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Revealing tumor Habitats from 
texture Heterogeneity Analysis 
for Classification of Lung Cancer 
Malignancy and Aggressiveness
Dmitry Cherezov1, Dmitry Goldgof  1, Lawrence Hall  1, Robert Gillies  2, 
Matthew Schabath  3, Henning Müller  4,5 & Adrien Depeursinge4,6

We propose an approach for characterizing structural heterogeneity of lung cancer nodules using 
Computed Tomography Texture Analysis (CTTA). Measures of heterogeneity were used to test the 
hypothesis that heterogeneity can be used as predictor of nodule malignancy and patient survival. To 
do this, we use the National Lung Screening Trial (NLST) dataset to determine if heterogeneity can 
represent differences between nodules in lung cancer and nodules in non-lung cancer patients. 253 
participants are in the training set and 207 participants in the test set. To discriminate cancerous from 
non-cancerous nodules at the time of diagnosis, a combination of heterogeneity and radiomic features 
were evaluated to produce the best area under receiver operating characteristic curve (AUROC) of 0.85 
and accuracy 81.64%. Second, we tested the hypothesis that heterogeneity can predict patient survival. 
We analyzed 40 patients diagnosed with lung adenocarcinoma (20 short-term and 20 long-term survival 
patients) using a leave-one-out cross validation approach for performance evaluation. A combination 
of heterogeneity features and radiomic features produce an AUROC of 0.9 and an accuracy of 85% to 
discriminate long- and short-term survivors.

Computed Tomography (CT) is widely used in early detection, diagnosis and treatment planning of lung can-
cer1,2. Using standard-of-care CT images, quantitative image features such as location, spiculation, size, calcifica-
tion, density (intensity), necrosis and texture of a nodule can be extracted. Radiomics is the conversion of images 
to structured data and the resulting quantitative features can be used in mathematical models, often learned, for 
finding a dependence or inter-relationships between features and a medical question such as nodule malignancy, 
tumor aggressiveness and prediction of treatment response3–5. The second role of radiomics is the extraction of 
features that represent information that is not typically found from CT images by the human eye alone6–9 or that 
cannot easily be quantified.

One of the well-known characteristics of cancer is tumor heterogeneity. Hence, small biopsy specimens may 
not be representative of a whole tumor. Moreover, tumor histology often changes over time. This makes hab-
itat detection a subtle process. Up-to-date habitat detection using radiomic methods can be divided into two 
categories.

Multi-parametric or multi-modality methods such as T1, T2, Flair MRI imaging10–13 or PET/CT imaging14–17 
provide enough data for the detection of physiologically similar sub-regions (“habitats”) within a nodule or a 
tumor. Single-modality imaging provides less information. In this case radiomic texture features associated with 
heterogeneity of a nodule are used18–25.

Features associated with heterogeneity of a nodule have one common characteristic: they compute texture sig-
natures across the entire nodule (see Fig. 1). Knowing that cancer is heterogeneous and assuming that CT texture 
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represents tissue types with different histology subtypes, we can conclude that computation of texture signatures 
in this case is averaging texture features of nodule regions with possibly different histology. As a result, the aver-
aged texture features may not represent any individual habitat within a nodule correctly. In this case, the texture 
of each nodule is considered as a unique pattern, which makes the classification process more complicated26. For 
example, consider four habitats that have unique texture signatures: A, B, C and D. Each nodule contains two hab-
itats: AA, AB, AC, etc. If we compute the texture signature of an AB nodule, the result will be different from the 
individual A and B habitat texture signatures. This difference is the result of averaging texture signatures. Thus, 
each unique combination of habitats in our case has a unique texture signature.

In this work, we present an approach where we compute circular harmonic wavelets for small patches within 
a nodule, cluster patches in order to define sub-regions of a nodule with similar patterns (habitats) and use infor-
mation about the clusters and their texture signatures to describe a nodule (Fig. 1). This approach was used to 
classify nodules into benign and malignant. In addition, we used a dataset with 40 patients diagnosed with ade-
nocarcinoma to evaluate how effective the approach is for classification of tumor aggressiveness.

Materials and Methods
Datasets. In this paper, we experimented with two datasets. First, we used the National Lung Screening Trial 
(NLST) dataset to evaluate how heterogeneity differentiates nodules from lung cancer patients from nodules 
among non-lung cancer patients. Second, we used patients from the H. Lee Moffitt Cancer Center & Research 
Institute diagnosed with lung adenocarcinoma for training and testing to predict patient survival time. These two 
datasets were chosen to allow comparisons with earlier work3,25 and to show that the approaches generalize to 
different datasets. There are labels available for the nodules and tumor images used in the study, but the pixel level 
ground truth is not available.

National Lung Screening Trial. NLST was a randomized trial of 53,439 patients that compared LDCT (Low 
Dose CT) vs. standard chest x-rays. After an initial screening (T0), follow-up screenings (T1 and/or T2) were 
conducted in intervals of approximately one-year. If at T1 a patient was diagnosed with cancer, he/she started 
treatment and did not have a follow-up screening. According to the screening protocol, a screen was considered 
positive if a non-calcified nodule (NCN) had the longest diameter (LD) larger than 4 mm. For positive screenings, 
radiologists provided a clinical description such as location, margin etc.

We extracted two cohorts from NLST27. Cancer patients in the training cohort had a positive (non-cancer) 
screening at time 0 and were diagnosed with cancer on the first follow-up (N = 104). Cancer patients in the test 
cohort had a positive, so non-cancer screening at time 0 and time 1. They were diagnosed with cancer at time 2. 
For each cancer patient, two non-cancer subjects were selected by demographic criteria: the same age, sex, and 
other available criteria. Finally, we excluded cases with technical problems or other challenges that prevented 
analysis of nodules. When removing a cancer patient from the dataset the corresponding non-cancer patients 
remained. There are 253 patients in the training cohort (83 cancer and 170 non-cancer patients) and 207 patients 
in the test cohort (73 cancer and 135 non-cancer patients).

Labels for the dataset represent patient diagnosis during the trial.

Lung Adenocarcinoma Dataset. At the H. Lee Moffitt Cancer Center & Research Institute, 276 patients with 
Non-Small Lung Cancer were selected. Inclusion/exclusion criteria were: (1) Diagnosed with Lung cancer; (2) 
Pre-surgery contrast-enhanced CT imaging performed at the H. Lee Moffitt Cancer Center & Research Institute; 
(3) At least 2 years of follow-up information is known; (4) Patients with all TNM stages accepted; (5) No mix of 
cancer types for a patient.

Out of 276 patient 86 were diagnosed with Adenocarcinoma. From the Adenocarcinoma subset, two quartiles 
were selected to represent distinct phenotypes: aggressive phenotype associated with short term survival patients 
and a non-aggressive phenotype associated with long term survival patients. It was recognized that without a time 
gap around the class cutoff, it was likely that significant confusion would occur near any cutoff. For short term 
survival group selection criteria was survival time less than 500 days. For the long term survival group selection 
criteria was survival time greater than 1000 days. Survival time was computed as the difference between the day 
of pre-surgery imaging and the last day of contact or the day of patient’s death.

Among 86 patients with adenocarcinoma 20 patients survived from 103 to 498 days. Mean survival time was 
288 days. These patients were labeled short-term survivors. 20 patients survived from 1351 to 2163 days with the 
mean survival time of 1569 days. These patients were labeled long-term survivors.

Overall, 40 patients were used for classification of long term survivors and short term survivors. Demographic 
information for the patients is shown in Table 1.

Figure 1. Schematic representation of a feature computation result in a workflow where a nodule is considered 
as a homogeneous object (on the left) and a feature computation result when heterogeneity is used for division 
of a nodule into habitats (on the right).
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Pre-processing. For both datasets, segmentations of tumors were obtained at the H. Lee Moffitt Cancer Center 
where a qualified radiologist applied a semi-automated 3D segmentation algorithm28.

2D wavelet features were used in the work of this paper. Thus, for each primary nodule from both datasets, we 
extracted one slice where the segmentation area was the largest. We re-sampled each selected slice such that the 
XY spacing became equal to 0.5 mm. In the case that, a nodule segmentation area is less than a single patch area, 
the original slice segmentation was used as a patch and we considered that a nodule had only one habitat. For 
re-sampling, we used the bicubic interpolation algorithm implemented in Matlab R2016b29.

Methods
In this section, we describe the proposed workflow with dedicated subsections for each step. Figure 2 shows the 
workflow as a diagram. First, we describe texture feature computation, patch extraction within a nodule and 
computation of the convolution response for a patch. Second, we explain how we defined the number of habitats 
for each nodule, the habitats of multiple patches and the habitat texture response. We assume that malignancy of 
habitats within a nodule can vary. Finally, we explain how we used texture responses of habitats to evaluate their 
malignancy for training and test cohorts in detail.

In order to classify patients, we extracted quantitative features that described the heterogeneity of a nodule. 
These features were used in the patient classification experiments. Performance of the features is shown in the 
Results section.

Circular Harmonic Wavelet Features. We chose to use Circular Harmonic Wavelets (CHW) to charac-
terize local texture properties of a tumor image f(x, y)30. CHWs quantify the amount of local circular frequencies, 
similar to local binary patterns (LBP)31. An interesting property of CHWs is their ability to characterize image 
directions in a rotation-invariant fashion at a very low computational price32. This allows quantification of benign 
or malignant tissue structures independently of their local orientations. CHWs of order n are constructed in the 
Fourier domain as

φ ρ θ ρ= θh( , ) (2 )e , (1)
n s s n( , ) jˆ ˆ

where (ρ, θ) denotes the polar coordinates in the Fourier domain and ρĥ( ) is a purely radial bandpass function 
controlling the wavelet analysis at scale s. Simoncelli’s isotropic collection of wavelets was used for ρĥ( ) 33, which 
proved to work well for analyzing lung tissue in CT34. At a given position (x0, y0), the representation obtained 
from the collection of the complex magnitudes of the scalar products φ|〈 〉|f , n i( , )  characterizes the local circular 
frequencies in f of order n = −N:N at a scale s = 1:S and is locally rotation invariant35. This yields a collection of 

Characteristics Short Survival Class Long survival class P Value

Age, mean (SD) 69 (8.07) 64.45 (9.75) 0.1161 (Unpaired student t-test)

Sex, N (%) 0.2049 (Fisher exact test)

   Male 12 (60%) 7 (35%)

   Female 8 (40%) 13 (64%)

Race 1 (Fisher exact test)

   White 20 (100%) 20 (100%)

   Black, Asian, and Others 0 (0%) 0 (0%)

Ethnicity, N (%) 1 (Fisher exact test)

   Hispanic or Latino 1 (5%) 0 (%)

   Neither Hispanic/Latino and unknown 19 (95%) 20 (100%)

Histology, N (%)

   Adenocarcinoma 20 (100%) 20 (100%)

   Squamous cell carcinoma 0 (100%) 0 (100%)

   Other, NOS, unknown 0 (100%) 0 (100%)

Stage, N (%) 0.07346 (Mann-Whitney U test)

   I 4 (20%) 10 (50%)

   II 5 (25%) 5 (25%)

   III 10 (50%) 3 (15%)

   IV 1 (5%) 2 (10%)

   Carcinoid, unkown 0 (0%) 0 (0%)

Tobacco Use, N (%)

   Moderate (1–2 PPD) 4 (20%) 4 (20%)

   Light (<1PPD) 0 (0%) 1 (5%)

   HIST 12 (60%) 12 (60%)

   None 0 (0%) 3 (15%)

   Cigarettes Nos 4 (20%) 0 (0%)

Table 1. Demographic Summary of Patients in the Adenocarcinoma Data Set.
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positive response maps having the same dimension as the domain of f. Features are obtained by averaging each 
response map over patches.

We consider five collections of circular harmonics. Figure 3 shows their impulse responses. For each fre-
quency, in a collection, we consider three scales (S = 3).

For each pixel within the segmentation we get a convolution response. In order to detect texture patterns, 
we divide nodules into circular patches with a radius of 3 mm (6 pixels), a shift of 1.5 mm (3 pixels) and we 
average the absolute values of the wavelet responses within a patch. The choice of the radius of 3 mm was based 
on Lung-RADS (Reporting and Data System) categories. The procedure was repeated for each set of harmonic 
vectors (hV) individually and as a result, we obtained five sets of patches for each nodule where each patch has 
a different number of texture features. The number of texture features extracted from each collection shown in 
Fig. 3 is equal to 3, 9, 15, 21 and 27 respectively.

Habitat Detection. After computing a set of wavelet features (for each set of harmonic vectors) within each 
patch the k-means++ algorithm36,37 was applied to identify regions with a similar texture. The number of texture 
features for each set is provided above. The number of clusters was estimated with the gap criterion clustering 
evaluation method38. The maximum number of possible clusters is limited to 15. As a result of the habitat detec-
tion step, we obtained five sets of habitats for each nodule with respect to five sets of harmonic vectors.

Habitat Malignancy Estimation. After habitat detection, each nodule is represented as a set of texture 
signatures for habitats (Fig. 1). In this work we assume that a difference in habitat histology can be described 
with texture patterns. To estimate the probability that a particular habitat belongs to a given class, we applied a 
leave-one-out cross-validation (LOOCV) on the training cohort.

We excluded from the training cohort one patient. Texture signatures from all the other patients with the 
corresponding labels were used for training. After training, the excluded patient’s texture signatures were used 
for testing. The classifier produced a pseudo-probability for each signature (Fig. 4). The procedure was repeated 
for each patient in the training cohort. We collected these pseudo probabilities to describe a nodule and see if this 
information can be used for the computation of quantitative features and a nodule level classification task.

Several studies showed that Random Forests outperform other classifiers in Radiomics experiments3,39,40. 
Thus we chose random forests for classification, where the fraction of decision trees that voted that a habi-
tat is malignant/aggressive to the total number of decision trees is recorded. This fraction is considered as a 
pseudo-probability of malignancy/aggressiveness.

Figure 2. Suggested workflow for heterogeneity estimation.

Figure 3. Set of Circular Harmonics filters used for texture signature computation (hV–Harmonic Vectors).

https://doi.org/10.1038/s41598-019-38831-0


5Scientific RepoRts |          (2019) 9:4500  | https://doi.org/10.1038/s41598-019-38831-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

To evaluate malignancy/aggressiveness of habitats in the test cohorts we used all signatures from the training 
cohort for training with the assigned labels of the corresponding patient. After this step, for each habitat in the 
training and the test cohorts, we estimate the probability of it being malignant or aggressive. Habitat malignancy/
aggressiveness estimation for the training and test cohorts are repeated for each set of habitats.

Nodule Heterogeneity Feature Extraction. The detection of habitats within a nodule provides much 
information about its heterogeneity. Nevertheless, it makes it impossible to compare the texture of each nodule 
directly because the number of habitats differs and because we do not know the relationship between the habitat 
area, the level of malignancy/aggressiveness of a habitat and the malignancy of the nodule itself.

We produced 15 quantitative radiomics features. These features are statistical information of habitat area, 
habitat pseudo probability of malignancy/aggressiveness and variety in habitat texture signatures of the nodule. 
Table 2 shows the names of the features and the corresponding description. Heterogeneity features were extracted 
from all patients and were used for nodule classification.

Results
As a baseline for all experiments we use the results of the classification with 3D radiomics features extracted 
using the Definiens application and consisting of size, location, intensity and texture features (219 features) com-
puted on the entire 3D ROI41. Balagurunathan et al. described all categories and features in detail in their work42. 
During feature computation, CTs were not resampled to have uniform spacing.

Heterogeneity features are 2D features and only texture information was used to define them. We combined 
2D heterogeneity features and 3D radiomics features to test if such a fusion improves classification performance 
on the NLST dataset.

For experiments with only the heterogeneity features or their combination with 3D Definiens features, we 
tested heterogeneity features computed by each frequency collection individually (Fig. 3).

To reduce the number of features we applied the ReliefF feature selector43–45 to select the best 5, 10 features 
and the minimum redundancy maximum relevance feature selector46. Experiments with no feature selection were 
used as a baseline. With the exception of Naive Bayes, all classifiers used do implicit feature selection. Reducing 
the number of features with a feature selector resulted in better performance. As a subset of the Definiens features 
we consider features that were shown to be stable on the RIDER dataset and separately features stable on the 
training cohort41. As the set of classifiers, we selected Naïve Bayes47, J4848, JRIP49, Random Forests50 and SVMs 
with a linear and a radial basis function kernel51. All the experiments were executed in Weka, version 3.8.1.

Lung Cancer vs. Non-Lung Cancer in NLST. Three experiments were based on the NLST dataset. First, 
we used patient screening results at the time of diagnosis: the training cohort at time 1 vs. test cohort at time 2. 
Second, we used patient CT screening one year ahead of diagnosis to evaluate the heterogeneity of malignant 
nodules before they were marked as cancer: the training cohort at time 0 vs. test cohort at time 1. Finally, we used 
the training cohort at time 0 vs. test cohort at time 0, which means that for training we used CT screenings of 
nodules a year ahead of diagnosis and for testing we use CT screenings of nodules two years ahead of diagnosis.  
The AUROC of classifiers was considered as the primary performance measure. Heterogeneity helped when com-
bined with 3-D features in all cases except predicting two years in advance. Table 3 shows feature sets, feature 
selectors and classifiers producing the best AUROCs. The NLST combined model AUROC was compared to the 
Definiens model performance in R by using the pROC library52 and the comparison algorithm of DeLong et al.53. 
The P-value of AUROC differences is 0.2215.

Survival time prediction in the Adenocarcinoma dataset. Patient stage information from Table 1 was 
used to evaluate baseline performance using clinical data due to the significant difference in patient survival time. 
If a patient stage is used as a quantitative feature to differentiate long/short term survival the AUROC is equal to 
0.67 (Supplementary Fig. S1). If stages I/II are considered as early stages and stages III/IV are considered as late 
stages, then the split produces a confusion matrix which leads to an accuracy of 65% (Supplementary Table S1).

Figure 4. Example of the malignancy/aggressiveness probability assignment for habitats in a nodule.
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Due to the small number of patients in the adenocarcinoma dataset, we applied cross-validation for the per-
formance evaluation. Because habitat aggressiveness estimation was performed with leave-one-patient-out, the 
same concept was applied when testing nodules.

Cross-validation for this dataset with the Definiens features showed an AUROC = 0.71 and an accu-
racy = 77.5%25. Using heterogeneity features alone provides the best AUROC of 0.80 with the corresponding 
accuracy of 85%. The enhanced contrast likely enabled better habitat definition. Again, the combination of fea-
tures provided the best results.

The combined model with the best performance from the Lung Adenocarcinoma Dataset is based on a subset 
of Definiens features that are shown to be stable and reproducible by test-retest analysis on the RIDER dataset41. 
There are 23 features in the RIDER subset of features. In addition to the 23 RIDER features, there are 15 heter-
ogeneity features. Out of 38 total features, the ReliefF algorithm selected the top 5 predictive features. Random 
Forests for a classification task with N features used the square root of N features for building a decision tree. This 
means that a random set of sqrt(N) features are chosen with the best of them selected for the test at an internal 
node. This is an implicit form of feature selection.

Screening time Feature type Feature set Feature Selector Classifier AUROC Accuracy (%)

Training Set
Diagnosis
Test Set
Diagnosis

Heterogeneity hV4 RfF 10 RFs 0.77 72.95

Definiens All 219 features mRMR 17* RFs 0.83 78.77

Combined Training st. +hV4 none RFs 0.85 81.64

Training set
Diagnosis - 1 year
Training set
Diagnosis - 1 year

Heterogeneity hV3 none SVMlin 0.69 74.88

Definiens RIDER st. RfF 10 RFs 0.79 75

Combined All 219 +hV2 mRMR 25* RFs 0.79 74.4

Training set
Diagnosis - 1 year
Training set
Diagnosis - 2 years

Heterogeneity hV1 RfF 10 RFs 0.67 65.7

Definiens RIDER st. RfF 5 RFs 0.78 74.06

Combined RIDER st. +hV0 RfF 10 RFs 0.78 70.53

Table 3. Overview of classification models that produce the best AUROC. The first column defines the time 
point of the CT screening that was used in the training and test cohorts. The second column defines which 
feature set was extracted for a given CT screening. Heterogeneity refers to only 15 texture heterogeneity 
features, Definiens refers to 219 features extracted in Definiens. Combined refers to the fusion of Definiens 
and heterogeneity features. The feature subset column defines the order of the Circular Harmonic vectors 
that were used to extract texture features or a subset of the Definiens features claimed to be stable on the 
RIDER or training datasets. The feature selector column defines one of the feature selectors that produces 
the best performance. There can be no feature selector, ReliefF (RfF) with top 10 or 5 ranked features or the 
minimum redundancy maximum relevance (mRMR) feature selector. The classifier column defines, which of 
the tested classifiers performed the best. From the table we can see that most of the time random forests (RFs) 
outperformed other classifiers. Finally, the last two columns refer to AUROC and accuracy of the corresponding 
model. *Weka v.3.8.1 provides mRMR algorithm whose implementation defines the optimal number of features 
for a particular dataset in terms of redundancy and relevance. As a result, the selected number of features varies.

Feature name Feature description

min P Minimum value of the malignancy pseudo probability of a habitat in a nodule.

max P Maximum value of the malignancy pseudo probability of a habitat in a nodule.

mean P Mean value of the malignancy pseudo probability of a habitat in a nodule.

median P Median value of the malignancy pseudo probability of a habitat in a nodule.

min A ratio Minimum value of a habitat area in a nodule.

max A ratio Maximum value of a habitat area in a nodule.

mean A ratio Mean value of a habitat area in a nodule.

median A ratio Median value of a habitat area in a nodule.

min disjoint A ratio Minimum value of a habitat area in a nodule in the case of disjoint parts of a habitats being considered as 
different habitats.

max disjoint A ratio Maximum value of a habitat area in a nodule in the case of disjoint parts of a habitats being considered as 
different habitats.

mean disjoint A ratio Mean value of a habitat area in a nodule in the case of disjoint parts of a habitats being considered as 
different habitats.

median disjoint A ratio Median value of a habitat area in a nodule in the case of disjoint parts of a habitats being considered as 
different habitats.

number of clusters Total number of habitats in a nodule.

mean centroids dist Computing mean value of habitat texture signatures for a nodule–nodule texture signature. The result is 
mean Euclidean distance from the nodule texture signature to its habitats texture signatures.

dist std centroids Standard deviation of habitat texture signatures.

Table 2. Heterogeneity features description.
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Table 4 shows the classification models that perform best for particular feature sets with the corresponding 
AUROC and accuracy. The Adenocarcinoma Combined model AUROC is compared to Definiens model perfor-
mance in R by using the pROC library52 and the DeLong et al.53 comparison algorithm. The P-value of AUROC 
differences was 0.04924.

Discussion
The hypothesis of this work was that CT screening data can be used not only for the description of a nodule but 
it is a source of information to define habitats within nodules and that the level of heterogeneity is able to help 
identify malignancy and aggressiveness of tumors.

As can be seen from Table 3, the results of the three experiments performed on NLST for all features highlight 
that the highest performance was achieved when using images at the time of diagnosis (training set at T1 vs. test 
set at T2). The next best performance was reached where both cohorts used data one year ahead of diagnosis 
(training set at T0 vs. test set at T1). Finally, the worst result was obtained when we used as for training the CT 
screenings of nodules one year ahead of diagnosis and for testing the CT screenings of nodules that were taken 
two years ahead of diagnosis. Clinically, the complexity of these questions is on the same order, so from the sim-
plest to the most complicated.

Heterogeneity helps performance most at the time of diagnosis. In addition, technically, it is hard to evaluate 
heterogeneity of small nodules due to the limited spatial resolution of CT volumes. Most of the nodules at the time 
of the initial CT screening have a longest diameter of less than 15 mm. In this work, we used patches with a radius 
of 6 mm. Thus, with very few patches we cover entire nodules and thus we may miss all the information about local 
habitats. At the time of diagnosis, nodules have grown and thus the performance of habitat detection increases.

In this regard, the Adenocarcinoma dataset is a better choice, as the nodules are larger and contrast is stronger. 
Thus, the proposed method can better leverage habitat heterogeneity information. Longest diameter mean and 
standard deviation values for the NLST dataset were 11.06 mm and 7.62 mm respectively. For Adenocarcinoma 
these parameters were 34.09 mm and 17.4 mm respectively. In addition, CT imaging of Adenocarcinoma dataset 
patients was performed with use of a contrast agent, which highlights CT texture inside a tumor.

As we can see from Table 4, in the experiment where we used only heterogeneity features the mRMR feature 
selector selected only one feature. The feature name is “Min P” which is explained in Table 2. After splitting nodules 
into habitats and computing pseudo-probability of aggressiveness for habitats with Random Forests we selected the 
minimum value. Just by using this value for nodule aggressiveness classification we got an AUROC of 0.8 and an 
Accuracy of 85%. This may be the result of the fact that we computed texture signatures for habitats individually.

Conclusions
In this paper, we propose a method for revealing tumor habitats from texture heterogeneity. We use this heteroge-
neity to classify lung cancer malignancy and aggressiveness. We analyze classification abilities of heterogeneity on 
two datasets and compared it with 3D features from Definiens based on the entire tumor volume (i.e., not consid-
ering tumor habitats). First, we applied heterogeneity for classifying cancer and non-cancer patients in the NLST 
screening dataset. The best results were obtained when using CT images at the time of diagnosis. When using 
Definiens features only (219 features), the best AUROC is 0.83. When using the proposed 15 2D heterogeneity 
features, the best AUROC is 0.79. Combining the two sets of features achieved the top AUROC of 0.85. This small 
gain suggests that NLST nodules are relatively small to fully benefit from the proposed heterogeneity analysis but 
it does add important information. To this end, we evaluated heterogeneity in adenocarcinoma patient survival 
time prediction, where nodules are much larger. In this dataset, the best AUROC was obtained when the model 
was based on the heterogeneity features (AUROC = 0.8), whereas the global Definiens features were mixing dis-
tinct habitats and only achieved the highest AUROC of 0.71. Combining heterogeneity features and the Rider 
subset of features resulted in a statistically significant improved AUROC of 0.9.

Data Availability
National Lung Screening Trial dataset54 and Adenocarcinoma dataset55,56 are available at The Cancer Imaging 
Archive57. The Matlab code for heterogeneity detection described in the section on Circular Harmonic Wavelet 
Features and the section on Habitat Detection is available on the GitHub server58.
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