoS/QoE) to end users. Oppor-
tunistic communications are a prime candidate for cellular network
offloading. Indeed, much of the traffic which is generated in such
scenarios as Smart Cities, or autonomous coordinated driving, is lo-
cal in scope and interest, and it is hence more efficiently delivered
via direct exchanges between users.

An interesting opportunistic communication scheme, for the lo-
cal dissemination of information to end users through direct terminal-
to-terminal connectivity, is Floating Content (FC) [3]. The objec-
tive of FC is to spread content to the minimum amount of users
within a defined area called Anchor Zone (AZ), which is sufficient
for the content to persist over time in the AZ, while achieving a tar-
get performance. Typically, the performance parameter that char-
acterizes the goodness of a FC scheme is the success ratio, i.e. the
average fraction of nodes with content entering a given location
(henceforth denoted as Zone of Interest or ZOI).

In FC, the purpose of constraining the opportunistic replication
of a given content is to minimize the usage of resources (bandwidth,
memory). Existing formulations (see [3] and references therein)
perform a crude optimization, based on a coarse user partition-
ing on geographic criteria. Indeed, in almost all existing formu-
lations [5, 4] and [1], the FC dimensioning problem boils down to
finding the minimum AZ radius that guarantees a given target value
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of success ratio.
The main limitation of these approaches is their being unfit for

application in realistic settings. Indeed, the stationary assumption
of the mobility patterns, and of uniformity of user distribution in
space, enable the analytical evaluation of the fundamental perfor-
mance trade-off in FC dimensioning. Such assumptions do not
apply to most practical settings, in which mobility patterns ex-
hibit features such as clustering and time correlation, and change
continuously over time. In particular, how to efficiently allocate
resources (i.e., memory, bandwidth, and infrastructure support to
content seeding) for an FC scheme when the content validity is
short, or when the population of nodes in a given area and/or mo-
bility patterns vary significantly over time, is still an open issue.
In this work, we present a first step towards addressing these is-
sues. We propose a cognitive approach for dynamic management
of FC schemes in vehicular scenarios. We consider settings with
infrastructure support to FC, where the cellular network collects
data on user mobility, and dynamically configures FC schemes.
Our approach exploits a Convolutional Neural Network (CNN) to
modulate over time the parameters of the FC scheme in order to
achieve the target performance while minimizing a given cost func-
tion that accounts for the number of resources employed by the FC
scheme. Through a numerical assessment we show that our ap-
proach achieves a maximum rejection rate of 3% (i.e., the perfor-
mance objective is not met only in 3% of cases), resource savings
of 37.5% with respect to the benchmark strategy, and an accuracy
of 89.7% on the target message availability.

The paper is structured as follows. Section 2 describes the sys-
tem model, followed by the problem formulation in Section 3. Our
deep learning algorithm is illustrated in Section 4. Finally, Sec-
tion 6 concludes the paper.

2. SYSTEM MODEL
We consider a set of wireless nodes with transmission range r,

moving on the plane according to a road grid. Nodes can model
vehicles, or a combination of vehicles and pedestrians. We assume
the road grid to be partitioned into a set L of road links. The choice
of such partition (and of the size of each road link) is related to
a tradeoff between computational complexity and accuracy in the
representation of the spatio-temporal mobility patterns. We assume
that two nodes come in contact when they are in the range of each
other, i.e. when their distance is not larger than r. At any time,
each node knows its exact position in space.

2.1 Cognitive FC operation
In what follows, we describe the operation of the Cognitive Float-

ing Content (CFC) communication paradigm.
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We consider a finite time window, corresponding to the period of
time during which content has to be made available over a por-
tion of the considered road grid. The time window is partitioned
into T intervals, each of duration dt. We assume that at the begin-
ning of the time window, the infrastructure has perfect knowledge
of the main mobility parameters (e.g., mean node speed in each
link, mean contact rate) for each interval in the time window. This
is realistic as pedestrian and vehicular mobility patterns in urban
scenarios exhibit periodic behaviors over time, and can thus be ac-
curately predicted in advance.

A CFC scheme is identified, for every road link l and time inter-
val t = 1, ..., T , by the content infectivity al,t, and recovery rate
bl,t (with al,t, bl,t ∈ [0, 1]), as explained next. We assume such
parameters are assigned by the system at the beginning of the time
window. At the start of the first time interval, in every link of the
road grid for which al,t > 0, we assume that a given piece of con-
tent is present in at least one user in the link (this user is a seeder).
Such content is injected by the infrastructure (e.g., through cellular
or WIFI communications), and it may be originated by the mobile
nodes themselves (for instance, it can convey a warning about a
road accident) or by an external source. Within each time interval
t, whenever two nodes come in contact, if the content is present
at only one of the two nodes, the content is transferred to the other
node with probability al,t, where l is the link where the sender node
resides. Such transfer is subject to all limitations due, e.g. to capac-
ity between the two nodes, to propagation effects such as fading, to
interference.

When content is transferred, the receiver (residing on link l′)
keeps it with probability bl′,t, and discards it otherwise. In gen-
eral, whenever a node moves into the l′-th road link with content,
it keeps it with probability bl′,t.

In this paper, we consider the ideal case in which nodes do not
replicate content when it is not needed (i.e., when both nodes in
contact already possess the content). We also assume that content
exchanges are always unicast (one-to-one). Note however that it is
possible to extend the CFC opportunistic communication paradigm
to a multicast and multi-hop routing. Finally, since a study of an
event-based mobility is out of the scope of this work, we assume
that the mobility features are not affected by the diffusion of the
floating content.

The resulting matrix A = {al,t, bl,t} completely describes a
CFC scheme, by identifying the content replication and caching
strategies over the whole time window.

Following content seeding, if enough content replications have
taken place, the content may persist over time in the road grid even
when the seeder nodes have moved out of the road grid, or have
discarded the content. We say in this case that the content floats,
i.e., it persists probabilistically in the considered scenario. This
usually happens for a duration which is determined by the mobility
pattern, and by the choice of the CFC parameters A, among others.

An important performance metric for CFC is the content avail-
ability, i.e. the mean fraction of users with content in a time in-
terval. As we previously mentioned, the goal of CFC is to make
the floating content available in a subset L′ of the links of the road
grid, the Zone of Interest or (ZOI), with a given mean availability.
Specifically, such parameter, henceforth denoted as success ratio,
is the mean fraction of users in the ZOI with content. If nl,t (nc

l,t)
is the mean number of users (resp. mean number of users with con-
tent) on link l during time interval t, the success ratio αt in time
interval t is given by

αt =

∑
l∈L′ n

c
l,t∑

l∈L′ nl,t

The target value α0 of the success ratio (typically constant in the
whole time window), as well as the choice of size, shape, and loca-
tion of the ZOI, depend entirely on application-level performance
requirements.

In a CFC scheme, the infrastructure collects floating car (or user)
data, and computes forecasts for the main mobility features in the
whole time window. When required to establish an FC scheme,
with a given ZOI and target success ratio, starting from its mobility
forecasts it elaborates a CFC strategy, and it injects the coefficients
A of such strategy in all the nodes of the grid.

3. FORMULATION OF THE OPTIMIZATION
PROBLEM

In this section, we formulate the problem of optimal CFC dimen-
sioning. To this purpose, we define a cost function that is propor-
tional to the number of resources employed by a CFC scheme. The
first component of cost accounts for user memory on link l at time
t, and it is equal to the mean total number of users with content
nc
l,t, times the content size in bits, D. The second component of

cost accounts for the average amount of user bandwidth used to ex-
change content, and it is equal to the mean total number of users
transmitting the content in a given time interval on a link. We de-
note it with γl,t. Note that γl,t depends, among other things, on
content size, on available bandwidth, and on the distance between
transmitter and receiver. Hence, the higher is the channel capacity,
the lower is γl,t.
An optimal CFC scheme A is hence a solution of the following
problem:

PROBLEM 1 (CFC RESOURCE OPTIMIZATION PROBLEM).

minimize
A

∑
l∈L,t=1,...,T

(Dnc
l,t + βγl,t)dt∑
t=1,...,T dt

(1)

Subject to: ∀t, αt ≥ α0 (2)
∀t, l 0 ≤ al,t ≤ 1, 0 ≤ bl,t ≤ 1 (3)

Note that the cost function is the weighted sum of the cost compo-
nents for each time interval, where each component’s weight is the
ratio between the interval duration and the duration of the whole
time window. The coefficient β ≥ 0 in the objective function is
the factor that modulates the relative weight of the two cost com-
ponents (the one on memory and the one on user bandwidth).

A notable configuration of the CFC corresponds to the case in
which ∀ l, t, al,t = 1, bl,t = 0. That is, to the case in which the
content is replicated at every opportunity within the whole consid-
ered road grid, and never dropped. Such solution, which we denote
as all-on, is equivalent to making all resources in the system avail-
able to the CFC communication scheme, and typically it allows
deriving the largest value of mean availability in the ZOI achiev-
able with the given road grid. For these properties, the optimal cost
of the solution(s) of Problem 1 is always less than or equal to the
cost of the all-on configuration.

In general, Problem 1 cannot be solved efficiently, as ∀ l, t, nc
l,t

and γl,t depend on A in ways which are hard to capture analytically
without strong assumptions (e.g., stationary patterns mobility and
uniformity of user distributions in space).

4. A DEEP LEARNING ALGORITHM FOR
EFFICIENT FC DIMENSIONING

In this section, we describe our deep learning approach to solv-
ing Problem 1. Given a request of message spreading, and the
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forecast on traffic mobility, our algorithm selects the strategy A
that achieves the performance targets required by the application
(in terms of minimum success ratio) in a resource-efficient manner.

The learning approach of choice has been the Convolutional Neu-
ral Network (CNN), a specialized type of neural network for pro-
cessing data that has a known, grid-like topology [2]. As we ex-
plained below, CNNs enable deep learning architectures to prop-
erly capture correlations between the spatial features of the road
grid, the way in which the content spreads from one road link to
another, and the way it persists in the road grid.

4.1 Training process
The set of input parameters to the CNN algorithm is the link

features vector P = {Pl,t} = (Pm,Pc). It consists in a set of
parameters related to node mobility Pm and to content replication
Pc, associated to a given road link and time interval. In the present
work, we have chosen as link features those parameters which are
typically chosen to parametrize, in practical settings, the existing
analytical models for FC performance [5, 4]. In particular for Pm:
the mean node speed, the mean number of nodes in a link. Whereas
for Pc the mean rate of contacts in a link, and the mean duration
of each contact. In addition, in Pc we have also considered those
parameters that allow us to compute the cost function (1), i.e. the
mean number of nodes with content in a link, and and the mean
number of concurrent content exchanges in a link. Through the
communication feature Pc is possible to verify the conditions in 2.
In case the target is not achieved, the strategy A, for the respective
Pc and Pm, is set to off (i.e., it is not possible to store or spread
the message in the whole roadmap). This data pre-processing helps
the machine to understand which configurations do not satisfy the
condition in 2. Finally, the input P and the respective label A, are
ready for the learning process.

The learning process uses a CNN to relate the link features P
to their labels A. The process used to build a training set for the
CNN, i.e. to train the CNN to distinguish those inputs which lead
to a strategy A, which satisfies the constraint on success ratio (2)),
is as follows. As we have already stated, we assume the infrastruc-
ture constantly collects floating car data over the whole road grid,
and data about communications. Specifically, in addition to com-
puting the mobility parameters Pm, in the link features vector, the
infrastructure records each event of nodes coming in contact (i.e.,
within transmission range of each other) and the duration of each
contact.

Given such historical information of contact patterns, and a strat-
egy A, numerical simulation allows computing the link features Pc

associated with Pm and A, as well as deciding whether A is a fea-
sible strategy, i.e. whether (P,A) satisfies the condition (2). The
final training set consists of N couples of matrices (P,A), where
the size N is chosen as a compromise between computational load
(and hence time to complete the CNN training) and accuracy of the
output.

As a result, thanks to the periodicity of the mobility patterns in a
city, when a request is made for a content to be diffused by CFC in
a given time window, for a given ZOI and with a given target suc-
cess ratio, the infrastructure builds a training set, trains the CNN,
inputs to the trained CNN the parameters Pm forecasted for the
whole observation window, and obtains in this way the content dif-
fusion strategy A. Since multiple A are associated to the same P,
the CNN output A is the one that minimize 1. Note that, as men-
tioned above, the output A can be all-off if the conditions in (2) are
not satisfied, i.e. it is not possible to spread or store in the whole
roadmap.
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Figure 1: Structure of the Convolutional Neural Network.

4.2 Model Architecture
The Convolutional Neural Network (CNN) architecture enables

capturing both intra-link and inter-link relationships between fea-
tures. Indeed, in the CFC dimensioning problem, the information
about proximity or relative position between links is not part of the
link features, due to the complexity which including such infor-
mation would imply on the algorithm. Moreover, the correlations
between features of different links are not due only to proximity.
Rather, they are also the result of wireless propagation effects and,
most importantly, of spatio-temporal patterns in node mobility (e.g.
typical patterns of vehicular traffic, in terms of sequence of link
traversals). Unlike ”non-deep” machine learning approaches, the
significant features extracted by the CNN are not only related to a
single link but they are associated with those links within the ker-
nel. As a result, the characteristics extracted from each layer of
the CNN do not consist only in local correlations. It also includes
the long-spatial relations between links, due to the specific spatio-
temporal patterns of the mobile nodes that typically have a strong
impact on CFC performance.

The detailed structure of the CNN architecture adopted is given
in Figure 1. The spatio-temporal correlations between links, are
captured by the non-linear characteristics learned in these layers.
From one layer to the next, these characteristics are then aggre-
gated by applying the convolution, non-linearity and max-pooling
operations.

5. NUMERICAL EVALUATION
In this section, we evaluate the performance of our proposed ap-

proach in an artificial road grid setting. In this scenario, our ap-
proach has been trained, validated and assessed. We have con-
sidered a Manhattan road grid composed of square blocks of side
150m, for a total of 35 road links. Nodes enter the grid from links
at the border, with an arrival rate equal to 3 nodes/s, equal for all
links. The ZOI has been chosen at the center of the grid. The target
success ratio α0 has been set to 0.9. We considered β=1, a channel
bandwidth of 4 MHz, a content size equal to 4 MB, and the channel
capacity resulting from Shannon’s formula.

The training set has been built as follows. The road link fea-
tures have been measured over a time interval of 3750 s, using a
sampling time of 1 s. We considered 4 × 106 couples (P,A).
A ten-fold cross-validation has been performed to avoid overfit-
ting and reinforce model stability over unknown inputs. A set of
unknown couples (P,A) has been used for testing. Specifically,
we have used the mobility link features as input, the communica-
tion link features for application validation, and A as ground truth.
Each time interval has a duration of one hour, as a reasonable trade-
off between computational load and application performance. We
implemented the proposed architecture in the Keras deep learning
framework and trained it using a Titan Xp GPU.

For evaluation of the accuracy of our algorithm, in Figure 2 we
have plotted the F-score versus the training set size, in three dif-
ferent combinations of transmission radius and of speed (constant,
and equal to 60 km/h, or uniformly distributed in the interval [0, 60]
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Figure 2: F-score versus size of the training sample, for our CNN algorithm,
as well as for K-Nearest Neighbor (KNN), Decision Tree (DT), and Ran-
dom Forest (RF), for the three scenarios considered. All curves are with a
98% confidence interval of 7%

performance of the other main algorithms for multi-label classifi-
cation problems, i.e., K-Nearest Neighbor (KNN), Decision Tree
(DT), and Random Forest (RF). Note that, for each algorithm, all
scenarios are tested using over 1.5 × 105 registers of the test set.
In order to measure model accuracy, we limited the number of pos-
sible strategies. Each road link is classified in the range of (0, 10)
for storing and replication strategy level.

These results show that for all sizes of training set and in all con-
sidered scenarios, our deep learning approach substantially outper-
forms the other algorithms in terms of accuracy. In particular, our
approach achieves a very high accuracy even with small training
sets. This confirms that for the problem of efficient dimensioning
of a CFC scheme, the ability of CNN to capture the impact that
the features of a link have on the content replication performance
in other links, is the key feature for achieving a satisfactory perfor-
mance. Another indication of this is given by the fact that, by in-
creasing the transmission radius from 100 m to 500 m, the relative
accuracy of the CNN approach improves with respect to the other
approaches. Indeed, by increasing the transmission radius, we in-
crease the amount of content exchanges between links, which are
close in space, and hence the impact, which such coupling has, on
the overall performance of a CFC scheme. Note that, the scenario
with variable speed, by adding one more feature to the learning
process, brings to a higher F-score in all algorithms.

A key aspect, of any learning approach to FC dimensioning, is
that even approaches which exhibit high accuracy may produce
configurations which are not feasible, i.e. which do not satisfy the
target performance in terms of minimum success ratio. Table 1
shows, for all considered scenarios and algorithms, the probability
that the output of the learning processes does not satisfy constraint
(2). For our approach, the rejection probability is around 3%, and
an order of magnitude lower than those of other approaches. In-
deed, CNN tends to decrease the false positive predictions rather
than the false negative ones. This is due to the fact that, for any in-
put, our CNN always starts from the all-on configuration as initial
state.

Table 1: Rejection probability for the algorithms considered, with a 98%
confidence interval of 6%. Training set size: 1.5× 105.

Tx radius [m] 100 100 500
Speed [Km/h] 60 [0, 60] 60

CNN 0.029 0.031 0.032
KNN 0.274 0.287 0.284
RF 0.324 0.320 0.333
DT 0.347 0.345 0.349

A crucial performance parameter of our CNN approach is the
percentage of resource cost saved with respect to the all-on config-
uration, in the scenario with r = 100m, speed 60km/h. The all-on
configuration is considered as a reference, as it is the only configu-
ration that by hypothesis is always feasible (if this is not the case,
then there is no feasible solution for Problem 1 for the given choice
of road grid), and it represents therefore the fallback configuration
to be adopted when other approaches fail. In such conditions, our
approach achieves 37.5% of resource savings, hence substantially
improving over trivial dimensioning methods. Note that, the per-
centage of resource savings increases drastically, if the mobility is
not uniform unlike the above case. A crucial aspect of our learn-
ing approach is the computational load required for building the
training set and for training the CNN, as these computations are
performed after the request for setting up a CFC scheme is formu-
lated. Indeed, the training set cannot be precomputed, due to the
many variables from which it depends (configuration and position
of the ZOI, target success ratio, start time and duration of the time
window). In addition, while for some applications a CFC can be
planned, leaving enough time for training (e.g., when the content
to float is an advertisement about a sale), for such applications as
car accident notification, or medical emergency, a quick and ef-
fective deployment of the CFC may be necessary for acceptable
performance. In our evaluations, we also evaluate the training and
testing times without a GPU. Using a I7 desktop PC with 16 GB of
RAM, the two computational steps (training set buildup and CNN
training) together took 3 s for a training set of 1000 elements, and
about 7 min for 106 elements, while the computation of the CFC
strategy A always took less than 1 s at inference time.

6. CONCLUSIONS
In this work, we have outlined a deep learning strategy for effi-

cient FC dimensioning. It exploits a Convolutional Neural Network
(CNN) to modulate over time the parameters of the FC scheme. In
the continuation of this work, we plan to assess our approach in re-
alistic settings with measurement-based traces. Moreover, we will
extend it to the case in which mobility patterns are influenced by
the spreading of the floating content (e.g., traffic jam notification).
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