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Abstract: Much	of	medical	knowledge	is	stored	in	the	biomedical	literature,	collected	in	archives	like	PubMed	Central	that	
continue	to	grow	rapidly.	A	significant	part	of	this	knowledge	is	contained	in	images	with	limited	metadata	available	which	
makes	 it	 difficult	 to	explore	 the	 visual	 knowledge	 in	 the	biomedical	 literature.	 Thus,	 extraction	of	metadata	 from	visual	
content	is	important.	One	important	piece	of	metadata	is	the	type	or	classification	of	the	image	which	could	be	of	various	
medical	imaging	modalities	such	as	X-ray,	computed	tomography,	or	magnetic	resonance	images.	Additionally,	they	could	be	
general	illustrations	such	as	graphs	and	charts.	This	paper	explores	a	late	score-based	fusion	of	several	deep	convolutional	
neural	networks	with	a	traditional	hand-crafted	bag	of	visual	words	classifier	to	classify	images	from	the	biomedical	literature	
into	image	types	or	modalities.	It	achieved	classification	accuracy	of	85.51%	on	the	ImageCLEF	2013	modality	classification	
task	which	is	better	than	the	best	visual	methods	and	competitive	with	mixed	methods	that	make	use	of	both	visual	and	
textual	 information.	 It	 achieved	 similarly	 good	 results	 of	 84.23%	 and	 87.04%	 classification	 accuracy	 before	 and	 after	
augmentation	respectively	on	the	related	ImageCLEF	2016	subfigure	classification	task. 
 
1. Introduction 

The advent of the internet has inverted many problems 
of information scarcity to problems of abundance. The sheer 
volume of information available online has made information 
retrieval increasingly important in daily life to avoid wasting 
time on irrelevant information as evidenced by the popularity 
of search engines such as Google and Bing. The medical field 
is no exception to this trend with searchable online archives 
such as PubMed Central which continue to grow rapidly as 
more articles are submitted and indexed for use by medical 
practitioners and researchers. 

The PubMed Central archive of the biomedical open 
access literature is a large collection of articles containing text 
and images that represent an important part of the biomedical 
knowledge. Visual information plays an important role to 
represent the knowledge stored but with only little metadata 
being available it is hard to exploit this information directly. 
Biomedical image modality classification is the problem of 
labelling biomedical images with their modality or in a larger 
sense the image type of the figure.  

In medical imaging, a modality is a method or 
technique to create images such as X-rays, Magnetic 
Resonance Imaging (MRI), Computed Tomography (CT), or 
electron microscopy [2]. Biomedical literature also has many 
other image types such as non-clinical graphs, flowcharts and 
illustrations. There are also compound figures made up of two 
or more sub-images each with the same or different 
modalities. Such compound figures usually need to be 
separated before classifying the subfigures into their image 
types [3] but extracting image types without a separation is 
also possible. 

Biomedical image type classification is important to 
improve medical image retrieval by filtering or reordering 
results taking into account modality information. Automatic 

prediction of modality in queries may be used to improve 
retrieval results [4]. Alternatively, users of medical image 
retrieval systems have suggested explicit querying by 
modality would be useful to them [5]. Thus, modality 
classification is important for retrieval of images lacking 
explicit modality information as found in the biomedical 
literature. 
            Biomedical image type classification is made difficult 
by low intra-class similarity, imbalanced class distribution 
and scarce data regarding the wide variety of images in 
different classes.  There are modalities containing images that 
are visually dissimilar or look different from one another as 
illustrated in Fig. 1. This low intra-class similarity and the 
semantic nature of biomedical image modalities make purely 
unsupervised methods difficult. Supervised methods are 
challenged by imbalanced class distribution and scarcity of 
some of the classes in the available datasets as illustrated in 
Fig. 2. 
 

 
(a) An electron microscopy 

image. 

 
(b) Another electron 
microscopy image. 

Fig. 1 (a), (b) show example images from the ImageCLEF 
2013 modality classification sub-task that are visually 
dissimilar but in the same modality class “DMEL” or 
electron microscopy. 
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The classification model proposed in this paper makes 
use of deep Convolutional Neural Networks (CNNs) for their 
state-of-the-art performance in other image classification 
problems [6-10]. Transfer learning was applied to overcome 
the limited amount of training data that are available and 
score-based fusion was used for classifier combination of 
multiple CNNs as well as traditional hand-crafted features to 
further improve performance. Different CNN architectures, 
transfer learning methods, and score-based fusion operators 
were explored. Only CNNs supported by MATLAB without 
third-party extensions were used. 

 
1.1. Background  

 
The original impetus for most work done in the 

biomedical image modality classification was the 
ImageCLEF modality classification or detection sub-task 
running from 2010 to 2013 [1, 11-13]. The key differences 
between the datasets are summarized in Table 1. 
 
Table 1 Summary of biomedical image classification datasets 
over time. 

Year Classes Training Test Total 
2010 8 2390 2620 5010 
2011 18 1000 1000 2000 
2012 31 1000 1000 2000 
2013 31 2901 2582 5483 
2015 30 4532 2244 6776 
2016 30 6776 4166 10942 

 

A similar problem was later reintroduced as the 
ImageCLEF subfigure classification sub-task in 2015 and 
2016 which focused on modality classification of individual 
subfigures of compound figures, in effect removing the 
“COMP” or compound figure modality [14, 15]. 

 
1.2. Traditional Feature Engineering 

 
Early approaches to biomedical image modality 

classification adapted methods developed for image 
processing problems including colour, edge, shape, texture, 
and transform based image descriptors or visual features [16-
23]. The Scale-Invariant Feature Transform (SIFT) [24] was 
a popular feature choice with good performance [16-19, 23].  

The low-level visual features were then used with 
different classifiers. Support Vector Machines (SVM) were a 
popular classifier choice [16-19, 22, 23, 25] in biomedical 
image modality classification and still remain in use [26-30]. 
Other classifiers such as k-Nearest Neighbours (k-NN) [31], 
random forests [32], genetic programming [33], and linear 
regression [34] were attempted but did not perform 
significantly better than SVMs in many cases. 

Different low-level feature selection, combination or 
fusion criteria were also examined in biomedical image 
modality classification. Early fusion or feature level fusion 
using concatenation was the most common followed by late 
score level fusion using the average score [16-23]. Several 
papers also found late fusion with rank-based combination to 
be more stable than score-based fusion. More complex fusion 
criteria such as Multiple Kernel Learning (MKL) or kernel 
level fusion [16] and covariance descriptors [35] were also 
explored. 

Fig. 2 The imbalanced class distribution of the ImageCLEF 2013 modality classification dataset that uses a subset of  the 
images in PubMed Central (PMC) [1]. 
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1.3. Deep Representation Learning 

 
Deep learning approaches learn multiple levels of 

representations or features from input images with each level 
transforming input into a higher more abstract level until the 
final output as class labels [36]. Convolutional Neural 
Networks (CNNs) are the current state-of-the-art deep 
learning approach for image classification as evidenced by 
results in the ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) [8]. 

Deep learning approaches require large training 
datasets to achieve state-of-the-art classification 
performance, but this requirement can be mitigated using 
transfer learning. Transfer learning takes representations 
learned from an extensive training dataset and applies them 
to a different target dataset or problem which is usually 
smaller or more limited [37, 38]. There are two main ways to 
approach transfer learning with CNNs: 
 

1. Extract features from pre-trained CNNs without 
training CNNs on the target dataset for use in other 
classifiers like SVMs [39, 40]. 

2. Fine-tune pre-trained CNNs by adapting last CNN 
layers and then training on a target dataset to use the 
trained CNN as classifier [37, 41]. 

 
Early deep learning approaches to biomedical image 

modality classification did not take optimal advantage of 
transfer learning and were limited by the relatively small 
datasets [42-44]. Later attempts used transfer learning 
(mostly with ImageNet), sometimes with data augmentation 
to expand the available dataset [26, 27, 45]. Fusion was also 
applied to combinations of different pre-trained CNN 
architectures to further improve classification performance 
[29, 45, 46]. 
 

2. Methods and Materials  
All The datasets used for evaluation were from the 

ImageCLEF 2013 modality classification and ImageCLEF 
2016 subfigure classification sub-tasks, the most recent and 
extensive datasets for their respective sub-tasks [14, 17]. All 
datasets are still available for researchers, so reproducibility 
of the results is given. Additionally, the training set of the 
“2016” dataset was augmented with all non-compound 
images from the “2013” dataset for comparison. It is denoted 
henceforth as “2016augtrn” to distinguish it from the original 
“2016” dataset without the augmented training set. 

The high-level overview of the proposed method is 
shown in Fig. 3. We use the AlexNet [47], VGG-16, and 
VGG-19 [48] architectures for transfer learning in the deep 
learning models due to their image classification performance 
and compatibility with MATLAB. The pre-trained CNNs 
were originally trained to compete in ILSVRC on a source 
dataset of over 1000000 images in 1000 classes [8]. We use 
a Bag of Visual Words (BoVW) or Bag of Keypoints (BoK) 
[49] model using SIFT descriptors [24] as a common 
exemplar for hand-crafted visual features due to their good 
image classification performance and wide use in biomedical 
image modality classification [16-19, 23]. 
 

2.1. Fine-tuning Pre-trained CNNs for Softmax 
Classification 

 
The pre-trained CNN is adapted by replacing the last 

3 layers specific to the source ImageNet dataset with layers 
created for the target ImageCLEF dataset. The global learning 
rate of all the layers in the adapted CNN are lowered whereas 
the newly created layers are given a multiplier to increase 
their learning rate. We empirically select a global learning 
rate of 0.00025 as well as a multiplier of 10 for the newly 
created layers. 
 
 

Fig. 3 Overview of the proposed method for biomedical image modality classification using deep CNNs, transfer learning, 
hand-crafted features, and late fusion. 
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The adapted CNN is then trained using Stochastic 
Gradient Descent with Momentum (SGDM) in mini-batches 
of size 32, shuffled every epoch and momentum of 0.9. We 
use early stopping in addition to the existing dropout and 
weight decay in the pre-trained CNNs to avoid overfitting. 
All these parameters were chosen as standard parameters that 
have shown good performance in other image classification 
tasks. We hold back 10% per class of the training images as 
a validation set and train the adapted CNN on the remainder. 
Training continues until the minimum validation loss 
evaluated every 50 iterations did not decrease in the past 7 
evaluations. Once training stops, the fine-tuned CNN is 
evaluated on the test images using the built-in softmax layer 
for classification. 
 

2.2. Hand-crafted Visual Feature Extraction for 
SVM Classification 
 

The traditional hand-crafted visual feature model is a 
Bag of Visual Words (BoVW) model adapted from work 
done by Zare and Müller [50] on a similar dataset for the 
ImageCLEF 2015 compound figure detection subtask [14]. It 
was successfully applied to X-ray image classification [51, 
52], which is a similar problem and dataset. 

A BoVW model begins by detecting or sampling 
keypoints from the image. We use a Difference of Gaussians 
(DoG) to detect local interest points and then extract SIFT 
[24] features around the local interest points or keypoints. 
Next, the SIFT feature vectors are quantized into 𝐾 groups or 
partitions using k-means clustering [49]. Each SIFT feature 
vector is then assigned to the closest cluster centre using 
nearest neighbours with Euclidean distance metric. The 
image is represented by a feature vector or histogram 
constructed from the frequency that each cluster centre or 
codeword occurs in the image. The parameter 𝐾 or codebook 
size was set to 𝐾 = 500 after empirical testing for a range of 
values 𝐾 = 400, 500, 600. 

However, spatial information is ignored at this stage 
as all keypoints are assigned equal weight. Spatial 
information is incorporated into the BoVW model using 
spatial pyramids [53]. The image is subdivided into 𝐿 grids 
such that the level 𝑙 grid has 21 cells along each direction for 
𝑙 = 0, 1,⋯ , 𝐿 − 1. The codeword frequency histograms are 
constructed for each cell including the frequencies of the cells 
that subdivide them. The parameter 𝐿 or pyramid level was 
set to 𝐿 = 2  resulting in 24×6 + 28×6 = 5  cells or 
subdivisions. The final image feature vector produced is of 
dimension 𝐾×5 = 2500.  

The adapted model uses the LibSVM library [54] for 
classification. The Gaussian or Radial Basis Function (RBF) 
kernel is used in case the features are not linearly separable. 
The hyperparameter optimization is done using grid search 
over 𝐶 = 2:;, 2:<,⋯ , 28;  and 𝛾 = 2:8;, 2:8<,⋯ , 2<  to 
minimize the 10-fold cross validation error on the training 
images. The range of 𝛾 (Gamma) and 𝐶 (Cost) that determine 
the impact extent of single training examples and the 
simplicity of the decision surface respectively are based on 
recommendations by LibSVM authors [55]. The trained SVM 
classifier is then evaluated on the feature vectors extracted 
from the test images and the posterior probabilities are 
estimated. 

 

2.3. Classifier Combination Using Score-based 
Late Fusion 
 

Late fusion is quite common in biomedical image 
modality classification [16-18, 20, 43, 45]. However, usually 
only the average score is taken which behaves similarly to the 
“combSUM” fusion operator. We also explore other fusion 
operators, such as “combMAX”, “combMIN” and 
“combPROD” [56] or “combMED” that takes the median 
score. The input scores are taken as the estimated posterior 
probabilities from the SVM and Softmax classifiers. 

 
3. Results and Discussion 

The trained individual models are evaluated on the 
three datasets “2013”, “2016”, “2016augtrn” and recorded in 
Table 2. Then, the individual models are combined with 
score-based late fusion on the same three datasets. However, 
the possible combinations of individual models are not 
explored exhaustively but only selected combinations are 
examined for clarity and conciseness. 
 

3.1. Individual Models 
 

All individual models exhibit a general increase in 
performance as the size of the dataset increases from 5483 
images in “2013” to 10942  images in “2016” and last 
“2016augtrn” which is the sum of “2013” and “2016” 
excluding compound images totalling 14306 images. This is 
expected behaviour for machine learning algorithms. 

Deep learning outperforms the traditional hand-
crafted feature exemplar of BoVW using SIFT features and 
spatial pyramids. It seems consistent with the relative 
performance of deep learning models in other image 
classification problems. However, it remains possible that 
there are implementation problems or insufficient 
optimization due to limited resources.  
 

3.2. Combination Models 
 

The estimated posterior probabilities from SVM and 
softmax classifiers are used to perform late score-based 
fusion using the “combSUM”, “combPROD”, “combMAX”, 
“combMED”, and “combMIN” fusion operators. Classifier 
combinations across different CNN architectures are 
recorded in Table 3 as it was found to be effective in other 
similar works [29, 46]. Table 4 investigates effects of 
combining deep learning and traditional hand-crafted models. 

 
Table 2 Classification performance of each individual model 

  Test set accuracy 
 Description 2013 2016 2016augtrn 
 Fine-tuning 
     AlexNet 79.01% 80.77% 82.48% 
     VGG-16 81.10% 83.63% 86.22% 
     VGG-19 83.46% 82.38% 85.74% 
 Hand-crafted 
     BoVW 66.54% 68.39% 74.24% 
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Table 3 Classification performance of different CNN 
architectures combined using score-based fusion operators 
  Test set accuracy 
 Description 2013 2016 2016augtrn 
 combMAX 84.47% 84.04% 86.65% 
 combMED 84.97% 84.97% 86.99% 
 combMIN 84.28% 84.16% 86.89% 
 combPROD 85.09% 84.78% 87.30% 
 combSUM 85.05% 84.78% 87.35% 

 
Table 4 Classification performance of different CNN 
architectures and hand-crafted visual features combined 
using score-based fusion operators 
  Test set accuracy 
 Description 2013 2016 2016augtrn 
 combMAX 84.51% 83.56% 86.41% 
 combMED 85.44% 84.52% 87.04% 
 combMIN 84.39% 82.57% 86.94% 
 combPROD 85.52% 84.23% 87.04% 
 combSUM 85.36% 84.16% 87.18% 

 
Fig. 4 compares the classification performance of 

different score-based fusion operators. The aggregation based 
fusion operators “combPROD” and “combSUM” seem to 
outperform the selection based fusion operators “combMAX” 
and “combMIN” but “combMED” is at a similar level. 

Fig. 4 also compares classification performance of 
combinations with and without hand-crafted visual features. 
Combinations with hand-crafted visual features have better 
performance on the “2013” dataset but have worse 
performance on the “2016” dataset. It also affects the 
“2016augtrn” dataset as most images are from the “2016” 
dataset resulting in slightly worse performance. 

 

Table 5 Classification performance baselines of other models 
for comparison 

 Test set accuracy 
Description 2013 2016 2016augtrn 
Visual only models 
    2013 best visual [16] 80.79% - - 
    2016 best visual [26] - - 85.38% 
    Yu et al. [45] - 82.61% 87.37% 
    Kumar et al. [29] - 82.48% - 
    Valavanis et al. [30] 83.04% 82.45% 85.19% 
    Our proposed model 85.51% 84.23% 87.04% 
Mixed models (visual and textual) 
    2013 best mixed [16] 81.68% - - 
    2016 best mixed [26] - - 88.43% 
    Valavanis et al.[30] 85.71% 86.10% 88.07% 

 
3.3. Proposed Model 
 

The combination with the best test set accuracy for the 
“2013” dataset is a combination of fine-tuned AlexNet, VGG-
16, VGG-19, and hand-crafted BoVW models using the 
“combPROD” fusion operator. However, it does not obtain 
the best classification performance in the “2016” dataset as 
previously noted. We prioritize the “2013” dataset, as it more 
closely resembles the distribution of images in biomedical 
literature by including compound images [1]. 

Table 5 compares the accuracy of our proposed model 
with other models as baselines. We achieve good 
performance compared with other visual methods using only 
input images. Mixed methods utilizing text input such as 
captions in addition to input images still perform better. The 
models with best classification performance for each category 
and dataset are highlighted in bold. 

 
 

Fig. 4 Classification performance of fusion models over different datasets combining different CNN architectures with and 
without hand-crafted visual features. 
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3.4. Classifier Analysis 
 

After selecting the proposed model, we examine the 
classification results in detail to see what was classified 
correctly and what was misclassified. Table 6 in the appendix 
records the detailed classification results for each modality or 
class for the 2013, 2016, and 2016augtrn datasets. It presents 
the precision, recall and F1 score or F-measure which are 
preferred performance measures for imbalanced datasets. 

Fig. 5 shows the most common misclassifications by 
the proposed model on the “2013” dataset. It is dominated by 

the “COMP” or compound figure class. Compound images 
are misclassified as many other classes because they are 
composed of subfigures of other modality classes. Inversely, 
generic biomedical illustrations such as “GFIG” are 
misclassified as compound images. It is likely due to 
whitespace in the illustrations being mistaken for subfigure 
separation in compound figures. “DRCT” and “DRMR”, also 
known as CT and MRI images, are also commonly 
misclassified as one another.  

“COMP” or compound figures are no longer a source 
of misclassifications in the “2016” and “2016augtrn” 
datasets. Instead, Fig. 6 shows many classes are misclassified 

Fig. 5 Confusion matrix of the proposed model on the "2013" test images. 

Fig. 6 Confusion matrix of the proposed model on the "2016" test images. 
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as the new dominant class “GFIG” or statistical figures, 
graphs, and charts. Microscopy images with modality code 
beginning with “DM” are often misclassified as “DMEL” or 
electron microscopy due to the visual dissimilarity within the 
class as illustrated in Fig. 1. Fig. 7 shows the same patterns as 
Fig. 7 with a smaller proportion of misclassified images due 
to the augmented or expanded dataset. 

 
3.5. Combination Analysis 

 
After examining the proposed model in detail, we 

examine how each individual classification model in the late 
fusion contributes to the proposed model. Table 7 in the 
appendix records the proportion of each modality class that 
was misclassified for each individual model as well as the 
proposed late fusion model evaluated on the “2013” dataset. 
The best or lowest proportion misclassified are highlighted in 
bold per modality class. 

Table 7 shows that each individual model has classes 
or modalities it is best at with lowest proportion of 
misclassified images. It suggests that the individual models 
differ in which modality they are good at classifying. Hence, 
the individual models are good candidates for combination 
with late fusion.  

From the misclassification of the proposed model, it 
can be observed that there are modalities where the proposed 
model has a lower misclassification rate than even the best 
individual model misclassification rate. The decrease in the 
misclassification rate is mostly due to the late fusion selecting 
the best prediction from the individual model predictions. 

However, there are also images that the proposed late 
fusion model classified correctly that were misclassified in all 
the individual models as illustrated in Fig. 8. It suggests that 
there is a synergistic effect from the late fusion of the 
individual models. 

 
 
 

 

	
(a) Individually 

misclassified “DRCT” or 
computed tomography 

image. 

	
(b) Individually 

misclassified “DSEM” or 
electromyography image. 

	
(c) Individually misclassified “DVOR” or visible light 

photography of other organs. 

Fig. 8 (a), (b), (c) A few example images from the 
ImageCLEF 2013 modality classification sub-task that were 
classified correctly by the proposed late fusion model but 
misclassified by individual models in the combination. 

 
 
 

 

Fig. 7 Confusion matrix of the proposed model on the “2016augtrn” test images 
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4. Conclusion 
A late fusion model was proposed that combined deep 

learning models and traditional hand-crafted visual features 
for biomedical image modality classification. Transfer 
learning was used to mitigate the limited and imbalanced 
dataset. Specifically, fine-tuning of pre-trained CNNs 
AlexNet, VGG-16, and VGG-19 with early stopping was 
found to be effective relative to CNN feature extraction into 
SVM classifiers. 

A traditional hand-crafted BoVW model using SIFT 
features was found to improve performance of the combined 
classifier although it had worse individual performance. A 
relatively simple late fusion method with the score-based 
fusion operator “combPROD” was found to be sufficient 
compared to more complex methods like stacked SVMs. 

The proposed model outperforms or is similar to other 
visual methods on two separate but similar datasets, the 
ImageCLEF 2013 modality classification sub-task and the 
ImageCLEF 2016 subfigure classification sub-task as shown 
in Table 5. However, it still falls short of mixed methods that 
use both visual and text input. 

Future work or improvements may include combining 
more CNN architectures or even training from scratch, but 
this also increases the computational time required and hence 
decreases efficiency. Other traditional hand-crafted features 
could be included in the combination as well. More complex 
combination schemes such as Multiple Kernel Learning 
(MKL) or kernel level fusion could be evaluated. Finally, 
mixed methods incorporating textual input such as image 
captions can be explored. 
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6. Appendices 
Table 6 records detailed classification results for each 

modality or class for the “2013”, “2016”, and “2016augtrn” 
datasets. It presents the precision, recall and F1 score or F-
measure which are preferred performance measures for 
imbalanced datasets. It is provided for detailed comparison 
with other classification results. 

Table 7 records the proportion of each modality class 
that was misclassified for each individual model as well as 
the proposed late fusion model evaluated on the “2013” 
dataset. The best or lowest proportion misclassified are 
highlighted in bold per modality class. It is provided to show 
the contribution of each individual model to the classification 
performance of the combined model. 
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Table 6 Detailed classification results per modality class over different datasets 

Modality 2013 2016 2016augtrn 
class Precision Recall F1 Precision Recall F1 Precision Recall F1 
COMP 0.92 0.87 0.90 - - - - - - 
D3DR 0.62 0.69 0.65 0.72 0.86 0.78 0.77 0.77 0.77 
DMEL 0.38 0.15 0.21 0.50 0.19 0.28 0.64 0.36 0.46 
DMFL 0.94 0.94 0.94 0.83 0.92 0.87 0.84 0.95 0.89 
DMLI 0.90 0.93 0.91 0.86 0.97 0.91 0.90 0.93 0.92 
DMTR 0.53 0.80 0.64 0.49 0.64 0.55 0.64 0.61 0.63 
DRAN 0.53 0.89 0.67 0.85 0.38 0.53 0.86 0.91 0.88 
DRCO 0.14 1.00 0.25 0.23 0.35 0.28 0.92 0.65 0.76 
DRCT 0.91 0.89 0.90 0.81 0.80 0.81 0.87 0.94 0.91 
DRMR 0.72 0.82 0.77 0.79 0.93 0.86 0.90 0.91 0.90 
DRPE 1.00 0.33 0.50 1.00 0.07 0.13 1.00 0.40 0.57 
DRUS 0.90 0.98 0.94 0.99 0.73 0.84 0.96 0.91 0.93 
DRXR 0.94 0.96 0.95 0.33 0.39 0.36 0.59 0.56 0.57 
DSEC 0.95 0.95 0.95 0.00 0.00 0.00 0.00 0.00 0.00 
DSEE 0.88 0.78 0.82 0.00 0.00 0.00 1.00 1.00 1.00 
DSEM 0.50 1.00 0.67 0.00 0.00 0.00 0.00 0.00 0.00 
DVDM 0.69 0.86 0.76 0.36 0.44 0.40 0.64 1.00 0.78 
DVEN 0.74 0.85 0.79 1.00 0.25 0.40 1.00 0.50 0.67 
DVOR 0.83 0.74 0.78 0.47 0.43 0.45 0.68 0.62 0.65 
GCHE 0.61 0.58 0.59 0.87 0.93 0.90 0.76 0.93 0.84 
GFIG 0.82 0.64 0.72 0.90 0.99 0.94 0.92 0.99 0.95 
GFLO 0.82 0.45 0.58 1.00 0.10 0.18 0.54 0.23 0.32 
GGEL 0.61 0.93 0.74 0.95 0.77 0.85 0.91 0.80 0.85 
GGEN 0.36 0.43 0.39 0.81 0.31 0.45 0.82 0.37 0.51 
GHDR 0.78 0.94 0.86 0.30 0.39 0.34 0.28 0.35 0.31 
GMAT 0.43 0.60 0.50 0.00 0.00 0.00 0.00 0.00 0.00 
GNCP 0.70 0.62 0.66 0.59 0.65 0.62 0.73 0.55 0.63 
GPLI 1.00 1.00 1.00 0.00 0.00 0.00 0.67 1.00 0.80 
GSCR 0.94 0.75 0.83 0.50 0.17 0.25 0.43 0.50 0.46 
GSYS 0.38 0.75 0.50 0.36 0.13 0.19 0.45 0.24 0.31 
GTAB 0.60 0.62 0.61 0.69 0.85 0.76 0.55 0.85 0.67 
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Table 7 Percentage per modality class misclassified of each individual model and proposed combined model 

 Misclassified per modality 
Modality Fine-tuning Hand-crafted Proposed 

class AlexNet VGG-16 VGG-19 BoVW combined model 
COMP 15.78% 18.24% 13.91% 14.30% 12.92% 
D3DR 53.85% 30.77% 30.77% 50.00% 30.77% 
DMEL 95.00% 90.00% 80.00% 85.00% 85.00% 
DMFL 6.06% 9.09% 9.09% 54.55% 6.06% 
DMLI 19.83% 13.22% 6.61% 33.88% 7.44% 
DMTR 35.00% 20.00% 30.00% 80.00% 20.00% 
DRAN 22.22% 11.11% 16.67% 44.44% 11.11% 
DRCO 100.00% 0.00% 100.00% 100.00% 0.00% 
DRCT 15.05% 16.67% 12.90% 25.27% 11.29% 
DRMR 21.11% 20.00% 20.00% 36.67% 17.78% 
DRPE 66.67% 66.67% 66.67% 33.33% 66.67% 
DRUS 11.76% 5.88% 4.71% 24.71% 2.35% 
DRXR 8.72% 5.81% 5.52% 31.40% 3.78% 
DSEC 19.79% 5.21% 15.63% 22.92% 5.21% 
DSEE 22.22% 22.22% 22.22% 22.22% 22.22% 
DSEM 100.00% 100.00% 100.00% 100.00% 0.00% 
DVDM 50.00% 25.00% 10.71% 75.00% 14.29% 
DVEN 30.00% 30.00% 5.00% 50.00% 15.00% 
DVOR 27.17% 38.04% 29.35% 65.22% 26.09% 
GCHE 42.11% 42.11% 42.11% 52.63% 42.11% 
GFIG 47.06% 47.06% 36.27% 94.12% 36.27% 
GFLO 55.00% 80.00% 45.00% 55.00% 55.00% 
GGEL 16.67% 6.67% 6.67% 53.33% 6.67% 
GGEN 57.14% 38.10% 61.90% 80.95% 57.14% 
GHDR 16.67% 3.70% 12.96% 83.33% 5.56% 
GMAT 60.00% 40.00% 80.00% 80.00% 40.00% 
GNCP 51.35% 32.43% 51.35% 70.27% 37.84% 
GPLI 18.18% 18.18% 9.09% 13.64% 0.00% 
GSCR 45.00% 25.00% 25.00% 80.00% 25.00% 
GSYS 50.00% 12.50% 37.50% 100.00% 25.00% 
GTAB 65.52% 37.93% 44.83% 65.52% 37.93% 

 


