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Abstract Exascale services bring new unique challenges that the current compu-
tational, big data and workflow solutions are unable to meet. The chapter includes
a detailed description of selected exascale services with known state of the art in
extreme date solutions. The integration of requirements and the analysis of the state
of the art in the exascale field is centered in on a description of a high-level archi-
tectural approach. The next main contribution of the paper is the description of the
architecture capable to handle heterogeneous exascale services coming from both
academic as well as industrial sphere. Those two models represent a (conceptual,
and technological) design of a platform that addresses the requirements of the use
cases. The resulting architecture will help us provide computing solutions to exascale
challenges within the H2020 project PROCESS.

1 Introduction

The main aim of this chapter is to provide a description of services requiring het-
erogeneous exascale computing together with the architecture of an exascale system
(it is the initial architecture of the PROCESS project1). Its design is driven hetero-
geneous exascale services coming from both academic as well as industrial sphere.
The chapter starts with the analysis of our use cases as the main influencer of the
architecture. This analysis is followed by the description of the initial architecture.
It is depicted by two models represent a (conceptual, and technological) design of a
system that addresses the requirements of the use cases.

The chapter has the following structure:

• Section 2 describes exascale learning on medical image data.
• Section 3 presents exascale challenges within the LOFAR data volumes.
• Section 4 discusses a supporting innovation based on global disaster risk data.
• Section 5 describes the ancillary pricing for airline revenue management.
• Section 6 presents the agricultural analysis based on Copernicus data.
• Section 7 concentrates on creating of the PROCESS architecture, with a high-level

structure of the project platform.

2 Exascale learning on medical image data

Digital histopathology is the automatic analysis of a biopsy or surgical tissue spec-
imens, which are captured by a high resolution scanner and stored as Whole Slide
Images (WSIs). WSIs are usually stored in a multi-resolution pyramid structure,
where each layer contains down-sampled versions of the original image. The amount
of information in WSIs is huge, since it includes tissue that is not relevant for cancer

1 PROCESS project homepage https://www.process-project.eu/

https://www.process-project.eu/
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diagnosis (e.g. background, stroma, healthy tissue etc.) For this reason, machine
learning and deep learning models are built to detect a Region of Interest (ROI)
within WSIs. ROIs are portions in the WSIs where the cancer is spreading and
therefore contain relevant information to train the network.

Fig. 1 WSIs preprocessing pipeline: Normal tissue and tumor tissue masks are extracted and
high-resolution patches are sampled from the selected regions.

Figure 1 shows an example of the data preprocessing pipeline. As a first step the
raw WSIs are analysed at a very low resolution level, and tissue is filtered from the
background. Based on doctorâĂŹs annotations, tumor regions are isolated. These
regions represent ROIs which are used to perform network training. From the normal
tissue and from tumor ROIs, patches are extracted at a higher level of magnification.
Higher resolution highlights qualitative features of the nuclei which are essential for
cancer detection. For instance, recent research has shown that the performance of
classifiers improves wither resolution patches [12].

Exascale learning on medical image data aims at improving the performance of
decision support in the process of cancer detection, localisation and staging/grading
to optimize and personalize treatment planning. The automated tools deliver decision
support for physicians, speed up visual inspection of tissue specimens and reduce
subjectivity in the grading/staging process.

The use case tackles cancer detection and tissue classification using histopathol-
ogy images, such as CAMELYON and TUPAC. The PROCESS infrastructure allows
us to develop more complex models and to use increasingly larger amounts of data
at a finer scale.

Access to exascale computing will consistently decrease the turn-around time of
the experiments, pushing the boundaries of computation and consequently allowing
researchers to develop models that are otherwise computationally unfeasible.
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The main focus of the use case and technologies will be on the application of
content-based tasks onWSIs, which are gigapixel images. As an example, three main
tasks will be addressed:

• Search - e.g. “Are there patients with comparable scan results? Are there corre-
sponding study cases?”

• Detection - e.g. “Where can cancerous tissue be detected? Are there cancerous
changes visible in this scan?”

• Classification - e.g. “Which stage does this cancer belong to?”

A typical use case scenario can be defined as follows: âĂĲThe researcher wants
to train a deep neural model from a large corpus of WSIs (»1TB). The training
procedure requires intense prototyping for the customisation of the neural network
architecture, learning criteria and dataset preprocessing. In addition, handling WSI
datasets requires efficient storage of large datasets.âĂİ

To make an example, approximatively 1000 WSI are included in the CAME-
LYON17 dataset, 500 of which contain annotations and metadata (such as a descrip-
tion of the patient case, image width and height, the number of resolution levels and
a text report with the main findings in the image). Tumors as small as 100x100 pixels
should be detected in 200,000x100,000 gigapixel microscopy images. A brute-force
approach would perform pixel-by-pixel analysis, requiring the classification of more
than 109 elements. If the state-of-the-art model for image classification is used, e.g.
ResNet [8], the number of operations needed for training is on the order of 1017,
with at least 3.6 GFLOPS required per each full scan of the training data (i.e. epoch),
which may increase to 11.6 GFLOPS if the depth of the network is increased. Hence,
with 50 training epochs, the computations required to scale up to the order of ex-
aflops and several days on a single dedicated GPU. Moreover, such a large dataset
(each resolution level occupies, on average, 50 to 60 GB) calls for a dedicated in-
frastructure to handle the storage requirements and data processing [19]. Hence the
requirements for intensive computations and massive storage.

2.1 Medical use case motivation

The motivation is to improve the performance of automated cancer diagnostics and
treatment planning. We plan to develop more powerful tools for cancer detection,
localisation and stage classification, which could support the decisions of physicians
during the diagnostic process. Cancer diagnostics are generally time-consuming and
suffer from high disagreement rates between pathologists, since tumour stages do not
have defined boundaries [9]. Through visualisation and interpretation of the network
decisions, the level of objectivity in the diagnostics can be increased, consequently
reducing the analysis time and disagreement rates.

The resources brought by the connection between High Performance Computing
(HPC) and medical imaging research would permit analysis of large-scale challenge
datasets for medical imaging. The training of multiple deep learningmodels could be
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distributed among different computational centres and more complex models could
be trained with shorter time constraints.

2.2 Goal of the medical use case

The final goal is to improve the performance of the current state-of-the-art algorithms
for cancer detection through the accomplishment of three main objectives. The first
objective is the development of image analysis algorithms for supervised and weakly
supervised learning. Supervised learning attempts to learn a mapping f(.) between
each datapoint x (e.g. the histopathology image) and its label y (e.g. presence of
cancer, cancer stage, cancer locations) such that y = f(x). The introduction of weak
labelingwill enable the use of scarcely annotated data to improvemodel performance
and generalisation. To further build upon these advantages, unsupervised learning
algorithms can be used to model unannotated data, thus removing the need of
manual annotation before training. The trained networks are used on testing data to
identify tumorous regions and to suggest pathologists possible tumorous regions in
the histopathology image. Visualisation methods can be used to gather instantaneous
feedback and explanations for the network decisions, thus increasing the reliability
of the models and improving trust in the developed tools [13]. The second objective
is the distribution of training across multiple computational centres. Neural networks
can be independently trained at different computational centres, obtaining a speed
up in time proportional to their number. The models could then be assembled into
a single model with improved generalisation abilities. The third objective consists
of investigating the trade-off between performance and computational resources by
increasing the size of the datasets and the computational complexity of the models.
For example, an enormous amount of computations is required if slight perturbations
are introduced in the data and multiple models are trained to investigate model
robustness. Overall, the presented objectives will contribute to the analysis of huge
collections of medical data, and therefore to the development of improved algorithms
for the automatic suggestion of patient cancer stage and correlated patient cases.

2.3 Model training workflow of the medical use case

Different Deep Neural Networks (referred to as “networks” in this section) need to
be trained and monitored. For this workflow, we identify three main phases and three
different application scenarios. The three phases consist of:

• Phase 1: Patch Extraction - thousands of high resolution patches are extracted
from raw WSIs

• Phase 2: Local andDistributedTraining - supervised and unsupervised training
is performed on the extracted dataset of patches in both local and distributed
fashion, and training statistics are monitored
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• Phase 3: Performance Boosting - multiple training runs are relaunched with
data perturbations to address model robustness

The three different scenarios for the workflow can be pictured as follows:

• Scenario n.1: Moving the models to hospitals. Different models are trained
independently at each data centre and finally ensambled and made available to
hospitals for local testing.

• Scenario n.2: Distributing training to the data location. Training is distributed
across centres on different portions of data and computations are dynamically han-
dled. This scenario simulates the distribution of training to where the data resides,
especially in cases of private data that cannot leave the hospital environment.

• Scenario n.3: Dataset sizes and model complexities are jointly increased over
multiple training runs and pareto frontiers are investigated.

Figure 2 summarises the DNN training workflow. Network development is cur-
rently performed locally on less powerful infrastructures, using a series of tools
for data processing and manipulation (reported in Table 1). The libraries that are
generally involved in network training set the requirements for a user-friendly in-
frastructure where it is possible to create virtual environments that can replicate
the development environment. Docker containers can be used to create separable,
self-contained virtual environments in which to develop software and run programs.
The ’image’ of a Docker module can contain standalone and ready-to-be-executed
packages of software, tools, libraries, and settings. The flexibility of these containers
allows porting complex software development environments required by Machine
Learning and Deep learning.

Moreover, network training calls for a service-oriented infrastructure that is easily
scalable to large computations. The setup of a Hadoop ecosystem will scale up to
larger datasets within the HPC and Cloud computing infrastructures.

Table 1 Overview of current technologies and local existing infrastructure.

Currently used technologies:

Python 2.7, Tensorflow 1.4.0, Caffe, Theano, Lasagne,
DIGITS, mxnet, Keras 2.1.2, TFLearn, Numpy,
SciPy, Pandas, Scikit-learn,OpenCV, Openslide, Mat-
plotlib, Seaborn, Skimage, h5py, PyTorch, OpenBLAS,
cuDNN, FFmpeg, NLTK, Gensim, R, Weka.

Data Storage: NAS.
Data Processing: H5DS, Apache Spark, Hadoop.
Existing computing infrastructure: 8 GPUs.

Data preprocessing is the second step in the workflow and belongs to the Patch
Extraction phase. In this phase, many of the technologies mentioned in Table 1
are used to process the information in the WSI. The intermediate results of image
preprocessing (ex. patch extraction, data augmentation output, image metadata) need
to be stored so that they could be used for multiple training runs. Data preprocessing
is intrinsically parallel and should be scaled to multiple CPU cores.
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Fig. 2 Network Training workflow: The solid dot represents the starting point in the workflow and
the dot surrounded by a circle represents the ending point.

The third step in the workflow is network training, which requires as input a con-
figuration file containing a list of model settings and the WSI data (both metadata
and images). The network training process itself is generally highly parallelizable.
The parallelization might be performed at different levels and could involve both
CPUs and GPUs. For instance, the simplest training configuration settings should
enable parallel training on a single node with multiple GPU cores. More sophis-
ticated parallelization methods would scale the computations on different nodes.
Parallelization could then be performed at different scales, namely at the data level
and at the model level. On the one hand, parallelization at the data level involves
the use of different nodes to run the same portion of code on different batches of
data. In this context data storage may represent a huge bottleneck in the organi-
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zation of the clusters, and therefore the PROCESS Data Manager should be able
to identify and tackle possible issues. On the other hand, the parallelization could
be performed at the model level, involving the development of more sophisticated
models that distribute the tasks among different workers. However, this method is
generally discouraged since the communication latency between cluster nodes might
be a limiting factor. Therefore, the development of models that could efficiently use
the computational power of the PROCESS infrastructure stands as a perfect use case
for the project, involving a series of challenges in the development that still need to
be tackled. The training will also be distributed across the multiple centres. As a first
scenario (Scenario n.1), different models will be trained independently on each data
centre and the final results will then be ensambled in one single model with higher
generalisation. This scenario is close to the hospital reality where the hospitals could
download the trained models and deploy them locally without the need to share the
data. In Scenario n.2, training is distributed across the centres and the computations
are dynamically handled. This scenario will highlight the challenges of distributing
computations on physically distant centres. Dedicated handling of job queuing and
data routing is needed to organise the computations among nodes. The final scenario,
(Scenario n.3) addresses the task of constantly increasing model complexities and
dataset sizes. For instance, the number of extracted patches will increase and data
augmentation will be used to test model performances for increasing dataset sizes.
Moreover, the different resolution layers will be used to create more complex models
and performances will be recorded for a growing number of model parameters.

In all the scenarios, network training will be monitored in real time, therefore a
service to visualise statistics and collect feedback is needed.

The final output of training consists of the trained network model (e.g. weights,
checkpoints, training statistics), which should be stored in the system for testing. The
trained model should be made available for download for local testing.

The convention for the model saving format generally includes a series of HDF5
files on the order of several MB per file, often scaling up to GB when larger models
are trained. The use case should not exclude the possibility to train several different
models and store the results in a dedicated file system.

The different stages in the pipeline and the three application scenarios are sum-
marized in Figure 3.

3 Square Kilometre Array/LOFAR

Analysing the massive volumes of data stored in the archive is an acute problem.
For example, even with the LOFAR data volumes (currently 28 PB), a significant
percentage of the archived data is never used, mostly because only expert users are
capable of accessing and processing such data.

The LOFAR radio telescope consists of around 8000 antennas in 51 stations.
These antennas produce approximately 25 GB/s, which needs to be processed in real
time to combine their signals into a single view of the sky. This data is stored in the
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Fig. 3 Workflow Phases and Application Scenarios.

LOFAR Long term archive (LTA), which is distributed over Amsterdam, Juelich and
Groningen. Data is typically stored on tape and can be accessed via a web portal or
SRM client. The data remains private to its originating project for a year following
acquisition but is made public afterwards.

Individual observations produce up to 100TB of data. These are typically reduced
to 16 TB before being stored in the archive. Each observation is stored in a well-
defined directory structure, containing multiple files with both the metadata and the
measurements themselves.

A major hurdle is that the archive stores partially processed observations (also
referred to as visibilities), not the images or sky maps that astronomers typically use
as a starting point for their research. Once unknown sources are detected in the sky
maps, the astronomers often need to run more detailed analysis on the visibilities
directly. For this reason, the visibilities are stored in the archive, not the sky maps.

The initial conversion of the observations into sky maps requires several process-
ing steps, such as retrieving the data from tape, performing RFI (Radio Frequency
Interference) removal, calibration, and imaging. Unfortunately, due to the large data
volumes (tens to hundreds of TBs), and complexity of the tools, each of these pro-
cessing steps take a significant amount time and effort by the astronomer. Further
automating this part will significantly simplify the use of the stored observations,
and allow the astronomer to focus on the science instead of the preprocessing of the
data.

3.1 SKA use case motivation

LOFAR is a state-of-the-art radio telescope capable of wide field imaging at low
frequencies. It has been ingesting data into a long-term archive (the LOFAR LTA)
since 2012 and its volume is now expanding at a rate of approximately 5-7PB/year.
The LOFAR LTA consists of tapes at locations in Amsterdam (The Netherlands),
Jülich (Germany) and Poznan (Poland). Its current volume is about 28 PB. This



10 Ladislav Hluchý at al.

consists mostly of “Measurement Sets”, i.e. visibilities - correlated signals from
LOFAR stations. LOFAR is one of the testbeds for the Square Kilometer Array
(SKA) and is similar to the part of SKA that will be built in Australia.

Initially, the data produced by LOFAR is reduced and analysed by the astronomers
who requested the observations. Subsequently, the data is ingested in the LTA.
Since LOFAR is a wide field radio telescope, the LTA should contain a wealth of
serendipitous discoveries, like transient radio sources. Such sources can only be
discovered by massive analysis of data from these observations.

The first step in the analysis is often the creation of images from the data which the
astronomer can inspect. Unfortunately, significant processing and expert knowledge
is needed to produce these image cubes from observations stored in the archive. As
a result of these difficulties, the LOFAR LTA is largely unexplored by astronomical
research. We want to unlock the LOFAR LTA and increase its scientific output.

3.2 Goal of the SKA use case

The goal of this use case is to simplify the processing of archived data. Astronomers
should be able to select a dataset on a portal, select a workflow, and then launch the
processing pipeline from there. For this, we need an easy to use, flexible, efficient
and scalable workflow infrastructure for processing of extremely large volumes of
astronomical observation data.

PROCESS will provide a mechanism to run containerized workflows, thereby
improving the portability and easy of use.A suitable portal is needed to select datasets
and workflows. Through this portal, the astronomer must be able to browse through
the available datasets and available workflows, and launch processing directly from
there to the hardware infrastructure available in the project. Data should then be
transferred from the LTA to the processing infrastructure, processed, and the results
made available in the portal.

Currently, the processing of a dataset typically takes much longer than the ob-
servation time used to acquire the dataset. For example, to process a single 8-hour
observation using the calibration and imaging workflow described below currently
takes about 4 days (due to the lack of parallelisation of part of the workflow). To keep
up with the speed at which data is generated, it is essential to increase the processing
performance. Running the same workflow in parallel on different dataset provides
the horizontal scalability required for processing the LOFAR archive, and (in the
future) the SKA archive as well. Vertical scalability will be achieved by applying
multi- and many-core techniques.
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3.3 SKA use case scenario

In a typical use case an event is detected in the sky, for example a satellite detects
a flash of gamma radiation at a certain position. Subsequently, astronomers want
to observe this same patch of the sky with other instruments, such as optical and
radio telescopes. Additionally, the astronomers want to check past observations to
determine if any objects had previously been detected at the given position. To do
so, data must be retrieved from the archive that covers this position on the sky, and
be converted into sky maps.

Besides inspecting single observations, astronomers also perform surveys where
a large number of observations are combined to analyse certain features or detect
certain events in large portions of the sky. For such surveys, a large number of
observations must be processed by the same workflow, for example to create larger
sky maps.

3.3.1 The workflow of the SKA use case

The current pipeline is developed by Leiden University and SURFsara in the Nether-
lands. It is based on the following software:

• uberftp client 2
• globus-url-copy client 3
• voms-client (only on the login node) 4
• CVMFS 5

• PiCaS 6

• python 2.7 or higher
• pre-FACTOR 7

• DDF 8

A gridFTP enabled client is required for the interaction with the Grid storage
(dCache). Voms tools should be installed and configured to support the LOFAR VO
to allow users (or ’robot users’) to create proxies with LOFAR attributes. Installing
and configuring CVMFS with Softdrive mount point enables access to the LOFAR
software tree from any compute node.

2 http://www.lofar.org/wiki/doku.php?id=public:grid_srm_software_
installation

3 http://www.lofar.org/wiki/doku.php?id=public:grid_srm_software_
installation

4 http://www.lofar.org/wiki/doku.php?id=public:grid_srm_software_
installation

5 https://cernvm.cern.ch/portal/filesystem

6 http://docs.surfsaralabs.nl/projects/grid/en/latest/Pages/Practices/
picas/picas_overview.html

7 https://github.com/lofar-astron/prefactor

8 https://github.com/mhardcastle/ddf-pipeline

http://www.lofar.org/wiki/doku.php?id=public:grid_srm_software_installation
http://www.lofar.org/wiki/doku.php?id=public:grid_srm_software_installation
http://www.lofar.org/wiki/doku.php?id=public:grid_srm_software_installation
http://www.lofar.org/wiki/doku.php?id=public:grid_srm_software_installation
http://www.lofar.org/wiki/doku.php?id=public:grid_srm_software_installation
http://www.lofar.org/wiki/doku.php?id=public:grid_srm_software_installation
https://cernvm.cern.ch/portal/filesystem
http://docs.surfsaralabs.nl/projects/grid/en/latest/Pages/Practices/picas/picas_overview.html
http://docs.surfsaralabs.nl/projects/grid/en/latest/Pages/Practices/picas/picas_overview.html
https://github.com/lofar-astron/prefactor
https://github.com/mhardcastle/ddf-pipeline
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A single server runs the PiCaS system which uses the CouchDB database for
storing the descriptions of jobs. Python is required to execute the staging scripts and
interact with the CouchDB API via a python-based client. The processing clients
require outbound internet connectivity to retrieve job descriptions from PiCaS.

Fig. 4 The calibration and imaging pipeline for a single observation: The astronomer triggers
the staging of a 16 TB observation from the archive to temporary storage. This data is then first
processed by the Direction Independent Pipeline which may run in parallel on up to 244 nodes
(taking approx. 4 hours). Next, the Direction Dependent Pipeline is run on a single node (taking
approx 4 days) and produces up to output 244 images of 25K x 25K resolution for inspection by
the astronomer.

As a first step in the processing pipeline (shown in Figure 4), the observation data
needs to be downloaded from the archive. This may require retrieving the data from
tape and storing it on temporary storage (dCache). From there, the data is accessible
via GridFTP.

The workflow consists of 2 pipelines, the Direction Independent Pipeline (DI),
and the Direction Dependent Pipeline (DD). Both pipelines perform calibration,
which is essential to detect the weakest possible signals. Calibration is needed to
remove interference from the instrument and the ionosphere, thereby increasing the
sensitivity of the telescope significantly.

Calibration starts by converting a sky-map of well known radio sources into
visibilities, using a Fourier transform to convert to (u, v, w) space, and interpolating
from a regular grid to the irregular grid measured by LOFAR. This gives the “ground
truth” visibilities. Next, the observed visibilities of the well-known sources need to
bemapped tomatch this ground truth. Themappingmatrix is derived through a least-
squares fitting algorithm (such as Levenberg-Marquardt). The DI pipeline creates a
single mapping matrix which is applied to the entire observation. This calibration
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serves as a starting point for the DD pipeline, which performs a similar calibration
for dozens to hundreds of directions within the LOFAR array beam.

The outputs of both pipelines are shown in Figure 5 below. Although images
may be produced after DI, they are limited in resolution and contain residual errors
caused by disturbances in the ionosphere which vary over the field of view. This is
shown the left image in Figure 5. The DD takes the output of the DI as input and
further reduces the errors to produce high resolution, low error images, as shown in
the right image of Figure 5.

Fig. 5 Output images produced after Direction Independent Calibration (left) and additional Di-
rection Dependent Calibration (right). The image left clearly contains artefacts caused by the
ionosphere. These are subsequently removed by the direction dependent calibration, shown on the
right. Image courtesy of [15].

DI uses the pre-FACTOR package to perform the initial calibration. Internally it
consists of several steps, some of which can be run in parallel. As shown in Figure
4, it splits the input data into 244 subbands which can be processed independently.
Each subband becomes a separate calibration job. Each job requires a relatively
small input of 1.2 GB, which is reduced to an output of around 3 MB. When all
jobs are finished, a second calibration job combines the results into a single table
approximately 100 MB in size.

This table is then applied to the observation target, which again is split into 244
jobs, one for each subband. Each job requires around 60GB of input, and produces
around 1.2 GB of output. The output of these jobs is then again combined into the
final DI calibrated datasets, which consist of around 300 GB of data. The entire DI
takes around 4 hours for a single dataset when running on 244 nodes.

Following the crude direction independent (DI) calibration, direction dependent
calibration (DD) is performed. This is an iterative procedure on the target field,
which is called self calibration. It is currently implemented using the DDF package
on a single node (using all the cores of one high-end CPU). This takes about four
days uses the initial calibration output (300GB) to reduce the 16 TB of observation



14 Ladislav Hluchý at al.

data to 0.5 TB. This data is then converted to a collection of (up to) 244 images at
25k x 25k resolution (1.2 GB each).

Currently, the processing is performed on the Gina cluster of SURFsara, which
is located in Amsterdam. Where the jobs of the DI pipeline can be run on relatively
simple compute nodes with 8 GB of RAM and 100 GB of scratch space, the DD
pipeline requires a single high-end machine with at least 256GB of RAM and 3 TB
of scratch.

To process a single observation, approximately 27K core hours are required to
run the pipeline. To process the complete archive an estimated 47M core hours is
currently needed. An additional 8 to 12M core hours is needed each year to keep up
with the 5-7 PB of data produced yearly. Note that these estimates are for running
a single pipeline on all data, using a single configuration. However, for different
science cases different configurations or pipelines are used. Therefore, this estimate
is a lower bound for the processing time that is required.

4 Supporting innovation based on global disaster risk data

There is, at the moment, considerable uncertainty related to mechanisms the GAR-
like data is produced and consumed as part of the global risk assessment process.
The amount of data is conceptually based on the following formula:

“Relevant surface area of area under analysis “X” resolution “X” number of
scenarios needed for probabilistic analysis “X” size of an individual scenario data”

The number of scenarios and the necessary resolution of the scenario data depends
on the type of hazard. For example, in case of analysing the earthquake risk it is not
necessary to pinpoint the exact position of the epicentre, as differences of the order of
few kilometres do not influence the possible outcomes in case of a major earthquake.
However, the impact of a flash flood scenariomay be dramatically different depending
on small variations of the location of the maximum rainfall, surface structure and
e.g. slight variations in the elevation of building and infrastructure will have a major
impact on the outcomes. Thus a global flood model will always unavoidably be a
compromise (some of these compromises are discussed in detail by [14, 7]. The
GAR 2015 dataset size ( 1.5TB) should be seen as the minimum, with the follow-up
activities likely increasing the storage requirements by at least an order of magnitude
during the duration of the PROCESS project.

The PROCESS project supports the distribution of the GAR 2015 datasets using
a simple web portal. However, the plans for GAR 2019 will present additional
challenges in addition to the likely increase of resolution of analysis:

• Loss calculation process will become a community-based effort aiming at sci-
entific consensus (along the lines of the IPCC approach). Thus, there will be
several datasets, produced through different methodologies and, at least initially,
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residing in different repositories (instead of a centrally managed system curated
by UNISDR)

• The interaction between different research groups will almost certainly lead to the
need for supporting versioning of the datasets as the process of cross-correlation
and analysis uncovers opportunities for refinements and improvements in the
accuracy of the models. However, for traceability reasons all versions of the data
would need to be Findable, Accessible, Interoperable and Reusable (so-called
FAIR principle, promoted by the RDA).

Thus, the key to the success is to showcase lifecycle support for disaster risk
management data. This showcase would be aimed at convincing the data producers
to apply solutions that are interoperable with the PROCESS approach (or, in an ideal
case, adapt the PROCESS solution or PROCESS service). The initial key focus area
will be in supporting the risk modelling community with the analysis of external
reuse, based on the data published using PROCESS tools becoming more active
towards the end of the project.

The UNISDR collaboration aims at solving two interrelated problems: how to
support community uptake and broad range of innovation activities based on the new
natural disaster risk related open data products, and how to enable more efficient
data management of the disaster risk data in the face of increased amounts of data
that will be produced in a more dynamic fashion by a distributed, heterogeneous
collaboration.

4.1 Goal of the UNISDR use case

The use case goals are a) to increase the efficiency of data generation and curation
(simulated data related to natural hazards) for probabilistic analysis purposes by the
parties affiliated with the UNISDR Global Assessment process and b) to encourage
and facilitate the third-party use of these datasets.

4.2 Workflow of the UNISDR use case

The pre-2017 workflow of the overall GAR process is presented in Figure 6. PRO-
CESS support focuses on interaction and data sharing between the distributed hazard
modelling teams and the risk computation team at UNISDR. Once the GAR process
has been finalised, the hazard, exposure and vulnerability data would be turned into
open data products.

The post-2017 GAR workflow differs considerably from this model (see Figure
7). The consensus process will encompass numerous teams performing analysis on
a wide variety of datasets (many-to-many relationship between datasets, teams, and
analyses). The UNISDR/CIMA process represents just one of these combinations,
albeit due to its scale and nature as a recognised UNISDR project, it is a more
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Fig. 6 The pre-2017 GAR workflow.

far-reaching effort than most of the contributions to the 2019 version of GAR. From
the PROCESS point of view, the successful completion of the data generation is
important mainly as a way to establish the relevance of the project in the broader
GAR community and to build foundations for deeper collaboration.
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5 Ancillary pricing for airline revenue management

Ancillaries is a broad term for any services that goes beyond simple transportation
from A to B. Ancillary in this sense can be anything from being able to check-in an
additional bag to booking an “Uber” that transports the customer from the airport to
his hotel. Although ancillaries have caught the attention of basically every airline,
traditional RM software does not cover this topic at all, yet.

The challenges we face are manifold. We need to store and analyse huge data
volumes that major airlines already have today (e.g. Deutsche Lufthansa has more
than 100 million passengers per year). Due to the advanced digitization, we expect
an exponential increase of the data volume. Beside the more dynamic or volatile
booking data (we call this a passenger name record PNR) the solution needs a wide
access to more data like airport basic data, vacation period in different countries,
events like fairs, huge sport events etc. Also data like weather forecasts (e.g. snow
conditions in the Alps) can be of interest. Also input from highly volatile social
media streams like Twitter can be an interesting source to be analysed. And last but
not least web-scraping can provide information about the airline’s competitors and
their offerings.

Airlines are not operating alone. Major airlines cooperate with other, bigger and
smaller, airlines in joint ventures, networks and strategic alliances (e.g. the Star
Alliance, OneWorld etc.). Therefore, the data created in and by such networks needs
to be included in the analysis and dynamic pricing solution.

To achieve this, we need an infrastructure that is capable of collecting, processing
and analysing huge amounts of data. This needs to be done in a very dynamic way
because the result of the analysis (i.e. the calculated price of an ancillary)must be feed
back into the shopping / booking process. Due to the growth of on-line retailers and
an increasing number of on-line travel platforms, airlines expect a yearly increase
in the quantity of requests by about 20%. The infrastructure must be capable of
responding to more than 100 million requests per day and within 500 ms per request.

Within the dynamic pricing engine we must make use of new prediction methods
that offer ancillaries to a customer at an optimal price depending on his/her shopping
history and individual preferences, and by also considering attributes of the requested
itineraries, e.g.

• free golf bag for famous golfing destinations,
• or, free skiing bag if the passenger travels to e.g. Innsbruck and there is snow in

the Alps.

We need to develop new algorithms and forecasting models to optimally price
the provided ancillaries. This will include leading-edge methods and technologies
from the domains of artificial intelligence and machine learning - like deep learning,
decision trees, support vector machines, neural networks etc.

To evaluate these algorithms andmodels we need training and test data with a well
known structure. Therefore the first step will be the development of a data generator
for airline ancillary data. This is also necessary due to the high data protection level
for customer-related data within the EU.
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Finally, wewill developmethods that assign a “booking probability” to each ancil-
lary, since the customer only wants to be presented with ancillaries that match his/her
preferences. It is obvious that if the customer is annoyed by the offered products (for
example there may be too many of them, or they may not interest the customer), the
likelihood of purchasing an interesting ancillary goes down significantly.

5.1 Ancillary pricing use case motivation

In traditional indirect distribution, airlines publish some of their data via third party
systems, alongside their own internal source of availability. It is then up to other
third parties, Global Distribution Systems (GDSs), to use these sources of data to
create itineraries and to correctly apply fares to them. It is only at the point that
the customer makes a booking that the airline has visibility on that customer and
their request. At this stage, the customer decisions have been made based on the
airlineâĂŹs static data it published in advance and aggregated without the influence
of the Airline. The data is static with respect to content (combination of services
offered as a bundle) and price (pre-determined in advance and not at the time when
the shopping request is processed).

For this reason, airline revenue management (RM) has been mainly around the
following aspect for more than 40 years: determining how much of seat inventory
shall be sold for each of the previously determined static price-points. During the
last decade - and mainly driven by on one hand the growth and success of so-called
low-cost airlines, and on the other hand the increasing volume of flights booked
on the airline’s own website (were the airline has more or less full control about
content and look and feel) - the focus has shifted from controlling how much of
flight inventory to sell at pre-determined price-points to:

• merchandising any service item that might be related to a passengers journey, (e.g.
rental car, valet parking, taxi from/to airport, lounge access, travel insurances etc.),

• unbundling of services, i.e. offeringmore choice options to the traveller by offering
a large number of “à la carte” options (some of them could even be sold without
the need to book a flight),

• controlling the entire offer that is made to a shopper, i.e. content (services and
conditions), form and price points (in case it is not a single price but multiple
prices because of e.g. “à la carte” options and ancillaries).

This means that selling ancillaries around the flight has become more and more
important. For many airlines selling ancillaries has already become the main con-
tributor to their contribution margin.
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5.2 Goal of the ancillary pricing use case

The first goal of the use case is an analysis of current ancillary sales and hidden
sales pattern. Therefore two approaches will be pursuit: first we evaluate the option
to generate artificial sales data based on internal airline knowledge and secondly we
try to evaluate real sales data from partner airlines.

The second goal is deriving a promising machine learning algorithm for pricing
of offered ancillaries. Therefore we will train common machine learning algorithms
(e.g. random forest and neural networks) and evaluate their performance.

Lastly, a simulation should indicate the quality and chances of the pricing al-
gorithms. Ultimately good quality pricing algorithms promise airlines significantly
higher revenues from their ancillary sales.

All of these business goals should be achieved while providing a platform that is
capable of storing the incoming ancillary data in a way that allows easy exploitation
for airlines. On the one hand, the platform should provide libraries for machine
learning and quick processing for the model learning, while on the other hand
storing the models in an efficient way such that several hundred million ancillary
pricing requests a day can be answered.

5.3 Scenario of the ancillary pricing use case

The key software layers (see Figure 8) can be divided into (a) a batch layer, (b) a
stream layer and (c) a service layer. While the batch layer is used to build up the
model by evaluating huge historical data piles (e.g. stored in HDFS) the stream layer
is used to receive a continuous stream of live data to refine the model and integrate
it into the model store (located in the batch layer). The service layer is used as the
interface between e.g. the booking engine and the ancillary pricing engine. For this
the Ancillary Price Calculator accesses the model store to calculate the price.

Therefore these layers need to have capabilities for:

• the collection of dynamic and static data from different sources, like structured
flat files, shopping behaviour (offers and corresponding orders), click-stream data,
competitor information (e.g. from web scraping, fare filing), social media streams
etc.

• pattern recognition,modelling, predictive analyticmethods, and otherAImethods
• the process to calculate the relation/dependency between contents of offers (ser-

vices), offered prices and booking probability
• providing an interface to give access on ancillary price recommendations to

booking engines and travel portals in real time

Most software and hardware infrastructures at airlines’ revenue management
departments are still based on concepts which emerged in the 90s and early 2000s.
Usually, there is a big monolithic piece of software that is really hard to maintain and
difficult to extend. Furthermore, data storage is organized in big Oracle instances
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Fig. 8 Workflow scenario.

which guarantee data consistency and transaction safety, but at the drawback of poor
scalability. The rapid growth of passenger numbers and the opening of new business
fields has led to the following requirements for new software and hardware which
traditional solutions cannot answer:

• Support for quick changes in the software: the market changes quickly and the
internet allows the customer to easily compare offers. Hence, airlines have to react
quickly to the market.

• Elastic scaling of hardware: growing hardware costs are no longer expected, since
the machines are often left unused (e.g. few bookings with European airlines
during night hours in Europe).

• Vertical scaling of data stores: the growing data volumes are approaching the
limits of horizontal scaling of Oracle systems. Hence the need for vertical scaling.

The service layer (right-hand side of the workflow diagram) uses state-of-the-
art microservice software stacks such as Spring boot, Kubernetes etc. and provides
RESTful services. The service registry uses the Netflix Eureka framework and is
replicated to avoid a single point of failure. Eureka also facilitates dynamic load
balancing. The services are accessed through an application gateway, for this Netflix
Zuul is used which also integrates security services.

The streaming and batch-layer is currently under development and therefore not
yet fixed. It will likely rely on Hadoop/HDFS infrastructure and we plan to use
HBase as an interface between the big data side and the microservice side. For the
streaming layer, Apache Spark streaming looks promising. For the model building
part, frameworks such as Tensorflow and H2o.ai will be evaluated.
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6 Agricultural analysis based on Copernicus data

The fundamental scientific problem is the sustainability of food production on the
global scale, which is a multi-disciplinary problem requiring integrating simulation
models from cell-level phenomena all the way to macroscale developments (such as
climate change or soil erosion).

The key inputs for the analysis are the Copernicus datasets, consisting of data
from several satellites (Sentinel family) that produce radar and visible light data with
up to 10m resolution. The radar data covers the whole globe every 2 days, with a
monthly data rate of about 3PB. The visible light data covers the globe every 2-5
days, with a monthly data rate of about 4.5BP.

The availability of such fine-grained, global time series makes it possible to
correlate and validate different Earth System Models that simulate the combined
impact of several mechanisms with complex interaction patterns. The use case will
use one such modelling system - the PROMET software - as a validation tool for
services that provide an efficient and semantically rich interface to Copernicus data
sets.

6.1 Copernicus use case motivation

Global Change, which subsumes the accelerating influence of humans on the natural
environment, can be experienced in manifold ways. The most prominent are climate
change, land use change including changing land management intensities, changing
demand for biomass resources, increasing inputs of nutrients, changing mass bal-
ances of glaciers and changing global cycles of important elements like carbon and
nitrogen. These changes influence the availability, quality and allocation of water
resources, the productivity of the biosphere, the intensity of land cultivation and
land use on all scales from local to global and will force to adapt to changing future
boundary conditions.

With increasing area, the characteristic land surface processes and features, like
snow dominated mountain processes, intensive agriculture and irrigation, land use
patterns and geological settings simultaneously influence the overall reaction of an
area or watershed. It is therefore necessary to treat this large variety of land surface
processes and human interventions in a consistent manner within one model.

Therefore this use case analysis earth observation data as a spearhead activity
for piloting and stress-testing advanced data analysis techniques that can be used to
select and preprocess specific (e.g. spatially limited) time-series from the Copernicus
datasets that are rapidly approaching exascale level.
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6.2 Goal of the Copernicus use case

The aim of the use case is to realistically simulate natural processes and impacts
of human interventions based on a few rigorous principles, which ensure maximum
predictive power. Among them is a strict conservation of mass and energy and no cal-
ibration using measured streamflow records. The used software has been developed
for the last 25 years with the aim to provide an integrated, stable and versatile tool
to simulate land surface processes and to consider the dynamic interactions between
the different land surface compartments and the human influences in the processes.

The main focus is on Multi-Model Simulations which are seamlessly linked with
observational data (including also sources like socialmedia and local sensor networks
to complement satellite observations) to improve accuracy, relevance, and efficiency
beyond what would be possible to achieve using either simulation or observational
data on their own.

6.3 Workflow of the Copernicus use case

The use case is based on a tightly coupledmodelling framework PROMET (Processes
of Mass and Energy Transfer) that combines modelling the macroscale carbon cycle,
water and energy inputs with the behaviour of water and key nutrients in the soil
with analysis of plant metabolism and even human decision-making. This use case
combines tools for:

• Modelling a wide variety of global, local and cellular phenomena
• Simulation of the system-level combined impact of these processes
• Basic pattern recognition tools, e.g. adaptive and Bayesian methods for social

media analysis and for data mining from the Copernicus datasets. Deep learning
to identify human structures and their changes over time being considered

• Verification approach that allows adjusting simulation parameters based on the
actual, observed development in the earth observation data during the simulation
process.

• Dimension reduction approaches to manage Copernicus datasets (multi-sensor,
multi-temporal data-cube) more efficiently

The Use Case initially starts (see Figure 9) by accessing data sets from the
Copernicus observations. These data are fetched via an adapter, which needs to be
implemented during the project. The fetched data sets will be stored in the PROCESS
storage facilities. It includes raw and metadata.

With a newly developed preprocessor, some of the datawill be preprocessed on the
PROCESS computing resources. This will maximize the parallelization degree and
enlarge the possible processed amount of data within a given time frame compared
to the actual processing. The processed data is again stored within the PROCESS
storage resources.
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Fig. 9 Workflow scenario.

The closed-source PROMET will fetch this data via a new so-called PROMET-
Adapter, which can grant access to the data storage and also grant access for the
PROMET software to be executed on the PROCESS computing resources.

7 Common architecture driven by the use cases

7.1 Architecture components

The PROCESS project bases its developments on the architectural framework model
presented in Figure 10. This is a functional model, helping to align developments in
each of the following “service component clusters”:

• Computing and storage infrastructure, responsible for optimising the performance
of the underlying infrastructure while providing consistent interfaces to physical
computing and data resources to the higher-level services

• SOA/Cloud solutions, supporting mapping of the “business processes” to mature,
well-documented and supported software and service components

• Visualisation layer, supporting discovery and investigation of the input datasets,
data pipeline design, scripting, as well as visualisation and further processing of
the results of the analysis.

The main challenges in processing of exascale data which we want to tackle in
PROCESS are as follows: extreme data sizes and data structure complexity. The
former often prevents migration of data to a remote computation location, while the
latter requires extensive domain knowledge in order to be able to use data effectively
[3]. This forces users of exascale data to perform computations in situ, and only
the largest research institutions and the best funded projects can afford to acquire
access to an infrastructure able to house both the data and the extreme computational
resources that can process it. Additionally, the expert domain knowledge required
to be able to make sense of the data is often hard to find. These requirements make
exascale processing prohibitively expensive for smaller players.

Designing an architecture which alleviates some of these problems and brings
exascale data closer to smaller research organizations, and even to individual re-
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searchers is a crucial step in fulfilling the objectives of PROCESS. The architecture
must be able to decouple access to the data from their use in computation and to
provide simplified access to individual components of the data.

In PROCESS, we will also design a reference architecture (in JRA1) that not
only addresses exascale data management challenges related to infrastructure owned
by the consortium but also deals with data management challenges across existing
Research Infrastructures (RI). RIs play an increasingly important role in the ad-
vancement of knowledge and technology in Europe. They are a key instrument in
bringing together stakeholders with different backgrounds to look for solutions to
many of the problems which the exascale data society is facing today.

Research infrastructures (RIs) offer unique research services to users from differ-
ent countries, attracting young people to science, and helping shape scientific com-
munities. RIs are hosted at research institutes, use a combination of high-performance
computing (HPC), grids and clouds, and are often interconnected with high-capacity
networks. RIs are accessed by the scientific community through a layer of high-level
services that efficiently and transparently manage the execution of complex dis-
tributed CPU and data-intensive applications. Often these applications, modeled
as workflows, are composed by loosely coupled tasks or jobs which communicate
through file exchange systems [1, 21]. Such file exchange is facilitated by Distributed
File Access Services (DFASs) which offer a single point of entry to discover and
manage files and replication to improve file availability. Despite the effort to move
computation to the data, there are cases where this is simply not possible. Technical
constraints such as privacy and security issues, lack of computing power or the need
for specialized hardware prevent computation from reaching the data [6, 20].

Typically, scientific workflows need access to datasets which are processed to
generate new datasets, which have to be further processed by subsequent tasks to
achieve a defined goal [17]. Therefore any DFAS which supports such an execution
model needs to maintain strict consistency throughout its file access points. To
enable use of off-the-shelf software and to hide the complexity of the network from
the application developers and end users some DFASs offer standardized protocols
[16, 2, 18] which decouple the development of client software from the DFAS,
enabling implementation of clients that can present the DFAS as a POSIX file
system through network transparency. Network transparency hides the way protocols
transmit and receive data over the network; thus any operation that can be performed
on a local file can also be performed on a remote file. To scale with increasing request
load, Distributed File Access Services (DFASs) often employ redundant pools of
servers. Despite the availability of RIs, DFASs do not always take advantage of their
capabilities. It is rarely the casewhenDFASs interactwith network devices (switches,
routers, etc.) to optimize data transfers and maintain a quality of service (QoS).
The main hurdle for interacting with network devices to optimize data transfers is
the configuration of these devices, each of which relies on different protocols and
interfaces. This makes large data transfers between RIs difficult to facilitate and
slows down the life cycle of scientific applications [5, 10, 11].
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From the point of view of computations, the focus of the project will be to
facilitate simulation, modelling, and development of mathematical method and tools
for exascale data processing. This, in particular, will include:

• services that enable execution of simulations models as interactive workflows us-
ing heterogeneous software, including modern languages for scientific computing

• services that facilitate access to HPC and cloud resources by using well-defined
standards

• services that facilitate programming for multicore architectures
• benchmark and monitoring services

According to the requirements analysis, the main demands placed on the architec-
ture are: an exascale data-capable, service-oriented, and cloud-based architecture al-
lowing exascale computational research even for organizations which do not possess
extreme resources. Considering the demands, a modular open-source architecture is
proposed (Figure 10). It is divided into three main modules: (1) exascale data module
led by work package 5 (green boxes), (2) exascale computing module led by work
package 6 (red boxes), and (3) service orchestration module led by work package 7
(blue boxes, it includes a user interface).

Fig. 10 The initial functional design of the PROCESS architecture [4].

Users access the architecture through an application-oriented scientific gateway
which provides secure access in the form of an interactive environment. The environ-
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ment is represented as a script application programming interface (API), command-
line interface (CLI), and graphical user interface (GUI). Authentication and autho-
risation of the user is performed by a dedicated service.

In order to alleviate the problems with processing exascale data, each of use case
scenarios will be expressed as a set of containers or virtual machines. Commonly,
workflow/scenario steps consist of applications that have enormous dependencies.
This approach will unlock the full potential of the infrastructure, and also provide a
secure and isolated environment. However, it implies virtualization/containerisation
of an application environment as well as its execution environment. The architecture
will provide a containerized application repository, which will offer a container or
virtual machine per workflow/scenario step.

The core of the platform services is the virtualization layer. This component will
be responsible for the deployment of application services. Once the services are
deployed, they will be orchestrated by high-level descriptions automatically. This
element will be responsible for resource allocation, configuration of all services and
management of their lifecycle.

To reach an exascale-capable infrastructure, interoperability across multiple com-
puting centres is essential. The whole infrastructure is divided into two parts: (1) an
extreme large data service-oriented infrastructure, and (2) an extreme large comput-
ing service-oriented infrastructure. The first part is modelled as a distributed virtual
file system (DVFS), an abstraction layer on top of a more concrete file system. It
allows applications to access different types of file systems (within a data storage
federation) in a uniform way. It also supports access to files from multiple hosts via a
computer network. The main requirements are to fit the federated architecture prin-
ciples and to avoid forcing users to rely on any specific client. DVFS also includes a
manager for metadata and supporting data services (such as monitoring).

The second part is responsible for management of computing resources. It is
modelled as an interactive computing environment, allowing to access different
computing resources in a uniform manner. It supports extreme large computations
that require heterogeneous infrastructures. It offers HPC computations, HTC com-
putations as well as cloud computations, and supports accelerators.

7.2 The initial technology-based architecture of the PROCESS project

Integration9 as a whole is depicted by Figure 11. Users will interact with the ar-
chitecture through a Model Execution Environment (MEE)10. The whole architec-
ture is driven by a SOA approach, and so RESTful interfaces are dominant. MEE
will provide authentication and authorisation services. It will be integrated with

9 The subchapter provides an example of a technology-based architecture that meets the require-
ments of the use cases (presented above) as well as the conceptual and functional requirements
derived from the functional model of the PROCESS architecture.
10 Details concerning the MEE can be found at http://www.cyfronet.krakow.pl/cgw17/
presentations/S7_2-EurValve-MEE-Oct-2017-v02.pdf

 http://www.cyfronet.krakow.pl/cgw17/presentations/S7_2-EurValve-MEE-Oct-2017-v02.pdf
 http://www.cyfronet.krakow.pl/cgw17/presentations/S7_2-EurValve-MEE-Oct-2017-v02.pdf
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Jupyter11 and offer browsing of files through LOBCDER12. MEE will be connected
to a TOSCA13 template repository through SSL, and Cloudify14 through a REST
API. Following successful authentication and authorisation, users will be able to
specify a workflow. Cloudify will obtain its description in a TOSCA template and
deploy dedicated Docker/Singularity images on corresponding infrastructure ele-
ments. In order to achieve this functionality, Cloudify will include three plugins: (1)
the LOBCDER plugin, (2) the Rimrock plugin15, and (3) the Atmosphere plugin16,
exploiting the underlying REST API (and WebDAV, within LOBCDER plugin).
HPC resources will be managed by Rimrock through the GSI-SSH protocol, and
cloud infrastructures will be governed by Atmosphere. The distributed virtual file
system will be provided by LOBCDER. It will provide direct access to data sources
through a dedicated virtual file system driver. However, if the service is complicated
(for example data filtering, data integration etc.), then it will go through the DISPEL
Gate17. LOBCDER is also integrated with DataNet which will be responsible for
management of metadata. More details about the technologies are provided in the
next section, which focuses on the current state of the art and a description of the
relevant tools.

8 Conclusion

The chapter describes 5 exascale use cases: exascale learning on medical image data,
exascale challenges within the LOFAR data volumes, supporting innovation based
on global disaster risk data, ancillary pricing for airline revenue management, and
agricultural analysis based on Copernicus data. These use cases come from academic
and industrial sphere with the following main requirements:

Medical use case: exascale computational processing methods that are able to
exploit accelerated computing (access to GPUs, ability to dynamically allocate
tens of TBs of storage that is co-located with the GPU clusters)

SKA use case: scalableworkflows that are able to cooperatewith exascale datasets
(ability to deal with large variations in the data access times – several order of

11 Julpiter webpage http://jupyter.org/
12 LOBCDER2] LOBCDER webpage https://ivi.fnwi.uva.nl/sne/wsvlam2/?page_id=
14

13 OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA)Âăhttps:
//www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

14 Cloudify] Cloudify: Cloud & NFV Orchestration Based on TOSCA https://cloudify.co/
15 RIMROCK webpage https://submit.plgrid.pl
16 Atmosphere webpage http://dice.cyfronet.pl/products/atmosphere
17 Atkinson, M., Brezany, P., Krause, A., van Hemert, J., Janciak, I., Yaikhom,
G.: DISPEL: Grammar and Concrete Syntax, version 1.0.The Admire Project, Febru-
ary 2010. Accessed March 2011.Âăhttp://www.Admire-project.eu/docs/Admire-D1.
7-research-prototypes.pdf
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https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://cloudify.co/
https://submit.plgrid.pl
http://dice.cyfronet.pl/products/atmosphere
http://www.Admire-project.eu/docs/Admire-D1.7-research-prototypes.pdf
http://www.Admire-project.eu/docs/Admire-D1.7-research-prototypes.pdf
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Fig. 11 The technology components of PROCESSâĂŹ architecture (the yellow circle with the
letter M represents a monitoring agent from Zabbix).

magnitude differences in access latencies)

Ancillary pricing use case: : responding to a large number of requests within
milliseconds per request, data confidentiality, financial pressures, real-time

Copernicus use case: methods suitable for scalable data extraction (PB-scale
“smart cache” with preprocessing capabilities)
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The last section is dedicated to designing of the PROCESS architecture, with a
high-level structure of the project platform. According to the requirements, the archi-
tecture is based on containerization and virtual machines supported by an exascale
capable distributed virtual file system, and computing manager. This approach will
utilize the available infrastructure with minimal overhead, and provide a platform
capable of satisfying the requirements of the use case communities.

In the near future, we will investigate a potential extension and improvement
of the containerization approach. We are planning to study the management of the
PROCESS architecture sub-components. Currently, the best solution candidate is
a service-driven micro-architecture. It will make the PROCESS architecture more
flexible and scalable, however, further examinations and analyses are needed which
will be the subject of our next research.
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