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Abstract. Pulmonary tuberculosis (TB) is still an important cause of
death worldwide, even after being almost eradicated 40 years ago. Early
identification of TB in computed tomography (CT) scans can influence
therapeutical decisions, thus improving patient outcome. In this paper,
a graph model of the lungs is proposed for the classification of TB types
using local texture features in thorax CT scans of TB patients. Based
on lung morphology, an automatic patient–specific lung field parcellation
was initially computed. Local visual features were then extracted from
each region and were used to build a personalized lung graph model. A
new graph–based patient descriptor enables comparisons between lung
graphs with a different number of nodes and edges, encoding the distri-
bution of several node measures from graph theory. The proposed model
was trained and tested on a public dataset of 1,513 CT scans of 994
TB patients. The evaluation was performed on data from a scientific
challenge together with 39 participant algorithms, obtaining the best
unweighted Cohen kappa coefficient of 0.24 in a 5–class setup with 505
test CTs. Even though each lung graph has a unique structure, the pro-
posed method was able to identify key texture changes associated with
the different manifestations of TB.

Keywords: Tuberculosis type classification · Lung graph model · Texture anal-
ysis

1 Introduction

Tuberculosis (TB) is a bacterial infection that remains a persistent threat and an
important cause of death worldwide even after being almost eradicated around
40 years ago [20]. TB is usually clinically confined to the respiratory system,
although it can be spread to any organ in immunocompromised patients [4].



2 Y. Dicente Cid et al.

Medical imaging, i.e. computed tomography (CT), has a major role in TB de-
tection and associated treatment decisions, including the length of a course of
therapy [3]. For pulmonary TB, diagnostic imaging is particularly challenging,
as the radiological signs can mimic those of other diseases, sometimes causing
a delay in the initialization of a proper treatment strategy [15]. Moreover, early
treatment can slow disease progression and reduce mortality associated with
TB [2].

Since 2017, the ImageCLEF Tuberculosis challenge has been organized, pro-
moting the development of automatic algorithms for TB type classification using
a large dataset of CT scans4. The method proposed by Sun et al. trained a re-
current neural network with 2D patches and obtained the top scores in the 2017
edition of this task [18]. In 2018, Liauchuk et al. obtained the best scores both in
unweighted Cohen kappa coefficient and overall classification accuracy [13]. They
developed a lesion–based TB descriptor and trained a random forest classifier
for this task. The results from both challenge editions showed that, for some TB
types, other participating algorithms obtained a higher classification accuracy,
which supports the notion that there is still room for improvement [9].

Graph modeling is a complete framework that was previously proposed for
brain connectivity analysis [19, 16] but has rarely been applied to other organs.
Graph methods divide the brain into fixed anatomical regions and compare neu-
ral activations between regions [17]. Following a similar approach, Dicente et al.
participated in the ImageCLEF 2017 Tuberculosis challenge [8] with a graph
model of the lungs with fixed structure [5]. The approach consisted of first di-
viding the lung into a fixed number of regions and then creating a graph where
each node represented a lung region and the edges encoded (dis)similarities be-
tween regional texture features inside the regions. During the 2017 challenge
multiple combinations of pruning levels of the complete graph were tested and
different similarity measures between the regional texture features [5]. In the
ImageCLEF 2018 Tuberculosis challenge [9] the best model of 2017 [10] ranked
second in terms of accuracy in the TB type classification task. Moreover, with the
same graph model patients with pulmonary hypertension were identified, which
is a very challenging task if only visual inspection of CT scans is performed [7].
Nevertheless, this graph model and all its variations were always built on a fixed
initial parcellation of the lungs, i.e. a geometrical atlas with 36 regions.

In this work we present a new graph model of the lungs with an underlying
structure derived from the morphology of the lung and not based on a geomet-
ric division. We first divide the lung volume into homogeneous regions using a
generalization for 3D volumes of the SLIC (Simple Linear Iterative Clustering)
algorithm [1]. This technique generates a varying number of regions for each pa-
tient and therefore the graph structure differs in each patient. The graph–based
descriptor of the lungs is then defined using measures from graph theory. To be
able to compare the benefits of using this new lung division instead of a fixed
structure to construct a graph model, we used the same regional descriptors
and the same similarity measure between regions as Dicente et al. in [10]. We

4 https://www.imageclef.org/2017/tuberculosis, as of 1 dic. 2018
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also used the same training and test dataset of the ImageCLEF 2018 TB type
classification task to evaluate the outcomes.

2 Methods

This section first describes the dataset used in our experiments and then details
the steps involved in the creation of this novel graph model: 1) division of the
lung fields into regions; 2) extraction of local texture features in each region; and
3) construction of a lung graph encoding the comparison between the regional
features of adjacent regions. Finally, the definition of a new graph–based patient
descriptor is detailed.

2.1 Dataset

We used the publicly available dataset of the TB type classification task of
ImageCLEF tuberculosis 2018 [9]. This dataset consists of 1,513 CT scans of
994 TB patients along with the TB type and patient age at the moment of the
scan, split into 1,008 scans for training and 550 for testing. The dataset contains
automatically generated masks of the lungs obtained with the method described
in [6]. For each patient there are between 1 and 9 CT scans acquired at different
time points. All scans of the same patient were diagnosed with the same TB
type by expert radiologists. Figure 1 shows one example for each of the five TB
types. Figure 2 shows examples of two patients with three CT scans each. The
numbers of CT scans and patients for each TB type are shown in Table 1. Only
the CT images and lung masks provided were used and no other meta–data such
as age.

Table 1. Dataset distribution of the ImageCLEF 2018 TB type classification task.
Data taken from [9].

Num. Pats. (CT series)
Patient set Train Test

Type 1 (T1) – Infiltrative 228 (376) 89 (176)
Type 2 (T2) – Focal 210 (273) 80 (115)
Type 3 (T3) – Tuberculoma 100 (154) 60 (86)
Type 4 (T4) – Miliary 79 (106) 50 (71)
Type 5 (T5) – Fibro–cavernous 60 (99) 38 (57)

Total patients (CTs) 677 (1,008) 317 (505)

Data Preprocessing: Our approach uses rotation–invariant 3D texture de-
scriptors that require having isometric voxels. We first made the 3D images
and the lung masks isometric. After analyzing the multiple resolutions and the
inter–slice distances in the dataset, we opted for a voxel size of 1 mm in all three
dimension to capture a maximum of the available information.
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Infiltrative Focal Tuberculoma

Miliary Fibro–cavernous

Fig. 1. CT slices of five patients from the ImageCLEF 2018 TB dataset, each one
presenting a different TB type.

2.2 Lung Parcellation

Once we obtained the isometric volumes, we divided the lung area into homoge-
neous regions based on the HU information using a generalization for 3D volumes
of the SLIC algorithm [1]. We used an initial step size s of 30 voxels (equivalent
to 30 mm) followed by a refinement step where any supervoxel containing fewer

than s3

2 voxels (13,500) was merged with the most similar adjacent supervoxel.
The initial step size and the refinement procedure were empirically established to
obtain a reasonable number of regions with a minimum volume that can contain
meaningful texture information. Figure 3 shows the supervoxelization result for
one image in the dataset. The resulting lung parcellations contained between 43
and 325 regions, with an average of 170 regions per patient.

2.3 Regional 3D Texture Features

For each region r of a given lung parcellation, two texture feature descriptors
were extracted: the Fourier–based histogram of oriented gradients (FHOG) [14]
and the locally–oriented 3D Riesz–wavelet transform (3DRiesz) [11]. These de-
scriptors were extracted using the same configuration as in [10] to compare to a
strong baseline. FHOG was computed using 28 3D directions for the histogram,
obtaining a 28–dimensional feature vector per image voxel v (fH(v) ∈ R28). For
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Fig. 2. Examples of two patients in the ImageCLEF 2018 TB dataset, each one with
three CT scans acquired at different time points. Each row contains a slice of the three
scans of a patient ordered by the patient age at the moment they were taken. The
three CT images of the first row were labeled as having TB type 1 (infiltrative) while
the three series in the second row are of type 4 (miliary).

3DRiesz we used the 3rd-order Riesz-wavelet transform, with 4 scales and 1st–
order alignment (see [11]). The feature vector for a single voxel was defined as the
absolute Riesz response along the 4 scales, obtaining a 40–dimensional feature
vector (fR(v) ∈ R40). Finally, the average and standard deviation of these two
descriptors were obtained for each region r: µH(r), σH(r), µR(r), and σR(r).

2.4 Graph Model of the Lungs

Using the patient–specific lung parcellation defined in Section 2.2 and the re-
gional texture descriptors detailed in Section 2.3, we create an undirected edge–
weighted graph model as defined in [10], this is: given a division of the lungs with
n regions {r1, . . . , rn}, we define a graph model of the lungs G = (N , E) as a set
of n nodes N = {N1, . . . , Nn} connected by a set of m edges E . An undirected
edge Ei,j with associated weight wi,j exists between nodes Ni and Nj if regions
ri and rj are 3D adjacent in the lung parcellation. The weight wi,j is defined as
the correlation distance between the regional feature vectors. Figure 4 contains
a 3D visualization of the graph using the patient–specific lung parcellation.
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CT slice Lung parcellation Lung subgraph

Fig. 3. From left to right: Cropped CT slice of a patient with fibro–cavernous TB shown
in Figure 1, the automatically generated supervoxelization (or lung parcellation) and
the subgraph containing the nodes that correspond to the regions present in the cropped
CT slice. This subgraph contains 25 nodes and 42 edges, whereas the full graph of this
patient contained 233 nodes and 2,035 edges (see Figure 4). The color of the nodes
matches the color of the region that they represent. The edges are colored according to
their weight and are normalized between 0 and 1. For this example we used as weight
the correlation distance between the average absolute Riesz response in each region
µH(r) (see Section 2.3).

2.5 Graph–based Patient Descriptor

Dicente et al. defined in [10] a graph model of the lungs containing the same
number of nodes and the same edges for all patients. Therefore, a graph–based
patient descriptorwp was defined as the collection of weights in the graph, sorted
with respect to their position in the adjacency matrix. Our graph model of the
lungs on the other hand contains a varying number of nodes (and edges) for
each patient and the above mentioned approach can not be used. We described
each graph with a fixed number of graph measures in order to compare graphs
of different patients.

For each node N in the graph G we computed five graph centrality measures:

the weighted degree dw(N), the relative weighted degree dr(N) = dw(N)
d(N) (the

weighted degree divided by the degree), the weighted closeness cw(N), the rel-

ative weighted closeness cr(N) = cw(N)
d(N) (the weighted closeness divided by the

degree) and the weighted betweenness bw(N). Each of these measures provided
different information about the importance of each node inside the graph (see
Figure 5). Considering the entire set of nodes N in G, each of these five mea-
sures results in a distribution: Dw

G = {dw(N)}, Dr
G = {dr(N)}, Cw

G = {cw(N)},
Cr
G = {cr(N)} and Bw

G = {bw(N)}, where N ∈ N . Then, we described each
of these distributions using 10 equidistant percentiles from 0 to 100, with per-
centiles 0 (π1(X)) and 100 (π10(X)) being the minimum and maximum values
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Lung parcellation Lung graph

Fig. 4. Morphology–based lung parcellation and graph derived from it. Each region is
identified by a node, and the edges are defined between nodes of 3D–adjacent regions
in the lung parcellation. The color of the nodes corresponds to the color of the lung
region that they represent.

in the distribution, respectively. Let π(X) = (π1(X), . . . , π10(X)) be the vec-
tor composed of the 10 percentiles πk(X) of a distribution X. Our graph–based
patient descriptor is then defined as:

ω(G) = (µw,π(Dw
G ),π(Dr

G),π(Cw
G ),π(Cr

G),π(Bw
G ))

where µw is the mean of the weights in the graph.
For each patient p with graph model Gp, its graph–based patient descrip-

tor ω(Gp) belongs to R51. From now on, ω(Gp) is referred to as ωf ,p, where f
corresponds to the regional feature used to build the graph Gp.

Concatenation of Patient Descriptors: As mentioned in Section 2.3, four
regional features were computed in each region of the lung parcellation (µH(r),
σH(r), µR(r), and σR(r)) providing complementary information about the tex-
ture and its variability. Given a patient p, a different weighted graph (same
nodes and edges but different weights) was obtained from each of these textural
features. The final patient descriptor ω̂p used in our experiments was defined as
the concatenation of the four graph–based patient descriptors:

ω̂p = (ωµH ,p,ωσH ,p,ωµR,p,ωσR,p) ∈ R204.

3 Experimental Setup

We applied Z–score normalization to each dimension of the descriptor vectors
ω̂p using the mean and standard deviation computed on the training set vectors.
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Fig. 5. Visualization of the distribution along the graph shown in Figure 3 of the five
graph measures extracted in each node of the graph. From left to right: Weighted degree
Dw, relative weighted degree Dr, weighted closeness Cw, relative weighted closeness
Cr and weighted betweenness Bw. For better visualization, the values of each measure
are normalized between 0 and 1 considering only the values in the nodes present in the
depicted slice.

Then, we used linear discriminant analysis (LDA) as a dimensionality reduction
technique and as a classifier algorithm in a 5–class setup. The optimization of the
LDA classifier was done using 10–fold cross–validation with random sampling
without repetition and grid search over the parameter space.

The ImageCLEF TB dataset contained for several patients more than one CT
scan (see Section 2.1). In our experiments we treated each CT scan as a different
instance. However, since the evaluation by the ImageCLEF organizers was done
at a patient level, we combined the predictions of the CT images of each patient
to obtain a final predicted class per patient. This combination was obtained by
averaging the probabilities of the LDA classifier. The final evaluation on the test
set was done by the ImageCLEF organizers using the same measures as the ones
reported during the challenge: the unweighted Cohen kappa coefficient and the
accuracy. Moreover, the true positive rate (TPR) of each class was provided.

4 Results

Table 2 shows the results obtained by our approach and by the top three
groups that participated in the ImageCLEF 2018 TB type classification task:
the UIIP BioMed [13], the fau ml4cv [12] and the MedGIFT [10] groups. All
results were provided by the ImageCLEF 2018 TB organizers. The approach
of Dicente et al. participated as the MedGIFT group. The results obtained by
our new graph model are much higher than the ones obtained by the MedGIFT
group using a related approach and slightly higher than the winner of the chal-
lenge in terms of Cohen’s kappa. Figure 6 contains the confusion matrix of our
approach and Figure 7 shows the true positive rate (TPR) of our approach and
the 3 best participants.
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Table 2. Results obtained by our approach and by the 3 best participants in the
ImageCLEF 2018 TB type classification task.

Group name Kappa Accuracy

Our approach 0.2385 0.4196
UIIP BioMed [13] 0.2312 0.4227
fau ml4cv [12] 0.1736 0.3533
MedGIFT [10] 0.1706 0.3849
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Fig. 6. Confusion matrix of our approach in %.

5 Discussion

In this work we used a graph model with an underlying structure that it is based
on the morphology of the lungs. The comparison between graphs of different pa-
tients was then translated to the comparison of the distributions along each
graph for five graph measures, extracted in each node. The selected node mea-
sures are both local (considering only the weights of incident edges to a given
node) and global (considering the whole structure of the graph). In Figure 5,
it can be seen how the selected node measures are complementary and each
of them highlights different but relevant nodes. The manual analysis of several
graphs revealed that the distributions of these measures usually did not follow a
normal distribution, and therefore the use of central moment statistics was not
appropriate. The use of percentiles as distribution descriptors allowed to encode
the proportion of important nodes (for a given node measure) and their level
of importance inside the graph. Since the number of nodes per graph was 170
in average (see Section 2.2) the use of 10 percentiles, including the percentiles
0 and 100, allowed us to describe each distribution in a summarized form that
still kept the shape of the distribution.

In order to see the effect of using this new morphology–based structure and
not a fixed structure, we used the same regional texture features and the same
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Fig. 7. True positive rate (%) for each TB type obtained by our approach and the top
3 groups participating in the ImageCLEF 2018 TB task.

weight definition as Dicente et al. in [10]. The results, both in terms of accuracy
and kappa value, clearly show the benefits of using our new graph structure (see
Section 4) instead of the one used by the MedGIFT group, indicating that the
global structure of the same texture information is as important as the local
information.

The analysis of the confusion matrix depicted in Figure 6 shows the strong
effect produced by the unbalanced dataset. Patients with TB type 1 and 2 (T1
and T2) were much more frequent in the dataset than the other three TB types.
This generated a bias in the classification of the test set towards these two
classes since the optimization of our classifier was done using the overall cross–
validation accuracy. Moreover, in the training phase we considered each CT
scan as a different patient (see Section 3), therefore creating an even stronger
effect towards classes T1 and T2 due to their higher proportion of scans (see
Table 1). Analyzing the TPR for each TB type in Figure 7, the MedGIFT and
UIIP BioMed groups seem to have had a similar bias towards classes T1 and
T2, but it is not the case for the fau m4cv group that obtained a similar TPR
for all the classes. In this task, the unweighted Cohen kappa coefficient is a
better measure of the performance of the algorithms due to its invariance to
unbalanced datasets. It indicates the level of agreement between the predicted
labels and the ground truth labels considering their prior probability in the
dataset, and therefore giving more importance to matches in rare classes than
in frequent classes.

6 Conclusions

A new graph model of the lungs with non–fixed morphology–based structure
is proposed in this work for the classification of TB types in chest CT scans.
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We present a novel graph–based patient descriptor encoding the distributions
inside the graph of five complementary node measures using percentiles. This
technique allows us to characterize each patient graph in the same feature space,
independently from the initial number of nodes and edges.

The evaluation in a public challenge strengthens the comparison of this new
graph model against the other 39 participating algorithms, obtaining the top
unweighted Cohen kappa coefficient and the second best overall classification
accuracy. Although the obtained results are promising, better scores would be
required to apply this model in medical practice. Nevertheless, the use of the
same regional texture features and weight definition than in the graph model
from the MedGIFT group shows the benefits of our new morphology–based
structure. This confirms the importance of encoding the overall structure along
the lung using similar tissue patterns.
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